DIFFERENTIAL GEOMETRY I HOMEWORK 1

DUE: WEDNESDAY, SEPTEMBER 24

(1) Let (x, y, z) be coordinates on \mathbb{R}^{3}. Let Y_{r} be the set of points in \mathbb{R}^{3} at distanc $\oint^{1} r>0$ from the circle

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1, z=0\right\}
$$

(a) Let $A=\left\{r \in(0, \infty) \mid Y_{r}\right.$ is a smooth submanifold of $\left.\mathbb{R}^{3}\right\}$. Find out A.
(b) Let \mathbf{S}^{1} be the circle, and let $\mathbf{S}^{1} \times \mathbf{S}^{1}$ be the product manifold. Prove that Y_{r} is diffeomorphic to $\mathbf{S}^{1} \times \mathbf{S}^{1}$ for any $r \in A$.
(2) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by

$$
F(x, y, z)=\left(x^{2}-y^{2}, x y, z x, y z\right)
$$

Let $\mathbf{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$. Observe that $f=\left.F\right|_{\mathbf{S}^{2}}$ satisfies $f(x, y, z)=f(-x,-y,-z)$, so that it descends to a map

$$
\tilde{f}: \mathbb{R} \mathbb{P}^{2}=\mathbf{S}^{2} /\{ \pm 1\} \rightarrow \mathbb{R}^{4}
$$

Prove that \tilde{f} is a smooth embedding. [Hint: A bijective continuous map from a compact topological space to a Hausdorff topological space is a homeomorphism.]
(3) The main purpose of this exercise is to get you working on the Grassmannians (see [T, $\S 1.6]$) hands-on. You are asked to work out $\mathbf{G r}(4 ; 2)$, the space of 2 -planes in \mathbb{R}^{4}. As a manifold, $\mathbf{G r}(4 ; 2)$ has dimension 4.

Endow \mathbb{R}^{4} with the standard Euclidean inner product. Let $V \subset \mathbb{R}^{4}$ be a 2-plane, and let $\pi_{V}: \mathbb{R}^{4} \rightarrow V$ be the orthogonal projection. It has an open neighborhood $\mathcal{O}_{V} \subset \mathbf{G r}(4,2)$ consisting of 2-planes $V^{\prime} \subset \mathbb{R}^{4}$ such that $\left.\pi_{V}\right|_{V^{\prime}}: V^{\prime} \rightarrow V$ is an isomorphism.

Denote the orthogonal complement of V by V^{\perp}. As explained in $[\mathrm{T}, \S 1.6], \mathcal{O}_{V}$ is identified with $\operatorname{Hom}\left(V, V^{\perp}\right)$, which is isomorphic to $\operatorname{Hom}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \cong \mathbb{R}^{4}$ in the current setting.
(a) Consider $V=\{(\xi, \eta, 0,0) \mid \xi, \eta \in \mathbb{R}\}$. Work out the map explicitly

$$
\varphi_{V}^{-1}: \mathbb{R}^{4} \cong \operatorname{Hom}\left(V, V^{\perp}\right) \rightarrow \mathcal{O}_{V} \subset \mathbf{G r}(4 ; 2)
$$

[Hint: Write \mathbb{R}^{4} as $V \oplus V^{\perp}$. For any element in $\operatorname{Hom}\left(V, V^{\perp}\right)$, the corresponding 2-plane is it graph. Note that any 2-plane can be described by two linearly independent vectors. After fixing a basis of \mathbb{R}^{4} (or of V and V^{\perp}), elements of $\mathbf{G r}(4 ; 2)$ can be described by 2×4 matrices. To sum up, you shall be able to realize φ_{V}^{-1} as a map from \mathbb{R}^{4} to the space of 2×4 matrices, which is isomorphic to \mathbb{R}^{8}.]

[^0](b) Let $U=\{(0, \mu, 0, \nu) \mid \mu, \nu \in \mathbb{R}\}$. The open neighborhood \mathcal{O}_{U} and the coordinate map $\varphi_{U}: \mathbb{R}^{4} \rightarrow \mathcal{O}_{U} \subset \mathbf{G r}(4 ; 2)$ can be defined in the same way. Find out the open set $\varphi_{V}\left(\mathcal{O}_{U} \cap \mathcal{O}_{V}\right) \subset \mathbb{R}^{4} \cong \operatorname{Hom}\left(V, V^{\perp}\right)$.
(c) Compute the transition function
$$
\varphi_{U} \circ \varphi_{V}^{-1}: \varphi_{V}\left(\mathcal{O}_{U} \cap \mathcal{O}_{V}\right) \subset \mathbb{R}^{4} \rightarrow \varphi_{U}\left(\mathcal{O}_{U} \cap \mathcal{O}_{V}\right) \subset \mathbb{R}^{4}
$$
and check that it is a diffeomorphism between open subsets of \mathbb{R}^{4}.

[^0]: ${ }^{1}$ The distance from (u, v, w) to C is defined by $\inf _{(x, y, z) \in C} \sqrt{(u-x)^{2}+(v-y)^{2}+(w-z)^{2}}$. Note that the infimum is actually minimum in the case.

