NOTE ON THE PARTITION OF UNITY

DIFFERENTIAL GEOMETRY I

Let M be an *n*-dimensional, connected smooth manifold¹. Suppose that $\mathcal{U} = \{(U, \varphi)\}$ is a coordinate atlas for M. The main purpose of this note is to show that there exist a *partition of unity* subordinating to \mathcal{U} . Namely, there exists smooth functions $\{\theta_j\}_{j \in J}$ on M such that

- $0 \le \theta_j \le 0$ for any $j \in J$;
- for any $j \in J$, there exists some $(U, \varphi) \in \mathcal{U}$ such that $\operatorname{supp} \theta_j \subset U$;
- for any $p \in M$, there exists a neighborhood O_p such that $\theta_j|_{O_p} \equiv 0$ except for finitely many j's;
- $\sum_{j \in J} \theta_j \equiv 1.$

step 1: locally finite atlas. For simplicity, assume that the image of each φ is exactly \mathbb{R}^n . For any $p \in M$, there exists some $(U, \varphi) \in \mathcal{U}$ such that $p \in U$. Let $V_p = \varphi^{-1}(B(\varphi(p); 1))$. It is clear that $\{V_p\}_{p \in M}$ is an open cover of M. Note that any closed subset of $\overline{V_p}$ is compact.

Since M is paracompact, there exists a locally finite refinement. Let $\mathcal{W} = \{W_j\}_{j \in J}$ be a locally finite refinement of $\{V_p\}_{p \in M}$.

step 2: J is countable. Fix an element of W, call it W_1 . Consider the following function

$$h: J \longrightarrow \mathbb{N}$$
$$j \mapsto \min \left\{ n \in \mathbb{N} \mid \text{there exists } \{S_{\ell}\}_{\ell=1}^{n} \subset \mathcal{W} \text{ such that } S_{1} = W_{1}, S_{n} = W_{j}, \text{ and } S_{\ell} \cap S_{\ell+1} \neq \emptyset \text{ for } \ell = 1, \dots, n-1 \right\}.$$

In other words, h(j) is the minimal number of elements of \mathcal{W} that is needed to connect W_1 with W_j .

The claim is that $h^{-1}(n)$ is finite for any $n \in \mathbb{N}$. Let

$$J_{\leq n} = \left\{ j \in J \mid h(j) \leq n \right\} \,.$$

Note that $J_{\leq 1}$ has only one elements, which is from W_1 . Suppose that $J_{\leq n}$ has only finitely many elements. Then $K_n = \overline{\bigcup_{h(j) \leq n} W_j} = \bigcup_{h(j) \leq n} \overline{W_j}$ is compact. For any $p \in K_n$, there exists a neighborhood O_p such that O_p intersects only finitely many elements of \mathcal{W} . Since K_n is compact, $\{O_p \mid p \in K_n\}$ has a finite subcover $\{O_{p_\ell}\}_{\ell=1}^{N_n}$. It is not hard to show that

$$J_{\leq n+1} \subset \left\{ j \in J \mid W_j \cap O_{p_\ell} \neq \emptyset \text{ for some } \ell \in \{1, \dots, N_n\} \right\}.$$

It follows that $J_{\leq n+1}$ is a finite set.

¹Our manifolds are assumed to be Hausdorff and paracompact.

step 3: shrink W_j . From now on, write \mathcal{W} as $\{W_j\}_{j=1}^{\infty}$. The claim is that there exists a sequence of open sets $\{W'_j\}_{j=1}^{\infty}$ such that

$$M = \bigcup_{j=1}^{\infty} W'_j$$
 and $\overline{W'_j} \subset W_j$ for any $j \in \mathbb{N}$.

We only explain how to construct W'_1 . Choose an open set O_1 such that $\overline{O_1} \subset W_1$. For any $q \in \partial W_1$, there exists a neighborhood O_q such that

$$\overline{O_q} \cap \overline{O_1} = \varnothing$$
 and $\overline{O_q} \subset W_j$ for some $j \in \mathbb{N}$.

Since ∂W_1 is compact, $\{O_q \mid q \in \partial W_1\}$ has a finite subcover $\{O_{q_\ell}\}_\ell$. Let $W'_1 = W_1 \setminus \{\cup_\ell \overline{O_{q_\ell}}\}$. It is clear that $W'_1 \supset O_1$, $\overline{W'_1} \subset W_1$ and $\{W_j\}_{j=2}^\infty \cup W'_1$ covers M.

Other W'_j 's can be obtained by the same construction.

step 4: construct θ_j . If there exist a sequence of non-negative smooth functions $\{\chi_j\}_{j=1}^{\infty}$ with

$$\operatorname{supp} \chi_j \subset W_j \quad \text{and} \quad \chi_j|_{W'_i} > 0$$

for any $j \in \mathbb{N}$, then

$$\theta_j = \frac{\chi_j}{\sum_{j=1}^\infty \chi_j}$$

would be a partition of unity subordinating to \mathcal{U} . Note that the summation in the denominator is locally a finite sum due to the locally finiteness of \mathcal{W} . The function χ_j can be constructed using the bump function together with the compactness of $\overline{W'_j} \subset W_j$.

 $^{^2 \}mathrm{If} \ \mathcal{W}$ has only finitely many elements, the argument is simpler.