DIFFERENTIAL GEOMETRY I
 HOMEWORK 2

DUE: WEDNESDAY, OCTOBER 1

(1) Consider the determinant function on $\operatorname{Gl}(n ; \mathbb{R})$. Show that

$$
\left.\mathrm{d}(\operatorname{det})\right|_{\mathfrak{m}}=\operatorname{det}(\mathfrak{m}) \sum_{i, j=1}^{n}\left(\mathfrak{m}^{-1}\right)_{j i} \mathrm{~d}_{i j}
$$

If we denote by dm the $n \times n$ matrix whose (i, j)-element is the coordinate differential $\mathrm{dm}_{i j}$, we can write the above formula as

$$
\left.\mathrm{d}(\operatorname{det})\right|_{\mathfrak{m}}=\operatorname{det}(\mathfrak{m}) \operatorname{tr}\left(\mathfrak{m}^{-1} \mathrm{~d} \mathfrak{m}\right) .
$$

[Hint: This is a direct consequence of the Leibniz rule and the cofactor matrix construction of inverse matrices.]
(2) The main purpose of this exercise is to show that $\mathrm{SO}(3)$ is diffeomorphic to $\mathbb{R} \mathbb{P}^{3}$. Part of this exercise is similar to $\# 2$ of Homework 1 .

Let $F: \mathbb{R}^{4} \rightarrow \mathbb{M}(3 ; \mathbb{R}) \cong \mathbb{R}^{9}$ be given by

$$
F(x, y, z, w)=\left[\begin{array}{ccc}
x^{2}+y^{2}-z^{2}-w^{2} & 2(-x w+y z) & 2(x z+y w) \\
2(x w+y z) & x^{2}-y^{2}+z^{2}-w^{2} & 2(-x y+z w) \\
2(-x z+y w) & 2(x y+z w) & x^{2}-y^{2}-z^{2}+w^{2}
\end{array}\right]
$$

Let $\mathbf{S}^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\}$. Observe that $f=\left.F\right|_{\mathbf{S}^{3}}$ satisfies $f(x, y, z, w)=f(-x,-y,-z,-w)$, so that it descends to a map

$$
\tilde{f}: \mathbb{R} \mathbb{P}^{3}=\mathbf{S}^{3} /\{ \pm 1\} \rightarrow \mathbb{M}(3 ; \mathbb{R})
$$

(a) Check that the image of \tilde{f} belongs to $\mathrm{SO}(3)$.
(b) Prove that \tilde{f} is injective. [Hint: x^{2}, y^{2}, z^{2} and w^{2} can be solved from the diagonal elements.]
(c) Show that \tilde{f} is a smooth embedding. [Hint: A bijective continuous map from a compact topological space to a Hausdorff topological space is a homeomorphism.]
To sum up, the image of \tilde{f} is a smooth submanifold of $\mathrm{SO}(3)$. Since both $\mathbb{R}^{3}{ }^{3}$ and $\mathrm{SO}(3)$ are of dimension three, the image of \tilde{f} must be open in $\operatorname{SO}(3)$. Since $\mathbb{R P}^{3}$ is compact, the image of \tilde{f} is closed in $\mathrm{SO}(3)$. By the connectedness (think about this fact) of $\mathrm{SO}(3), \tilde{f}$ is a diffeomorphism from $\mathbb{R P}^{3}$ to $\mathrm{SO}(3)$. Or, you can use Item (b) to prove surjectivity directly.
(3) Reading Assignment: p.75-85 of Calculus on Manifolds by Michael Spivak.

