INTRODUCTION TO SYMPLECTIC GEOMETRY

FOR SEPTEMBER 30

On the homotopy map in the proof of the Poincaré-Birkhoff theorem
In the proof of the Poincaré-Birkhoff theorem, we construct a curve $\gamma:[0, \infty) \rightarrow \mathbb{R}^{2}$ such that

- $\gamma(t)$ belongs to the strip $S=\mathbb{R} \times[-1,1]$ when $t \in[0, T]$;
- $\gamma(0) \in \mathbb{R} \times\{-1\}$ and $\gamma(T) \in \mathbb{R} \times\{1\}$;
- $\gamma(T+1)$ lies outside the strip; more precisely, its y-component is greater than 1 ;
- γ has no self-intersection, namely, $\gamma(s) \neq \gamma(t)$ for any $s \neq t$.

For this curve γ, we associate a map $\rho(t):[0, T] \rightarrow \mathbf{S}^{1}:$

$$
\begin{equation*}
\rho(t)=\frac{\varphi_{\epsilon}(\gamma(t))-\gamma(t)}{\left|\varphi_{\epsilon}(\gamma(t))-\gamma(t)\right|}=\frac{\gamma(t+1)-\gamma(t)}{|\gamma(t+1)-\gamma(t)|} \tag{0.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\rho(0)=\frac{\gamma(1)-\gamma(0)}{|\gamma(1)-\gamma(0)|} \quad \quad \text { and } \quad \quad \rho(T)=\frac{\gamma(T+1)-\gamma(T)}{|\gamma(T+1)-\gamma(T)|} \tag{0.2}
\end{equation*}
$$

Now, we take a continuous angle function $\theta(t):[0, T] \rightarrow \mathbb{R}$ such that $\rho(t)=e^{i \theta(t)}$, and consider $\operatorname{sign}(\rho)=\operatorname{sign}(\theta(T)-\theta(0)) \in\{ \pm 1\}$.

Goal. Deform $\rho(t)$ to another map $\rho_{0}(t):[0, T] \rightarrow \mathbf{S}^{1}$ such that
(i) during the deformation process, the boundary condition 0.2 is preserved;
(ii) the image of $\rho_{0}(t)$ belongs to the upper semi-circle.

If this can be done, Item (i) implies that $\operatorname{sign}(\rho)=\operatorname{sign}\left(\rho_{0}\right)$, and Item (ii) implies that $\operatorname{sign}\left(\rho_{0}\right)=-1$.

Idealistically (also from the picture), we can always deform $\rho(t)$ to be $\frac{\gamma(T+1)-\gamma(0)}{|\gamma(T+1)-\gamma(0)|}$. However, this constant map does not meet Item (i). A good candidate of $\rho_{0}(t)$ is the following:

- when $t=\frac{T}{2}, \rho_{0}\left(\frac{T}{2}\right)=\frac{\gamma(T+1)-\gamma(0)}{|\gamma(T+1)-\gamma(0)|} ;$
- when $t \leq \frac{T}{2}, \rho_{0}(t)=\frac{\gamma\left(f_{1}(t)\right)-\gamma(0)}{\left|\gamma\left(f_{1}(t)\right)-\gamma(0)\right|}$;
- when $t \geq \frac{T}{2}, \rho_{0}(t)=\frac{\gamma(T+1)-\gamma\left(f_{2}(t)\right)}{\left|\gamma(T+1)-\gamma\left(f_{2}(t)\right)\right|}$.

It is not hard to see that $f_{1}(t)=2 t+1$ and $f_{2}(t)=2 t-T$ would make ρ_{0} continuous.
Now, we can construct the (boundary fixing) homotopy between $\rho(t)$ and $\rho_{0}(t)$ directly:

$$
H(t, s)= \begin{cases}\frac{\gamma((1-s)(t+1)+s(2 t+1))-\gamma((1-s) t)}{|\gamma((1-s)(t+1)+s(2 t+1))-\gamma((1-s) t)|} & \text { when } 0 \leq t \leq \frac{T}{2} \tag{0.3}\\ \frac{\gamma((1-s)(t+1)+s(T+1))-\gamma((1-s) t+s(2 t-T))}{|\gamma((1-s)(t+1)+s(T+1))-\gamma((1-s) t+s(2 t-T))|} & \text { when } \frac{T}{2} \leq t \leq T\end{cases}
$$

where $s \in[0,1]$ is the deformation parameter. It follows from the non-self intersection of γ that $H(t, s)$ is well-defined. We can check that

$$
\begin{array}{ll}
H(t, 0)=\rho(t), & H(t, 1)=\rho_{0}(t) \\
H(0, s)=\frac{\gamma(1)-\gamma(0)}{|\gamma(1)-\gamma(0)|}, & H(T, s)=\frac{\gamma(T+1)-\gamma(T)}{|\gamma(T+1)-\gamma(T)|} \tag{0.5}
\end{array}
$$

We can always find a continuous angle function $\Theta(t, s)$ such that $H(t, s)=\exp (i \Theta(t, s))$. It follows from 0.5) that $\Theta(T, s)$ and $\Theta(0, s)$ must be constants. Thus,

$$
\begin{equation*}
\operatorname{sign}(\rho)=\operatorname{sign}\left(\rho_{0}\right)=\operatorname{sign}(\Theta(T, s)-\Theta(0, s)) \tag{0.6}
\end{equation*}
$$

From the geometric construction of γ, we know that ρ_{0} lies on the upper semi-circle. Therefore, we may take $\Theta(T, 1) \in\left(0, \frac{\pi}{2}\right)$ and $\Theta(0,1) \in\left(\frac{\pi}{2}, \pi\right)$. It follows that

$$
\begin{equation*}
\operatorname{sign}(\rho)=\operatorname{sign}\left(\rho_{0}\right)=-1 \tag{0.7}
\end{equation*}
$$

