DIFFERENTIAL GEOMETRY I HOMEWORK 1

DUE: WEDNESDAY, SEPTEMBER 24

(1) Let (x, y, z) be coordinates on \mathbb{R}^3 . Let Y_r be the set of points in \mathbb{R}^3 at distance r > 0 from the circle

$$C = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1 , z = 0 \right\} .$$

- (a) Let $A = \{r \in (0, \infty) \mid Y_r \text{ is a smooth submanifold of } \mathbb{R}^3\}$. Find out A.
- (b) Let \mathbf{S}^1 be the circle, and let $\mathbf{S}^1 \times \mathbf{S}^1$ be the product manifold. Prove that Y_r is diffeomorphic to $\mathbf{S}^1 \times \mathbf{S}^1$ for any $r \in A$.

(2) Let $F : \mathbb{R}^3 \to \mathbb{R}^4$ be given by

$$F(x, y, z) = (x^2 - y^2, xy, zx, yz)$$
.

Let $\mathbf{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$. Observe that $f = F|_{\mathbf{S}^2}$ satisfies f(x, y, z) = f(-x, -y, -z), so that it descends to a map

$$\tilde{f}: \mathbb{RP}^2 = \mathbf{S}^2 / \{\pm 1\} \to \mathbb{R}^4$$

Prove that \tilde{f} is a smooth embedding. [*Hint*: A bijective continuous map from a compact topological space to a Hausdorff topological space is a homeomorphism.]

(3) The main purpose of this exercise is to get you working on the Grassmannians (see [T, §1.6]) hands-on. You are asked to work out $\mathbf{Gr}(4; 2)$, the space of 2-planes in \mathbb{R}^4 . As a manifold, $\mathbf{Gr}(4; 2)$ has dimension 4.

Endow \mathbb{R}^4 with the standard Euclidean inner product. Let $V \subset \mathbb{R}^4$ be a 2-plane, and let $\pi_V : \mathbb{R}^4 \to V$ be the orthogonal projection. It has an open neighborhood $\mathcal{O}_V \subset \mathbf{Gr}(4,2)$ consisting of 2-planes $V' \subset \mathbb{R}^4$ such that $\pi_V|_{V'} : V' \to V$ is an isomorphism.

Denote the orthogonal complement of V by V^{\perp} . As explained in [T, §1.6], \mathcal{O}_V is identified with Hom (V, V^{\perp}) , which is isomorphic to Hom $(\mathbb{R}^2, \mathbb{R}^2) \cong \mathbb{R}^4$ in the current setting. (a) Consider $V = \{(\xi, \eta, 0, 0) \mid \xi, \eta \in \mathbb{R}\}$. Work out the map explicitly

$$\varphi_V^{-1} : \mathbb{R}^4 \cong \operatorname{Hom}(V, V^{\perp}) \to \mathcal{O}_V \subset \operatorname{\mathbf{Gr}}(4; 2)$$
.

[*Hint*: Write \mathbb{R}^4 as $V \oplus V^{\perp}$. For any element in $\text{Hom}(V, V^{\perp})$, the corresponding 2-plane is it graph. Note that any 2-plane can be described by two linearly independent vectors. After fixing a basis of \mathbb{R}^4 (or of V and V^{\perp}), elements of $\mathbf{Gr}(4; 2)$ can be described by 2×4 matrices. To sum up, you shall be able to realize φ_V^{-1} as a map from \mathbb{R}^4 to the space of 2×4 matrices, which is isomorphic to \mathbb{R}^8 .]

¹The distance from (u, v, w) to C is defined by $\inf_{(x,y,z)\in C} \sqrt{(u-x)^2 + (v-y)^2 + (w-z)^2}$. Note that the infimum is actually minimum in the case.

- (b) Let $U = \{(0, \mu, 0, \nu) \mid \mu, \nu \in \mathbb{R}\}$. The open neighborhood \mathcal{O}_U and the coordinate map $\varphi_U : \mathbb{R}^4 \to \mathcal{O}_U \subset \mathbf{Gr}(4; 2)$ can be defined in the same way. Find out the open set $\varphi_V(\mathcal{O}_U \cap \mathcal{O}_V) \subset \mathbb{R}^4 \cong \mathrm{Hom}(V, V^{\perp}).$
- (c) Compute the transition function

 $\varphi_U \circ \varphi_V^{-1} : \varphi_V(\mathcal{O}_U \cap \mathcal{O}_V) \subset \mathbb{R}^4 \to \varphi_U(\mathcal{O}_U \cap \mathcal{O}_V) \subset \mathbb{R}^4$,

and check that it is a diffeomorphism between open subsets of \mathbb{R}^4 .