DIFFERENTIAL GEOMETRY I HOMEWORK 5

DUE: WEDNESDAY, OCTOBER 22

(1) Consider \mathbf{S}^{2} with the stereographic projection (see $\# 4$ of Homework 4). For any $\alpha \in \mathbb{R}$,

$$
s_{\alpha}=\left(1+\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}\right)^{\alpha} \mathrm{d} u^{1} \wedge \mathrm{~d} u^{2}
$$

defines a section of $\Lambda^{2} T^{*} \mathbf{S}^{2}$ over U. For which value of α can s_{α} be extended as a nonwhere vanishing global section?

Once you find such α, it gives you a nowhere vanishing 2-form on \mathbf{S}^{2}. Therefore, $\Lambda^{2} T^{*} \mathbf{S}^{2}$ is isomorphic to the trivial bundle $\mathbf{S}^{2} \times \mathbb{R}$.
(2) Consider the tautological bundle over $\mathbb{R P}^{2}$:

$$
E=\left\{([\mathbf{x}], \mathbf{v}) \in \mathbb{R}^{2} \times \mathbb{R}^{3}| | \mathbf{x} \mid=1, \mathbf{v} \text { is parallel to } \mathbf{x}\right\}
$$

with the following local trivializations

$$
\begin{aligned}
& \psi_{1}:((x, y), \alpha) \mapsto([x, y, 1],(x \alpha, y \alpha, \alpha)), \\
& \psi_{2}:((v, u), \beta) \mapsto([v, 1, u],(v \beta, \beta, u \beta)), \\
& \psi_{3}:((z, w), \gamma) \mapsto([1, z, w],(\gamma, z \gamma, w \gamma)) .
\end{aligned}
$$

For any $\ell \in \mathbb{N} \cup\{0\}$, denote $\otimes_{\ell} E$ by E^{ℓ}. This is a commonly used notation when E is a line bundle (a rank 1 vector bundle). Note that the bundle transition function for E^{ℓ} is the ℓ-th power of that for E.
(a) Find out the coordinate transitions for $\mathbb{R P}^{2}$, and the coordinate transition functions for E.
(b) Find out the bundle transition functions for $\Lambda^{2} T^{*} \mathbb{R} \mathbb{P}^{2}$, and use it to conclude that $\Lambda^{2} T^{*} \mathbb{R} \mathbb{P}^{2}$ is isomorphic to E^{3}.
(c) Prove that E^{2} is isomorphic to the trivial bundle $\mathbb{R P}^{2} \times \mathbb{R}$ by constructing a nowhere vanishing section. [Hint: Consider the local section $(x, y) \mapsto 1 /\left(1+x^{2}+y^{2}\right)$.]
To sum up, $\Lambda^{2} T^{*} \mathbb{R} \mathbb{P}^{2} \cong E^{3}=\left(E^{2}\right) \otimes E \cong E$. In $\# 1$ of Homework 4, you proved that E is not isomorphic to the trivial bundle $\mathbb{R} \mathbb{P}^{2} \times \mathbb{R}$. Therefore, $\Lambda^{2} T^{*} \mathbb{R} \mathbb{P}^{2}$ does not admit a nowhere vanishing section.

Remark: A manifold M^{n} is said to be orientable if $\Lambda^{n} T^{*} M$ is isomorphic to the trivial bundle $M \times \mathbb{R}$. Exercise 1 shows that \mathbf{S}^{2} is orientable, and Exercise 2 shows that $\mathbb{R} \mathbb{P}^{2}$ is not orientable.

The above method can be used to show that $\Lambda^{n} T^{*} \mathbb{R} \mathbb{P}^{n} \cong E^{n+1}$, which is trivial when n is odd and nontrivial when n is even. In other words, $\mathbb{R P}^{n}$ is orientable if and only if n is odd.
(d) Denote the trivial bundle $\mathbb{R P}^{2} \times \mathbb{R}^{3}$ by $\underline{\mathbb{R}}^{3}$. The tautological bundle is a subbundle of \mathbb{R}^{3}. Find out the bundle transition functions for the quotient bundle \mathbb{R}^{3} / E, and prove that $\underline{\mathbb{R}}^{3} / E$ is isomorphic to the tangent bundle. [Hint: Endow \mathbb{R}^{3} with the standard inner product. Then E^{\perp} has two linearly independent, local sections: $(1,0,-x)$ and $(0,1,-y)$. After a suitable change of basis, you shall be able to prove the isomorphism between $T \mathbb{R}^{2} \otimes E^{2}$ and $\underline{\mathbb{R}}^{3} / E$.]
(3) Let Σ be a compact surfac ${ }^{1}$ in \mathbb{R}^{3}. Consider the standard coordinate functions, x, y, z, for \mathbb{R}^{3}. Since Σ is compact, we may assume that all the points of Σ have positive z-value. Namely, Σ lies above the $x y$-plane. For any $\mathbf{v} \in \Sigma$, the normalized position vector $\mathbf{v} /|\mathbf{v}|$ defines a smooth map from Σ to \mathbf{S}^{2}. Denote this map by Ψ. Prove that $\Psi^{*} T \mathbf{S}^{2}$ is isomorphic to the trivial bundle $\Sigma \times \mathbb{R}^{2}$. [Hint: What is $\Psi^{*} T \mathbf{S}^{2}$ as a subbundle of $\left.T \mathbb{R}^{3}\right|_{\Sigma}=\Sigma \times \mathbb{R}^{3}$? Can you construct an isomorphism to $\Sigma \times\{x y$-plane $\} \subset \Sigma \times \mathbb{R}^{3}$?]

[^0]
[^0]: ${ }^{1}$ Namely, Σ is a compact, two dimensional submanifold of \mathbb{R}^{3}.

