NOTE ON THE SUBBUNDLE

DIFFERENTIAL GEOMETRY I

1. Rank of a subbundle

Let M be an n-dimensional, connected manifold, and $\pi: E \rightarrow M$ be a rank k vector bundle. We define a subbundle E^{\prime} to be a submanifold of E such that $E_{p}^{\prime}=E^{\prime} \cap E_{p}$ is a vector subspace of E_{p} for any $p \in M$. The main purpose of this section is to explain that the dimension of E_{p}^{\prime} is independent of p.

Since the zero section is contained in $E^{\prime}, \operatorname{dim} E^{\prime} \geq n$ and assume it to be $n+k^{\prime}$. Consider a local trivialization of $E:\left.E\right|_{U} \cong U \times \mathbb{R}^{k}$ over some open set $U \subset M$. Regard the open set U as an open subset of \mathbb{R}^{n}.

Consider the projection map

$$
\begin{array}{rlc}
\pi: U \times \mathbb{R}^{k} & \rightarrow U \subset \mathbb{R}^{n} \\
(\mathbf{x}, \mathbf{v}) & \mapsto & \mathbf{x}
\end{array}
$$

and let ψ be the restriction of π on $\left.E^{\prime}\right|_{U}=\left.E^{\prime} \cap E\right|_{U}$. Fix a point $p \in U$. Since the zero sections is contained in $E^{\prime}, \psi_{*}: T_{(p, 0)} E^{\prime} \rightarrow \mathbb{R}^{n}$ must be surjective. It follows that there exists an open neighborhood W of $(p, 0)$ in $\left.E^{\prime}\right|_{U}$ such that ψ_{*} is surjective at every point of this neighborhood. The implicit function theorem says that $\psi^{-1}(p) \cap W$ is a submanifold of dimension k^{\prime}. On the other hand, it is not hard to see that $\psi^{-1}(p) \cap W$ is the same as the intersection of E_{p}^{\prime} with some open set of E. Therefore, $\operatorname{dim} E_{p}^{\prime}=k^{\prime}$.

The above argument is called the transverse intersection. You can see $[\mathrm{T}, \S 5.7]$.

2. TANGENT BUNDLE OF A VECTOR BUNDLE

2.1. Short exact sequence of vector spaces. Before the discussion of the tangent bundle of a vector bundle, recall a short exact sequence of vector spaces means that there are three vector spaces V_{1}, V_{2} and V_{3} with an injective homomorphism $f: V_{1} \rightarrow V_{2}$ and a surjective homomorphism $g: V_{2} \rightarrow V_{3}$ such that $\operatorname{ker}(g)=\operatorname{im}(f)$. It is usually denoted by

$$
0 \longrightarrow V_{1} \xrightarrow{f} V_{2} \xrightarrow{g} V_{3} \longrightarrow 0 .
$$

In other words, V_{1} can be viewed as a subspace of V_{2} via f, and V_{3} can be viewed as the quotient space $V_{2} / f\left(V_{1}\right)$ via g. Note that unless there is an additional structure on V_{2} (such as an inner product), there is no canonically defined left inverse of f, and no canonically defined right inverse of g. When V_{2} carries an inner product, $V_{2} \rightarrow f\left(V_{1}\right)$ can be defined to be the orthogonal projection, and V_{3} can be identified as the orthogonal complement of $f\left(V_{1}\right)$ in V_{2}.
2.2. Change of basis. Let us focus on the local trivialization $\left.E\right|_{U} \cong U \times \mathbb{R}^{k}$, and assume that U is an open subset of \mathbb{R}^{n} as before. Such a local trivialization over U is definitely not unique. Any trivialization is equivalent to a smooth map $g(\mathbf{x}): U \rightarrow \mathrm{Gl}(k ; \mathbb{R})$. We are going to study the bundle transition map for the tangent bundle of $\left.E\right|_{U}$ for the following change of coordinate

$$
\begin{aligned}
\varphi: U \times \mathbb{R}^{k} & \rightarrow U \times \mathbb{R}^{k} \\
(\mathbf{x}, \mathbf{v}) & \mapsto(\mathbf{x}, \mathbf{w}=g(\mathbf{x}) \mathbf{v})
\end{aligned}
$$

The tangent space of $U \times \mathbb{R}^{k}$ at a point (\mathbf{x}, \mathbf{v}) is $\mathbb{R}^{n} \oplus \mathbb{R}^{k}$, whose basis is $\left\{\frac{\partial}{\partial x^{k}}\right\}_{i=1}^{n} \cup\left\{\frac{\partial}{\partial v^{\alpha}}\right\}_{\alpha=1}^{k}$. Take the similar basis for the (\mathbf{x}, \mathbf{w}) side. The bundle transition map is given by the partial derivatives of φ. At (\mathbf{x}, \mathbf{v}), it looks like

$$
\left[\begin{array}{cc}
\mathbf{I}_{n} & \mathbf{0}_{n \times k} \\
\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} \mathbf{v} & g(\mathbf{x})
\end{array}\right] .
$$

In other words,

$$
\begin{align*}
& \varphi_{*}\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{k}\left(\sum_{\beta=1}^{k} \frac{\partial g_{\alpha \beta}(\mathbf{x})}{\partial x^{i}} v^{\beta}\right) \frac{\partial}{\partial w^{\alpha}}, \\
& \varphi_{*}\left(\frac{\partial}{\partial v^{\beta}}\right)=\sum_{\alpha=1}^{k} \frac{\partial w^{\alpha}(\mathbf{x}, \mathbf{v})}{\partial v^{\beta}} \frac{\partial}{\partial w^{\alpha}}=\sum_{\beta=1}^{k} g_{\alpha \beta}(\mathbf{x}) \frac{\partial}{\partial w^{\alpha}} .
\end{align*}
$$

The above computation ($($) suggests that there exists a subbundle of $T E$ whose bundle transition is exactly the same as that of E. However, (\diamond) says that the tangent bundle of M (or of U) does not sit inside $T E$ canonically, except at $\mathbf{v}=\mathbf{0}=\mathbf{w}$.

More precisely, it means that

$$
0 \longrightarrow \pi^{*} E \longrightarrow T E \longrightarrow \pi^{*} T M \longrightarrow 0 .
$$

Namely, the pull-back of E and $T M$ by $\pi: E \rightarrow M$ give two vector bundles over E. The bundle $\pi^{*} E$ is a subbundle of $T E$, and their quotient bundle is isomorphic to $\pi^{*} T M$. But there is no canonical isomorphism between $T E$ and $\pi^{*} E \oplus \pi^{*} T M$, except over the zero section.
2.2.1. The push-forward of the projection. There is a slightly different way to describe the subbundle $\pi^{*} E \subset T E$. Consider the push-forward of the projection $\left.\pi_{*}\right|_{e}: T_{e} E \rightarrow T_{\pi(e)} M$. By using the local trivialization ($\boldsymbol{(})$, it is not hard to see that π_{*} is surjective, and the kernel of π_{*} is exactly $\pi^{*} E$. In fact, π_{*} is the second map in ($\left.\boldsymbol{\oplus}\right)$. With this understood, $\operatorname{ker}\left(\pi_{*}\right) \cong \pi^{*} E$ is usually referred as the vertical bundle over E.
2.2.2. How to differentiate a section? Suppose that there is a section $s: M \rightarrow E$ and a vector field u on M. A naturally question is that can we differentiate s along u such that the output is still a section of E ? If one follows the recipe of the differential of a map, it produces a section of $T E$ over $s(M)$, or $s^{*} T E$ over M. However, there is no canonical map from $T E$ to $\pi^{*} E$ in ($(\boldsymbol{\uparrow})$.

The answer to this question is the notion of a connection, which we shall discuss later. It is in [$\mathrm{T}, \S 11]$. There is also a very similar short exact sequence ($[\mathrm{T}, \S 11.4 .3]$).

