
INTRODUCTION TO SYMPLECTIC GEOMETRY

FOR SEPTEMBER 12

1. On the determinant of symplectic matrices

We adopt the notation of Differential Geometry. Let { ∂
∂x1 ,

∂
∂x2 , . . . ,

∂
∂xn ,

∂
∂y1

, ∂
∂y2

, . . . , ∂
∂yn } be

the basis for R2n. And let {dx1,dx2, . . . ,dxn,dy1, dy2, . . . ,dyn} be the dual basis for (R2n)∗.

The standard symplectic bilinear map is

ω0 =
n∑

j=1

dxj ∧ dyj .

Let B be a linear change of basis:

B : Rn → Rn

∂

∂xj
7→

n∑
k=1

(
Bk

j

∂

∂xk
+Bn+k

j

∂

∂yk

)
∂

∂yj
7→

n∑
k=1

(
Bk

n+j

∂

∂xk
+Bn+k

n+j

∂

∂yk

)
The induce map on the dual space goes another direction (the pull-back map):

(Rn)∗ ← (Rn)∗ : B∗∑n
k=1

(
Bj

kdxk +Bj
n+kdyk

)
←[ dxj∑n

k=1

(
Bn+j

k dxk +Bn+j
n+kdyk

)
←[ dyj

(1.1)

Preserving the symplectic form. Suppose that B∗ω0 = ω0. That is to say,

ω0(B(
∂

∂xj
),B(

∂

∂x`
)) = ω0(

∂

∂xj
,
∂

∂x`
) ⇒

n∑
k=1

(Bk
jB

n+k
` −Bn+k

j Bk
` ) = 0 , (1.2)

ω0(B(
∂

∂yj
),B(

∂

∂y`
)) = ω0(

∂

∂yj
,
∂

∂y`
) ⇒

n∑
k=1

(Bk
n+jB

n+k
n+` −B

n+k
n+jB

k
n+`) = 0 , (1.3)

ω0(B(
∂

∂xj
),B(

∂

∂y`
)) = ω0(

∂

∂xj
,
∂

∂y`
) ⇒

n∑
k=1

(Bk
jB

n+k
n+` −B

n+k
j Bk

n+`) = δj` . (1.4)

Let B be the 2n× 2n matrix whose j-th row is [Bj
1 B

j
2 · · · B

j
2n].

Claim. The conditions (1.2), (1.3) and (1.4) are equivalent to that BTJnB = Jn where Jn is

the following 2n× 2n matrix

Jn =

[
0 −In
In 0

]
.

1



Preserving the symplectic volume. Note that

1

n!
ωn
0 = dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ · · · ∧ dxn ∧ dyn

is a volume form. If B∗ω0 = ω0, then B∗( 1
n!ω

n
0 ) = 1

n!ω
n
0 .

Claim. It follows from (1.1) that

B∗(dx1 ∧ dx2 ∧ · · · ∧ dxn ∧ dy1 ∧ dy2 ∧ · · · ∧ dyn)

= det(BT )(dx1 ∧ dx2 ∧ · · · ∧ dxn ∧ dy1 ∧ dy2 ∧ · · · ∧ dyn)

As a result, Sp(n) ⊆ SL(2n;R). I will not assign [CdS1, Homework 2]. You can read that

homework, and compare it with this section.

2. On the space of all Lagrangians in (R2n, ω0)

2.1. Quick review of orthogonal group and unitary group.

(i) The general linear group GL(n;R) consists of all n × n invertible matrices (with real

entries). The group multiplication is the matrix multiplication. The group GL(n;C)

consists of all n× n invertible matrices with complex entries.

(ii) The special linear group SL(n;R) consists of all n× n matrices with determinant 1. It

is a subgroup of GL(n;R).

(iii) The orthogonal group is defined to be

O(n) =
{
A ∈ GL(n;R)

∣∣ ATA = In
}

where T means transpose, and In is the n×n identity matrix. The following statements

are equivalent to each other:

(a) A ∈ O(n);

(b) the column vectors of A form an orthonormal basis for Rn;

(c) the row vectors of A form an orthonormal basis for Rn.

(iv) The unitary group is defined to be

U(n) =
{
T ∈ GL(n;C)

∣∣ T ∗T = In
}

where ∗ means conjugate-transpose. The following statements are equivalent to each

other:

(a) T ∈ U(n);

(b) the column vectors of T form an unitary basis for Cn;

(c) the row vectors of T form an unitary basis for Cn.

(v) Note that O(n) is a subgroup of U(n). We can form a homogeneous space U(n)/O(n)

where O(n) acts by right multiplication. Namely, it is

U(n)/{T ∼ TA where A ∈ O(n)} .

You can find a brief introduction to homogeneous spaces in most textbook of Differen-

tial Geometry.
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(vi) Let W k be a subspace of Rm. We endow Rm with the standard inner product. Fix an

orthonormal basis {v1,v2, . . . ,vk} for W k. Then {w1,w2, . . . ,wk} is an orthonormal

basis for W k if and only if | | |
w1 w2 · · · wk

| | |

 =

 | | |
v1 v2 · · · vk

| | |

A
(m× k) (m× k) (k × k)

for some A ∈ O(k). This is an exercise in linear algebra.

2.2. Lagrangians in (R2n, ω0). The coordinate for R2n is (x1, x2, . . . , xn, y1, y2, . . . , yn), and

ω0 =
∑n

j=1 dxj ∧ dyj .

Let L be a Lagrangian n-plane in (R2n, ω0). Choose an orthonormal1 basis {v1,v2, . . . ,vn}
for L. Each vj is an 2n-column vector. Denote its upper n-components by xj , and lower n-

components by yj . We may regard xj and yj as vectors of Rn. The orthonormal condition is

equivalent to

〈xj ,xk〉+ 〈yj ,yk〉 = δjk . (2.1)

Here, 〈a,b〉 = b∗ a is the standard Euclidean (Hermitian if vectors are complex) inner product.

Claim. The Lagrangian condition is equivalent to

ω0(vj ,vk) = 0 ⇒ 〈xj ,yk〉 − 〈xk,yj〉 = 0 . (2.2)

Set uj to be xj + iyj ∈ Cn

Claim. It follows from (2.1) and (2.2) that

〈uj ,uk〉 = δjk .

By (iv),  | | |
u1 u2 · · · un

| | |


is a unitary n × n matrix. Also, reversing the procedure produces a Lagrangian n-plane from

a unitary matrix.

According to (vi), the freedom of choice of orthonormal basis for L is O(n). Therefore, all

the Lagrangian n-planes in R2n is U(n)/O(n), the space defined in (v).

1We cheat here by using the metric.

3


	1. On the determinant of symplectic matrices
	Preserving the symplectic form
	Preserving the symplectic volume

	2. On the space of all Lagrangians in (R2n,0)
	2.1. Quick review of orthogonal group and unitary group
	2.2. Lagrangians in (R2n,0)


