DIFFERENTIAL GEOMETRY I HOMEWORK 3

DUE: WEDNESDAY, OCTOBER 8

(1) Suppose that $\psi : \mathbb{R}^n \to \mathbb{R}^n$ is a smooth map with the property that

 $\psi(\lambda \mathbf{x}) = \lambda \psi(\mathbf{x})$ for any $\lambda \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$.

It is clear that $\psi(\mathbf{0})$ must be $\mathbf{0}$.

- (a) When n = 1, show that ψ is a linear function. [*Hint*: The derivative $\psi'(\mathbf{x})$ is a constant.]
- (b) When $n \ge 2$, prove that ψ is a linear map. [*Hint*: Compare ψ with its linearization at the origin.]
- (2) Consider the matrix group

$$\mathrm{SU}(n) = \{ \mathfrak{m} \in \mathrm{Gl}(n; \mathbb{C}) \mid \mathfrak{m}\mathfrak{m}^* = \mathbf{I} \text{ and } \det(\mathfrak{m}) = 1 \}.$$

(a) Prove that SU(n) is a Lie group by showing that

$$\begin{array}{rcl} \psi: & \mathrm{Gl}(n;\mathbb{C}) & \to & \mathrm{Herm}(n) \times \mathbb{R} \\ & \mathfrak{m} & \mapsto & \left(\mathfrak{m}\mathfrak{m}^* - \mathbf{I}, \frac{-i}{2}(\mathrm{det}(\mathfrak{m}) - \mathrm{det}(\mathfrak{m}^*))\right) \end{array}$$

has $(\mathbf{0}, 0)$ as its regular value. Here, Herm(n) is the set of all $n \times n$ Hermitian matrices, which is isomorphic to \mathbb{R}^{n^2} as a real vector space. The manifold $\psi^{-1}(\mathbf{0}, 0)$ has two components, and $\mathrm{SU}(n)$ is the component containing the identity matrix. It follows that the (real) dimension of $\mathrm{SU}(n)$ is $n^2 - 1$.

- (b) Describe the tangent bundle of $\mathrm{SU}(n)$ as a subset of $\mathbb{M}(n; \mathbb{C}) \times \mathbb{M}(n; \mathbb{C})$.
- (c) Focus on the case when n = 2. Show that SU(2) is the same as S^3 . Although they are in fact diffeomorphic, you are only asked to argue it set-theoretically. [*Hint*: For any $\mathfrak{m} \in SU(2)$, what can you say about its first column vector? After fixing the first column, how many choices do you have for the second column?]
- (d) The tangent space of \mathbf{S}^3 can be described by

$$T\mathbf{S}^3 = \left\{ (\mathbf{x}, \mathbf{v}) \in \mathbb{R}^4 \times \mathbb{R}^4 \mid |\mathbf{x}| = 1 \text{ and } \mathbf{v} \perp \mathbf{x} \right\} \,.$$

Write down three (smooth) vector fields on \mathbf{S}^3 that are linearly independent at every $\mathbf{x} \in \mathbf{S}^3$. [*Hint*: You can get some idea from Part (b) and (c).]

(3) Consider $\mathbf{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ with the stereographic projection:

- (a) Write down the bundle transition function $g_{U,V}$ for the tangent bundle $T\mathbf{S}^2$.
- (b) Write down the bundle transition function $g_{U,V}$ for the cotangent bundle $T^*\mathbf{S}^2$.
- (c) Consider the restriction of the function $(x, y, z) \mapsto z^2$ on \mathbf{S}^2 . Denote it by f. Write down its differential df using the coordinate charts (U, φ_U) and (V, φ_V) . Check that your expression obeys the bundle transition function of Part (b).

Here are two points about this computation:

- df does define a section of the cotangent bundle of \mathbf{S}^2 , which is called a 1-form on \mathbf{S}^2 ;
- this is a double-check of your result of Part (b).