Course Description

Department of Mathematics

Department of Wathernaties					
Nature of the course ☐ required ☑ elective		Area 麻煩老師勾選類別,或直接填寫 □代數與數論 □分析 ☑幾何與拓樸 □計算與應 □機率 □統計 □離散數學 □其他 □論文研討、		•	
Calculus	alculus A Calculus B				
Course number		Section number	免填	Number of credits	3
Course title	課程名稱:辛幾何導論 Introduction to Symplectic Geometry				
Instructor	教授:蔡忠潤				

I. *Contents:

- 1. Linear symplectic algebra.
- 2. Symplectic manifolds.
- 3. Normal form theorems.
- 4. Symplectic group actions, moment maps and symplectic reductions.
- 5. Atiyah--Guillemin--Sternberg convexity theorem.
- 6. Symplectic capacities.
- 7. Constructions of symplectic manifolds.
- 8. Some contact geometry.

II. Course prerequisite:

- 1. General Topology (topological spaces, product topology, quotient topology and quotient maps, continuity, compactness, connectedness).
- 2. Differentiable manifolds (tangent spaces, differential maps, differential forms).

III. *Reference material (textbook(s)):

- 1. Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology.
- 2. Ana Cannas da Silva, Lectures on symplectic geometry.
- 3. Hansjörg Geiges, An introduction to contact topology.

IV. *Grading scheme: 請填寫各項計分之百分比,例如:期中 30% 期末 40% 作業 10% 報告 20%,總計

100%

- 1. Homework 30%.
- 2. Midterm 30%.
- 3. Final exam/report 40%.

V. * Course Goal:

Symplectic geometry is one of the main branch in geometry over the past 20 years. This course aims to give an introduction on symplectic manifold.