INTRODUCTION TO SYMPLECTIC GEOMETRY

FOR SEPTEMBER 12

1. On the determinant of symplectic matrices

We adopt the notation of Differential Geometry. Let $\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \dots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \frac{\partial}{\partial y^2}, \dots, \frac{\partial}{\partial y^n}\}$ be the basis for \mathbb{R}^{2n} . And let $\{dx^1, dx^2, \dots, dx^n, dy^1, dy^2, \dots, dy^n\}$ be the dual basis for $(\mathbb{R}^{2n})^*$. The standard symplectic bilinear map is

$$\omega_0 = \sum_{j=1}^n \mathrm{d} x^j \wedge \mathrm{d} y^j \; .$$

Let \mathcal{B} be a linear change of basis:

В

$$: \mathbb{R}^{n} \to \mathbb{R}^{n}$$

$$\frac{\partial}{\partial x^{j}} \mapsto \sum_{k=1}^{n} \left(B_{j}^{k} \frac{\partial}{\partial x^{k}} + B_{j}^{n+k} \frac{\partial}{\partial y_{k}} \right)$$

$$\frac{\partial}{\partial y^{j}} \mapsto \sum_{k=1}^{n} \left(B_{n+j}^{k} \frac{\partial}{\partial x^{k}} + B_{n+j}^{n+k} \frac{\partial}{\partial y_{k}} \right)$$

The induce map on the dual space goes another direction (the *pull-back* map):

$$(\mathbb{R}^{n})^{*} \leftarrow (\mathbb{R}^{n})^{*} : \mathcal{B}^{*}$$

$$\sum_{k=1}^{n} \left(B_{k}^{j} dx^{k} + B_{n+k}^{j} dy^{k} \right) \leftrightarrow dx^{j}$$

$$\sum_{k=1}^{n} \left(B_{k}^{n+j} dx^{k} + B_{n+k}^{n+j} dy^{k} \right) \leftrightarrow dy^{j}$$

$$(1.1)$$

Preserving the symplectic form. Suppose that $B^*\omega_0 = \omega_0$. That is to say,

$$\omega_0(\mathcal{B}(\frac{\partial}{\partial x^j}), \mathcal{B}(\frac{\partial}{\partial x^\ell})) = \omega_0(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^\ell}) \quad \Rightarrow \quad \sum_{k=1}^n (B_j^k B_\ell^{n+k} - B_j^{n+k} B_\ell^k) = 0 , \qquad (1.2)$$

$$\omega_0(\mathcal{B}(\frac{\partial}{\partial y^j}), \mathcal{B}(\frac{\partial}{\partial y^\ell})) = \omega_0(\frac{\partial}{\partial y^j}, \frac{\partial}{\partial y^\ell}) \quad \Rightarrow \quad \sum_{k=1}^n (B_{n+j}^k B_{n+\ell}^{n+k} - B_{n+j}^{n+k} B_{n+\ell}^k) = 0 , \qquad (1.3)$$

$$\omega_0(\mathcal{B}(\frac{\partial}{\partial x^j}), \mathcal{B}(\frac{\partial}{\partial y^\ell})) = \omega_0(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^\ell}) \quad \Rightarrow \quad \sum_{k=1}^n (B_j^k B_{n+\ell}^{n+k} - B_j^{n+k} B_{n+\ell}^k) = \delta_{j\ell} \ . \tag{1.4}$$

Let B be the $2n \times 2n$ matrix whose j-th row is $[B_1^j B_2^j \cdots B_{2n}^j]$.

Claim. The conditions (1.2), (1.3) and (1.4) are equivalent to that $B^T J_n B = J_n$ where J_n is the following $2n \times 2n$ matrix

$$J_n = \left[\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array} \right] \; .$$

Preserving the symplectic volume. Note that

$$\frac{1}{n!}\omega_0^n = \mathrm{d}x^1 \wedge \mathrm{d}y^1 \wedge \mathrm{d}x^2 \wedge \mathrm{d}y^2 \wedge \dots \wedge \mathrm{d}x^n \wedge \mathrm{d}y^n$$

is a volume form. If $\mathcal{B}^*\omega_0 = \omega_0$, then $\mathcal{B}^*(\frac{1}{n!}\omega_0^n) = \frac{1}{n!}\omega_0^n$.

Claim. It follows from (1.1) that

$$\mathcal{B}^*(\mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \dots \wedge \mathrm{d} x^n \wedge \mathrm{d} y^1 \wedge \mathrm{d} y^2 \wedge \dots \wedge \mathrm{d} y^n)$$

= $\mathrm{det}(B^T)(\mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \dots \wedge \mathrm{d} x^n \wedge \mathrm{d} y^1 \wedge \mathrm{d} y^2 \wedge \dots \wedge \mathrm{d} y^n)$

As a result, $\text{Sp}(n) \subseteq \text{SL}(2n; \mathbb{R})$. I will not assign [CdS1, Homework 2]. You can read that homework, and compare it with this section.

2. On the space of all Lagrangians in
$$(\mathbb{R}^{2n}, \omega_0)$$

2.1. Quick review of orthogonal group and unitary group.

- (i) The general linear group $GL(n; \mathbb{R})$ consists of all $n \times n$ invertible matrices (with real entries). The group multiplication is the matrix multiplication. The group $GL(n; \mathbb{C})$ consists of all $n \times n$ invertible matrices with complex entries.
- (ii) The special linear group $SL(n; \mathbb{R})$ consists of all $n \times n$ matrices with determinant 1. It is a subgroup of $GL(n; \mathbb{R})$.
- (iii) The orthogonal group is defined to be

$$O(n) = \left\{ A \in \operatorname{GL}(n; \mathbb{R}) \mid A^T A = I_n \right\}$$

where T means transpose, and I_n is the $n \times n$ identity matrix. The following statements are equivalent to each other:

- (a) $A \in O(n);$
- (b) the column vectors of A form an orthonormal basis for \mathbb{R}^n ;
- (c) the row vectors of A form an orthonormal basis for \mathbb{R}^n .
- (iv) The unitary group is defined to be

$$U(n) = \left\{ T \in GL(n; \mathbb{C}) \mid T^*T = I_n \right\}$$

where * means conjugate-transpose. The following statements are equivalent to each other:

- (a) $T \in U(n)$;
- (b) the column vectors of T form an unitary basis for \mathbb{C}^n ;
- (c) the row vectors of T form an unitary basis for \mathbb{C}^n .
- (v) Note that O(n) is a subgroup of U(n). We can form a homogeneous space U(n)/O(n) where O(n) acts by right multiplication. Namely, it is

$$U(n)/\{T \sim TA \text{ where } A \in O(n)\}$$
.

You can find a brief introduction to homogeneous spaces in most textbook of Differential Geometry. (vi) Let W^k be a subspace of \mathbb{R}^m . We endow \mathbb{R}^m with the standard inner product. Fix an orthonormal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ for W^k . Then $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ is an orthonormal basis for W^k if and only if

$$\begin{bmatrix} | & | & | \\ \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_k \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \\ | & | & | \end{bmatrix} A$$
$$(m \times k) \qquad (m \times k) \qquad (k \times k)$$

for some $A \in O(k)$. This is an exercise in linear algebra.

2.2. Lagrangians in $(\mathbb{R}^{2n}, \omega_0)$. The coordinate for \mathbb{R}^{2n} is $(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$, and $\omega_0 = \sum_{j=1}^n \mathrm{d}x_j \wedge \mathrm{d}y_j$.

Let *L* be a Lagrangian *n*-plane in $(\mathbb{R}^{2n}, \omega_0)$. Choose an *orthonormal*¹ basis $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ for *L*. Each \mathbf{v}_j is an 2*n*-column vector. Denote its upper *n*-components by \mathbf{x}_j , and lower *n*-components by \mathbf{y}_j . We may regard \mathbf{x}_j and \mathbf{y}_j as vectors of \mathbb{R}^n . The orthonormal condition is equivalent to

$$\langle \mathbf{x}_j, \mathbf{x}_k \rangle + \langle \mathbf{y}_j, \mathbf{y}_k \rangle = \delta_{jk}$$
 (2.1)

Here, $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{b}^* \mathbf{a}$ is the standard Euclidean (Hermitian if vectors are complex) inner product.

Claim. The Lagrangian condition is equivalent to

$$\omega_0(\mathbf{v}_j, \mathbf{v}_k) = 0 \qquad \Rightarrow \qquad \langle \mathbf{x}_j, \mathbf{y}_k \rangle - \langle \mathbf{x}_k, \mathbf{y}_j \rangle = 0 . \tag{2.2}$$

Set \mathbf{u}_j to be $\mathbf{x}_j + i\mathbf{y}_j \in \mathbb{C}^n$

Claim. It follows from (2.1) and (2.2) that

$$\langle \mathbf{u}_j, \mathbf{u}_k \rangle = \delta_{jk}$$
.

By (iv),

$$\left[egin{array}{cccc} | & | & | \ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \ | & | & | \end{array}
ight]$$

is a unitary $n \times n$ matrix. Also, reversing the procedure produces a Lagrangian *n*-plane from a unitary matrix.

According to (vi), the freedom of choice of orthonormal basis for L is O(n). Therefore, all the Lagrangian *n*-planes in \mathbb{R}^{2n} is U(n)/O(n), the space defined in (v).

¹We cheat here by using the metric.