INTRODUCTION TO SYMPLECTIC GEOMETRY

FOR SEPTEMBER 12

1. On the determinant of symplectic matrices

We adopt the notation of Differential Geometry. Let $\left\{\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \ldots, \frac{\partial}{\partial x^{n}}, \frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial y^{2}}, \ldots, \frac{\partial}{\partial y^{n}}\right\}$ be the basis for $\mathbb{R}^{2 n}$. And let $\left\{\mathrm{d} x^{1}, \mathrm{~d} x^{2}, \ldots, \mathrm{~d} x^{n}, \mathrm{~d} y^{1}, \mathrm{~d} y^{2}, \ldots, \mathrm{~d} y^{n}\right\}$ be the dual basis for $\left(\mathbb{R}^{2 n}\right)^{*}$. The standard symplectic bilinear map is

$$
\omega_{0}=\sum_{j=1}^{n} \mathrm{~d} x^{j} \wedge \mathrm{~d} y^{j}
$$

Let \mathcal{B} be a linear change of basis:

$$
\begin{aligned}
\mathcal{B}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
\frac{\partial}{\partial x^{j}} & \mapsto \sum_{k=1}^{n}\left(B_{j}^{k} \frac{\partial}{\partial x^{k}}+B_{j}^{n+k} \frac{\partial}{\partial y_{k}}\right) \\
\frac{\partial}{\partial y^{j}} & \mapsto \sum_{k=1}^{n}\left(B_{n+j}^{k} \frac{\partial}{\partial x^{k}}+B_{n+j}^{n+k} \frac{\partial}{\partial y_{k}}\right)
\end{aligned}
$$

The induce map on the dual space goes another direction (the pull-back map):

$$
\begin{align*}
\left(\mathbb{R}^{n}\right)^{*} & \leftarrow\left(\mathbb{R}^{n}\right)^{*}: \mathcal{B}^{*} \\
\sum_{k=1}^{n}\left(B_{k}^{j} \mathrm{~d} x^{k}+B_{n+\mathrm{k}}^{j} \mathrm{~d} y^{k}\right) & \leftarrow \mathrm{d} x^{j} \tag{1.1}\\
\sum_{k=1}^{n}\left(B_{k}^{n+j} \mathrm{~d} x^{k}+B_{n+k}^{n+j} \mathrm{~d} y^{k}\right) & \leftarrow \mathrm{d} y^{j}
\end{align*}
$$

Preserving the symplectic form. Suppose that $B^{*} \omega_{0}=\omega_{0}$. That is to say,

$$
\begin{align*}
& \omega_{0}\left(\mathcal{B}\left(\frac{\partial}{\partial x^{j}}\right), \mathcal{B}\left(\frac{\partial}{\partial x^{\ell}}\right)\right)=\omega_{0}\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{\ell}}\right) \quad \Rightarrow \quad \sum_{k=1}^{n}\left(B_{j}^{k} B_{\ell}^{n+k}-B_{j}^{n+k} B_{\ell}^{k}\right)=0, \tag{1.2}\\
& \omega_{0}\left(\mathcal{B}\left(\frac{\partial}{\partial y^{j}}\right), \mathcal{B}\left(\frac{\partial}{\partial y^{\ell}}\right)\right)=\omega_{0}\left(\frac{\partial}{\partial y^{j}}, \frac{\partial}{\partial y^{\ell}}\right) \quad \Rightarrow \quad \sum_{k=1}^{n}\left(B_{n+j}^{k} B_{n+\ell}^{n+k}-B_{n+j}^{n+k} B_{n+\ell}^{k}\right)=0, \tag{1.3}\\
& \omega_{0}\left(\mathcal{B}\left(\frac{\partial}{\partial x^{j}}\right), \mathcal{B}\left(\frac{\partial}{\partial y^{\ell}}\right)\right)=\omega_{0}\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial y^{\ell}}\right) \quad \Rightarrow \quad \sum_{k=1}^{n}\left(B_{j}^{k} B_{n+\ell}^{n+k}-B_{j}^{n+k} B_{n+\ell}^{k}\right)=\delta_{j \ell} . \tag{1.4}
\end{align*}
$$

Let B be the $2 n \times 2 n$ matrix whose j-th row is $\left[B_{1}^{j} B_{2}^{j} \cdots B_{2 n}^{j}\right]$.
Claim. The conditions (1.2), 1.3) and 1.4 are equivalent to that $B^{T} J_{n} B=J_{n}$ where J_{n} is the following $2 n \times 2 n$ matrix

$$
J_{n}=\left[\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right] .
$$

Preserving the symplectic volume. Note that

$$
\frac{1}{n!} \omega_{0}^{n}=\mathrm{d} x^{1} \wedge \mathrm{~d} y^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} y^{2} \wedge \cdots \wedge \mathrm{~d} x^{n} \wedge \mathrm{~d} y^{n}
$$

is a volume form. If $\mathcal{B}^{*} \omega_{0}=\omega_{0}$, then $\mathcal{B}^{*}\left(\frac{1}{n!} \omega_{0}^{n}\right)=\frac{1}{n!} \omega_{0}^{n}$.
Claim. It follows from (1.1) that

$$
\begin{aligned}
& \mathcal{B}^{*}\left(\mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n} \wedge \mathrm{~d} y^{1} \wedge \mathrm{~d} y^{2} \wedge \cdots \wedge \mathrm{~d} y^{n}\right) \\
= & \operatorname{det}\left(B^{T}\right)\left(\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n} \wedge \mathrm{~d} y^{1} \wedge \mathrm{~d} y^{2} \wedge \cdots \wedge \mathrm{~d} y^{n}\right)
\end{aligned}
$$

As a result, $\operatorname{Sp}(n) \subseteq \mathrm{SL}(2 n ; \mathbb{R})$. I will not assign [CdS1, Homework 2]. You can read that homework, and compare it with this section.

2. On the space of all Lagrangians in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$

2.1. Quick review of orthogonal group and unitary group.

(i) The general linear group $\mathrm{GL}(n ; \mathbb{R})$ consists of all $n \times n$ invertible matrices (with real entries). The group multiplication is the matrix multiplication. The group GL $(n ; \mathbb{C})$ consists of all $n \times n$ invertible matrices with complex entries.
(ii) The special linear group $\operatorname{SL}(n ; \mathbb{R})$ consists of all $n \times n$ matrices with determinant 1 . It is a subgroup of $\mathrm{GL}(n ; \mathbb{R})$.
(iii) The orthogonal group is defined to be

$$
\mathrm{O}(n)=\left\{A \in \mathrm{GL}(n ; \mathbb{R}) \mid A^{T} A=I_{n}\right\}
$$

where T means transpose, and I_{n} is the $n \times n$ identity matrix. The following statements are equivalent to each other:
(a) $A \in \mathrm{O}(n)$;
(b) the column vectors of A form an orthonormal basis for \mathbb{R}^{n};
(c) the row vectors of A form an orthonormal basis for \mathbb{R}^{n}.
(iv) The unitary group is defined to be

$$
\mathrm{U}(n)=\left\{T \in \mathrm{GL}(n ; \mathbb{C}) \mid T^{*} T=I_{n}\right\}
$$

where $*$ means conjugate-transpose. The following statements are equivalent to each other:
(a) $T \in \mathrm{U}(n)$;
(b) the column vectors of T form an unitary basis for \mathbb{C}^{n};
(c) the row vectors of T form an unitary basis for \mathbb{C}^{n}.
(v) Note that $\mathrm{O}(n)$ is a subgroup of $\mathrm{U}(n)$. We can form a homogeneous space $\mathrm{U}(n) / \mathrm{O}(n)$ where $\mathrm{O}(n)$ acts by right multiplication. Namely, it is

$$
\mathrm{U}(n) /\{T \sim T A \text { where } A \in \mathrm{O}(n)\}
$$

You can find a brief introduction to homogeneous spaces in most textbook of Differential Geometry.
(vi) Let W^{k} be a subspace of \mathbb{R}^{m}. We endow \mathbb{R}^{m} with the standard inner product. Fix an orthonormal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ for W^{k}. Then $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is an orthonormal basis for W^{k} if and only if

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{k} \\
\mid & \mid & & \mid
\end{array}\right] } \\
&(m \times k)
\end{aligned}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k} \\
\mid & \mid & & \mid
\end{array}\right] A
$$

for some $A \in \mathrm{O}(k)$. This is an exercise in linear algebra.
2.2. Lagrangians in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. The coordinate for $\mathbb{R}^{2 n}$ is $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)$, and $\omega_{0}=\sum_{j=1}^{n} \mathrm{~d} x_{j} \wedge \mathrm{~d} y_{j}$.

Let L be a Lagrangian n-plane in $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. Choose an orthonorma \dagger^{1} basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ for L. Each \mathbf{v}_{j} is an $2 n$-column vector. Denote its upper n-components by \mathbf{x}_{j}, and lower n components by \mathbf{y}_{j}. We may regard \mathbf{x}_{j} and \mathbf{y}_{j} as vectors of \mathbb{R}^{n}. The orthonormal condition is equivalent to

$$
\begin{equation*}
\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle+\left\langle\mathbf{y}_{j}, \mathbf{y}_{k}\right\rangle=\delta_{j k} . \tag{2.1}
\end{equation*}
$$

Here, $\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{b}^{*} \mathbf{a}$ is the standard Euclidean (Hermitian if vectors are complex) inner product. Claim. The Lagrangian condition is equivalent to

$$
\begin{equation*}
\omega_{0}\left(\mathbf{v}_{j}, \mathbf{v}_{k}\right)=0 \quad \Rightarrow \quad\left\langle\mathbf{x}_{j}, \mathbf{y}_{k}\right\rangle-\left\langle\mathbf{x}_{k}, \mathbf{y}_{j}\right\rangle=0 \tag{2.2}
\end{equation*}
$$

Set \mathbf{u}_{j} to be $\mathbf{x}_{j}+i \mathbf{y}_{j} \in \mathbb{C}^{n}$
Claim. It follows from (2.1) and 2.2 that

$$
\left\langle\mathbf{u}_{j}, \mathbf{u}_{k}\right\rangle=\delta_{j k}
$$

By (iv),

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

is a unitary $n \times n$ matrix. Also, reversing the procedure produces a Lagrangian n-plane from a unitary matrix.

According to (vi), the freedom of choice of orthonormal basis for L is $\mathrm{O}(n)$. Therefore, all the Lagrangian n-planes in $\mathbb{R}^{2 n}$ is $\mathrm{U}(n) / \mathrm{O}(n)$, the space defined in (v).

[^0]
[^0]: ${ }^{1}$ We cheat here by using the metric.

