DIFFERENTIAL GEOMETRY I
 HOMEWORK 3

DUE: WEDNESDAY, OCTOBER 8

(1) Suppose that $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a smooth map with the property that

$$
\psi(\lambda \mathbf{x})=\lambda \psi(\mathbf{x}) \quad \text { for any } \lambda \in \mathbb{R} \text { and } \mathbf{x} \in \mathbb{R}^{n}
$$

It is clear that $\psi(\mathbf{0})$ must be $\mathbf{0}$.
(a) When $n=1$, show that ψ is a linear function. [Hint: The derivative $\psi^{\prime}(\mathbf{x})$ is a constant.]
(b) When $n \geq 2$, prove that ψ is a linear map. [Hint: Compare ψ with its linearization at the origin.]
(2) Consider the matrix group

$$
\mathrm{SU}(n)=\left\{\mathfrak{m} \in \operatorname{Gl}(n ; \mathbb{C}) \mid \mathfrak{m m}^{*}=\mathbf{I} \text { and } \operatorname{det}(\mathfrak{m})=1\right\}
$$

(a) Prove that $\mathrm{SU}(n)$ is a Lie group by showing that

$$
\begin{array}{rlc}
\psi: \operatorname{Gl}(n ; \mathbb{C}) & \rightarrow & \operatorname{Herm}(n) \times \mathbb{R} \\
\mathfrak{m} & \mapsto & \left(\mathfrak{m m}^{*}-\mathbf{I}, \frac{-i}{2}\left(\operatorname{det}(\mathfrak{m})-\operatorname{det}\left(\mathfrak{m}^{*}\right)\right)\right)
\end{array}
$$

has $(\mathbf{0}, 0)$ as its regular value. Here, $\operatorname{Herm}(n)$ is the set of all $n \times n$ Hermitian matrices, which is isomorphic to $\mathbb{R}^{n^{2}}$ as a real vector space. The manifold $\psi^{-1}(\mathbf{0}, 0)$ has two components, and $\mathrm{SU}(n)$ is the component containing the identity matrix. It follows that the (real) dimension of $\mathrm{SU}(n)$ is $n^{2}-1$.
(b) Describe the tangent bundle of $\mathrm{SU}(n)$ as a subset of $\mathbb{M}(n ; \mathbb{C}) \times \mathbb{M}(n ; \mathbb{C})$.
(c) Focus on the case when $n=2$. Show that $\mathrm{SU}(2)$ is the same as \mathbf{S}^{3}. Although they are in fact diffeomorphic, you are only asked to argue it set-theoretically. [Hint: For any $\mathfrak{m} \in \mathrm{SU}(2)$, what can you say about its first column vector? After fixing the first column, how many choices do you have for the second column?]
(d) The tangent space of \mathbf{S}^{3} can be described by

$$
T \mathbf{S}^{3}=\left\{(\mathbf{x}, \mathbf{v}) \in \mathbb{R}^{4} \times \mathbb{R}^{4}| | \mathbf{x} \mid=1 \text { and } \mathbf{v} \perp \mathbf{x}\right\}
$$

Write down three (smooth) vector fields on \mathbf{S}^{3} that are linearly independent at every $\mathbf{x} \in \mathbf{S}^{3}$. [Hint: You can get some idea from Part (b) and (c).]
(3) Consider $\mathbf{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ with the stereographic projection:

$$
\begin{array}{rlrl}
\varphi_{U}^{-1}: \mathbb{R}^{2} & \rightarrow U=\mathbf{S}^{2} \backslash\{(0,0,1)\} & \varphi_{V}^{-1}: \mathbb{R}^{2} & \rightarrow V=\mathbf{S}^{2} \backslash\{(0,0,-1)\} \\
\mathbf{u} & \mapsto\left(\frac{2 \mathbf{u}}{1+|\mathbf{u}|^{2}}, \frac{-1+|\mathbf{u}|^{2}}{1+|\mathbf{u}|^{2}}\right) & \mathbf{v} \mapsto\left(\frac{2 \mathbf{v}}{1+|\mathbf{v}|^{2}}, \frac{1-|\mathbf{v}|^{2}}{1+|\mathbf{v}|^{2}}\right)
\end{array}
$$

(a) Write down the bundle transition function $g_{U, V}$ for the tangent bundle $T \mathbf{S}^{2}$.
(b) Write down the bundle transition function $g_{U, V}$ for the cotangent bundle $T^{*} \mathbf{S}^{2}$.
(c) Consider the restriction of the function $(x, y, z) \mapsto z^{2}$ on \mathbf{S}^{2}. Denote it by f. Write down its differential $\mathrm{d} f$ using the coordinate charts $\left(U, \varphi_{U}\right)$ and $\left(V, \varphi_{V}\right)$. Check that your expression obeys the bundle transition function of Part (b).
Here are two points about this computation:

- $\mathrm{d} f$ does define a section of the cotangent bundle of \mathbf{S}^{2}, which is called a 1-form on \mathbf{S}^{2};
- this is a double-check of your result of Part (b).

