INTRODUCTION TO SYMPLECTIC GEOMETRY

FOR NOVEMBER 4

1. On the coadjoint orbit

Let G be a Lie group, \mathfrak{g} be its Lie algebra, and \mathfrak{g}^* be the dual vector space of \mathfrak{g} . The adjoint representation of G on \mathfrak{g} is defined by

$$\operatorname{Ad}_{g}(Y) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (g \, e^{tY} \, g^{-1}) \;.$$
 (1.1)

The coadjoint action of G on \mathfrak{g}^* is characterized by

$$\langle \operatorname{Ad}_{q}^{*}(\xi), Y \rangle = \langle \xi, \operatorname{Ad}_{g^{-1}}(Y) \rangle \tag{1.2}$$

for any $Y \in \mathfrak{g}$. Here, $\langle , \rangle : \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$ is the dual pairing. The purpose of this note is to explain that there is a *canonical symplectic form* on the *orbits* of the coadjoint action. Part of the material here is taken from [CdS1, Homework 17].

1.1. The vector fields associated to the adjoint and coadjoint action. For any $X \in \mathfrak{g}$, it induces a vector field on \mathfrak{g} by the adjoint action:

The vector field at
$$Y = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \operatorname{Ad}_{e^{tX}}(Y)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} e^{tX} e^{sY} e^{-tX}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (e^{-tX})_* (Y|_{e^{tX}}) = [X, Y] .$$
(1.3)

The computation relies on the following facts:

- If we think Y as a *left* invariant vector field, $Y|_g = \frac{d}{ds}|_{s=0}ge^{sY}$.
- On G, the flow generated by X for time t is tantamount to the *right* multiplication by e^{tX} . This is basically the same as the previous fact.
- The equality (1.3) is an equivalent definition for the Lie derivative.

For any $X \in \mathfrak{g}^*$, denote by X^{\sharp} the vector field on \mathfrak{g}^* induced by the coadjoint action. Its value at ξ is characterized by

$$\langle X^{\sharp}|_{\xi}, Y \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \langle \mathrm{Ad}_{e^{tX}}^{*} \xi, Y \rangle$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \langle \xi, \mathrm{Ad}_{e^{-tX}} Y \rangle = \langle \xi, [Y, X] \rangle .$$

$$(1.4)$$

1.2. The skew-symmetric bilinear form. For any $\xi \in \mathfrak{g}^*$, define a skew-symmetric bilinear form on \mathfrak{g} by

$$\omega_{\xi}(X,Y) = \langle \xi, [X,Y] \rangle . \tag{1.5}$$

We now examine the kernel of this skew-symmetric bilinear form. If $X \in \ker(\omega_{\xi})$, we apply (1.4) to find that

$$0 = \omega_{\xi}(X, Y) = -\langle X^{\sharp}|_{\xi}, Y \rangle$$

for any $Y \in \mathfrak{g}$. Therefore, X^{\sharp} vanishes at ξ . It follows that $\ker(\omega_{\xi})$ is the Lie algebra of the stabilizer of the action (1.2) at ξ .

We denote the stabilizer by G_{ξ} , and its Lie algebra by \mathfrak{g}_{ξ} . Since ker $(\omega_{\xi}) = \mathfrak{g}_{\xi}$, ω_{ξ} induces a non-degenerate skew-symmetric bilinear form on $\mathfrak{g}/\mathfrak{g}_{\xi}$. This quotient space is identified with the *tangent space* of the *orbit* of the coadjoint action at ξ .

Hence, ω induces a non-degenerate 2-form on the orbit of the coadjoint action. It is defined by

$$\omega_{\xi}(X^{\sharp}|_{\xi}, Y^{\sharp}|_{\xi}) = \langle \xi, [X, Y] \rangle .$$

$$(1.6)$$

Notice that (1.5) is not a 2-form on \mathfrak{g}^* . The inputs are elements of \mathfrak{g} , but not \mathfrak{g}^* .

1.3. Exterior derivative of ω . We calculate the exterior derivative of (1.6). Due to the above comment, it only makes sense to compute the exterior derivative on the orbit.

$$(\mathrm{d}\omega)(X^{\sharp},Y^{\sharp},Z^{\sharp}) = X^{\sharp}(\omega(Y^{\sharp},Z^{\sharp})) + Z^{\sharp}(\omega(X^{\sharp},Y^{\sharp})) + Y^{\sharp}(\omega(Z^{\sharp},X^{\sharp})) - \omega([Y^{\sharp},Z^{\sharp}],X^{\sharp}) - \omega([X^{\sharp},Y^{\sharp}],Z^{\sharp}) - \omega([Z^{\sharp},X^{\sharp}],Y^{\sharp}) .$$

For the terms of the first line,

$$\begin{split} X^{\sharp}(\omega(Y^{\sharp}, Z^{\sharp})) &= X^{\sharp}(\langle \xi, [Y, Z] \rangle) \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \big|_{t=0} \langle \mathrm{Ad}_{e^{tX}}^{*} \xi, [Y, Z] \rangle \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \big|_{t=0} \langle \xi, \mathrm{Ad}_{e^{-tX}}[Y, Z] \rangle \\ &= -\langle \xi, [X, [Y, Z]] \rangle \ . \end{split}$$

For the terms of the second line,

$$\omega([Y^{\sharp}, Z^{\sharp}], X^{\sharp}) = \omega(([Y, Z])^{\sharp}, X^{\sharp})$$
$$= \langle \xi, [[Y, Z], X] \rangle .$$

By the Jacobi identity, $d\omega = 0$. Thus, ω defines a symplectic form on the orbit of the coadjoint action. It is also known as the *Kostant–Kirillov symplectic structure*.

1.4. The moment map. Surely the Lie group G acts on the coadjoint orbit. It turns out that this group action is Hamiltonian, and the moment map is very simple.

For any $X \in \mathfrak{g}$, we claim that $\iota_{X^{\sharp}}\omega$ is d-exact. By (1.6) and (1.4),

$$\iota_{Y^{\sharp}}\iota_{X^{\sharp}}\omega = \langle \xi, [X, Y] \rangle$$
$$= \langle Y^{\sharp}|_{\xi}, X \rangle = Y^{\sharp}(\langle \xi, X \rangle)$$

for any $Y \in \mathfrak{g}$. It follow that $\iota_{X^{\sharp}} \omega = d(\langle \xi, X \rangle)$.

Hence, we can just take the moment map to be ξ , and it is automatically equivariant with respect to the coadjoint action. In other words, the moment map of the coadjoint orbit is the *inclusion map* to \mathfrak{g}^* .

1.5. Remarks.

- In fact, we can apply this framework for G = SO(3). Then we will get the answer for (6) of the Midterm.
- For Item (1.e) of Homework 8, the symplectic form should be

$$\omega_{\xi}(X^{\sharp}, Y^{\sharp}) = i \operatorname{trace}([X, Y]\xi) \; .$$

The correct statement of the first fact should be

$$(\mathrm{d}\omega)(X^{\sharp}, Y^{\sharp}, Z^{\sharp}) = X^{\sharp}(\omega(Y^{\sharp}, Z^{\sharp})) + Z^{\sharp}(\omega(X^{\sharp}, Y^{\sharp})) + Y^{\sharp}(\omega(Z^{\sharp}, X^{\sharp})) - \omega([Y^{\sharp}, Z^{\sharp}], X^{\sharp}) - \omega([X^{\sharp}, Y^{\sharp}], Z^{\sharp}) - \omega([Z^{\sharp}, X^{\sharp}], Y^{\sharp}) .$$

For the second fact, we consider the derivative of

$$\xi \mapsto \omega_{\xi}(X^{\sharp}, Y^{\sharp}) = i \operatorname{trace}([X, Y]\xi)$$

along Z^{\sharp} , which is equal to

$$\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} i \operatorname{trace}([X,Y](e^{tZ}\xi e^{-tZ})) \ .$$

As mentioned above, the whole business of the symplectic form computation is done on the coadjoint orbit.