
INTRODUCTION TO SYMPLECTIC GEOMETRY

SOLUTION FOR THE MIDTERM

THURSDAY, NOVEMBER 7, 2013

(1) True/False questions, no justications needed. (1.5points each item)

(a) F Consider R6 with the standard symplectic form ω0. Any 4-dimensional subspace

U ⊂ R6 is coisotropic, i.e. Uω0 ⊂ U .

For instance, take U = span{ ∂
∂x1

, ∂
∂y1

, ∂
∂x2

, ∂
∂y2
}. Then Uω0 = span{ ∂

∂x3
, ∂
∂y3
} 6⊂ U .

(b) T Any manifold Xn can always be realized as a Lagrangian submanifold of some

symplectic manifold (M2n, ω).

X is always Lagrangian as the zero section in (T ∗X,ωcan).

(c) F There exists a symplectic matrix A ∈ Sp(n) with det(A) = −1.

Symplectic form induces an orientation. It follows that Sp(n) ⊆ SL(2n;R).

(d) F Let (M,ω) be a compact symplectic manifold. Suppose that there is an S1-

action on M which preserves the symplectic form. Then, there exists a moment

map µ : M → R of this S1-action.

Consider T2 = R2/Z2 with ω = dx ∧ dy. Consider the S1-action as rotating the

x-component. It is only symplectic, but not Hamiltonian.

(e) F The Klein bottle admits a symplectic structure. The Klein bottle is constructed

by identifying the boundary of [0, 1] × [0, 1] ⊂ R2 by the relations (0, y) ∼ (1, y)

and (x, 0) ∼ (1− x, 1).

The Klein bottle is not orientable.

(f) F S3 × CP3 admits a symplectic structure.

Since dimS3 × CP3 = 9, it cannot be symplectic.

(g) T T2 × S2 admits a symplectic structure.

The product of symplectic manifolds is still symplectic.

(h) F S6 admits a symplectic structure.

Since S6 is compact and H2
dR(S6) = 0, it cannot be symplectic.

(i) T Let (M,ω) be a compact symplectic manifold, and f, g be two smooth functions

on M . Suppose that they Poisson commute, i.e. {f, g} = 0. Then, ρ∗t g = g where

ρt = exp(tXf ).
d
dtρ
∗
t g = ρ∗tLXf

g = ρ∗tω(Xg, Xf ) = 0.
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(j) F There exists a smooth, strictly convex function F on R2 such that the image

of its Legendre transform is SF = {(r cos θ, r sin θ) ∈ R2 | r > 0 and 0 < θ < 3π
2 }.

The region is not convex.

(k) T Consider R4 with the standard symplectic form ω0 = dx1 ∧ dy1 + dx2 ∧ dy2.

The flow ρt generated by the vector field V = sin(y2) ∂
∂x1

+ y1 cos(y2) ∂
∂x2

preserves

the symplectic form ω0.

LV ω0 = d(ιV ω) + ιV (dω) = d(sin(y2)dy1 + y1 cos(y2)dy2) = d2(y1 sin(y2)) = 0.

(l) F Let (M6, ω) be a compact, 6-dimensional symplectic manifold. Suppose that

{γj : S3 ↪→M}j∈N and γ : S3 ↪→M are Lagrangian embeddings of the three sphere

into M . It is possible that limj→∞ γj = γ in the C1-topology, and #{γj(S3) ∩
γ(S3)} = 1 for all j. (Here we simply count the total number of intersection points

without considering the sign of intersection.)

Apply the Weinstein tubular neighborhood theorem on γ(S3). Since limj→∞ γj = γ

in the C1-topology, γj(S
3) must be given by the graph of closed 1-forms when j

sufficiently large. Since H1
dR(S3) = 0, closed 1-forms are the exterior derivative of

functions. A smooth function on S3 has at least two critical points.

(2) The question concerns about basic symplectic-geometric properties of cotangent bun-

dles.

(a) Let X be a manifold. Write down the local expression for the tautological 1-form

and the canonical symplectic form of T ∗X.

Let {xj}nj=1 be a local coordinate on X, and {ξj}nj=1 be the corresponding coor-

dinate for the fibers of T ∗X. The tautological 1-form is α =
∑n

j=1 ξjdxj . The

canonical symplectic form is ωcan = −dα =
∑n

j=1 dxj ∧ dξj .

(b) Think S3 as the unit sphere in R4.

(i) Let f : R4 → R be a smooth function. Construct a Lagrangian submanifold

Lf of (T ∗S3, ωcan) using f .

Take Lf to be the grapf of df .

(ii) Let H = {(cos t, sin t, 0, 0) | t ∈ R/2πZ} ∪ {(0, 0, cos t, sin t) | t ∈ R/2πZ} be

the Hopf link in S3. Construct a Lagrangian submanifold LH of (T ∗S3, ωcan)

such that LH ∩ ι0(S3) = H where ι0(S3) is the zero section in T ∗S3.

Take LH to be the conormal bundle of H. It follows from the construction

of the conormal bundle that LH ∩ ι0(S3) = H.

(2 + 2 + 2 = 6points)

the Hopf link
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(3) Let ω0 and ω1 be two symplectic forms onM . Let i : N ↪→M be a compact submanifold.

Suppose that ω0|p = ω1|p for any p ∈ N . Then, the local Moser thoerem asserts that

there exists neighborhoods U0 and U1 of N in M , and a diffeomorphism ϕ : U0 → U1

such that

• ϕ∗ω1 = ω0;

• ϕ ◦ i = i; namely, ϕ is the identity map on N .

Now,

(a) State the Darboux theorem.

Let (M,ω) be a symplectic manifold. Then, for any p ∈M , there exists a coordinate

neighborhood p ∈ U ⊂ M with coordinates {xj , yj}nj=1 such that ω =
∑n

j=1 dxj ∧
dyj .

(b) Prove the Darboux theorem. You are allowed to use the local Moser theorem. By

symplectic linear algebra, ω|p =
∑n

j=1 e
∗
j ∧ f∗j for a basis {e∗j , f∗j }nj=1 for T ∗pM .

Consider the dual basis {ej , fj}nj=1 for TpM . Choose a coordinate neighborhood

p ∈ U ⊂ M such that ∂
∂xj
|p = ej and ∂

∂yj
|p = fj for all j; this can always be done

by a linear transform. Endow U with the symplectic form ω0 =
∑n

j=1 dxj ∧ dyj .

On the other hand, ω|U is another symplectic form on U . By the construction of

ω0, these two symplectic form meets the requirement of the local Moser theorem,

with the manifold to be U and the compact submanifold to be p. Therefore, there

exists neighborhoods U0 and U1, and a diffeomorphism ϕ : U0 ⊂ U → U1 ⊂ U such

that ϕ∗ω = ω0. Then ϕ : U0 → U1 ⊂M is a Darboux chart.

(2 + 4 = 6points)

(4) Suppose that τ is a symplectomorphism of (M,ω). Its graph {(p, τ(p)) | p ∈ M} ⊂
M × M is a Lagrangian submanifold with respect to pr∗1 ω − pr∗2 ω. This relates a

symplectormophism to a Lagrangian submanifold.

Let X be a manifold. Given a smooth function f : X × X → R, we can apply the

method of generating functions to construction a symplectomorphism of (T ∗X,ωcan) to

itself.

(a) Describe the method of generating functions.

The graph of df , Yf = {(x, ∂xf, y, ∂yf) ⊂ T ∗X×T ∗X}, is Lagrangian with respect

to pr∗1 ωcan + pr∗2 ωcan. By flipping the second fiber, Y σ
f = {(x, ∂xf, y,−∂yf) ⊂

T ∗X × T ∗X} is Lagrangian with respect to pr∗1 ωcan − pr∗2 ωcan. We may construct

a symplectomorphism by solving y = y(x, ξ) from ∂xf(x, y) = ξ.

(b) What is the necessary condition on f to guarantee that we can locally construct a

symplectomorphism?

From the Jacobian computation, also for the implicit function theorem, the condi-

tion is that [ ∂2f
∂xj∂yk

]j,k is non-degenerate.

3



(c) Consider the case when X = R and

f : X ×X → R
(x, y) 7→ (x3 + 3x2 + 4x)y + y2 − 4 .

Use the method of generating functions to construct the symplectomorphism ex-

plicitly.

∂xf = (3x2 + 6x+ 4)y = (3(x+ 1)2 + 1)y ⇒ y = (3x2 + 6x+ 4)−1ξ.

−∂yf = −(x3 + 3x2 + 4x)− 2y ⇒ η = −(x3 + 3x2 + 4x)− 2(3x2 + 6x+ 4)−1ξ.

(2 + 1 + 3 = 6points)

(5) Let Σg be a compact, oriented surface1 of genus g. Let ω be an area form on Σg.

Suppose that τ is an orientation-preserving self-diffeomorphism of Σ. It follows that

τ∗ω is also an area form. Prove that ω and τ∗ω are strongly isotopic. That is to say,

there is an isotopy ρt : M →M such that ρ∗1(τ∗ω) = ω.

Since dim Σ = 2, a symplectic form (with the same orientation) is the same as an area

form. Since convex combinations of area forms are still area forms, ωt = (1− t)ω+ tτ∗ω

is a symplectic form for any t ∈ [0, 1].

Since
∫

Σ ω =
∫

Σ τ
∗ω, ω and τ∗ω define the same class in H2

dR(Σ). Thus, τ∗ω−ω = dη

for some 1-form η.

Consider the one-parameter family of vector field vt = −ω−1
t (η). Let ρt be the one-

parameter family of diffeomorphism generated by vt. We compute

d

dt
ρ∗tωt = ρ∗t

(
Lvtωt +

dωt
dt

)
= ρ∗t

(
d(ιvtωt) + ιvt(dωt)− ω + τ∗ω

)
= ρ∗t (−dη + dη) = 0 .

It follows that ρ∗1(τ∗ω) = ω.

(7points)

(6) Regard S2 as the unit sphere in R3. For any p ∈ S2, TpS
2 consists of all the vectors

orthogonal to p. Define the symplectic form ω by ωp(u, v) = 〈p, u × v〉 where × is the

usual cross product. The standard action of SO(3) on R3 maps S2 onto itself, and thus

induces an action on S2. The purpose of this exercise is to compute the moment map

of this SO(3)-action on (S2, ω).

The Lie algebra so(3) consists of skew-symmetric matrices. It can be identified with

R3 by

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 7→ (a1, a2, a3) . (0.1)

1A surface is a manifold of real dimension 2.
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(a) The adjoint action for matrix groups are given by the usual matric multiplication,

Adg A = gAg−1. What is the adjoint action in terms of (0.1)? The dual space

so∗(3) can also be identified with R3 via the usual inner product. What is the

coadjoint action?

It follows from a straightforward (but tedious) computation that Adg A = g~a as

the matrix multiplication. For the coadjoint action,

〈Ad∗g
~ξ,~a〉 = 〈~ξ,Adg−1 ~a〉

= 〈~ξ, g−1~a〉

= 〈g~ξ, g(g−1~a)〉 = 〈g~ξ,~a〉

for any ~a ∈ R3. Hence, Ad∗g
~ξ = g~ξ.

(b) Each component of the cross product is a 2-form on R3. What are they?

Let x, y, z be the coordinate for R3. The cross product is (dy∧dz, dz∧dx,dx∧dy).

(c) With Item (b), construct a 2-form ω̃ on R3 whose restriction on S2 is the symplectic

form. The 2-form ω̃ needs not to be d-closed on R3.

From ωp(u, v) = 〈p, u× v〉, we can take ω̃ to be xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.

(d) Compute ιA]ω̃ on R3 for any A ∈ so(3).

Let g = etA. It follows from a straighforward computation that

d

dt

∣∣
t=0

etA(x, y, z) = (a2z − a3y, a3x− a1z, a1y − a2x)

= (a1, a2, a3)× (x, y, z) .

Hence,

ιA]ω̃ = (a1y
2 − a2xy − a3xz + a1z

2)dx

+ (−a1xy + a2x
2 + a2z

2 − a3yz)dy

+ (a3x
2 − a1xz − a2yz + a3y

2)dz .

(e) Restrict ιA]ω̃ on S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}, and use it to find out the

moment map.

We first use x2 + y2 + z2 = 1 to rewrite ιA]ω as

ιA]ω = (a1dx+ a2dy + a3dz)− (a1x+ a2y + a3z)(xdx+ ydy + zdz) .

Since d(x2 + y2 + z2) = 0, the second term vanishes on S2, and

ιA]ω = (a1dx+ a2dy + a3dz) = d〈(x, y, z), (a1, a2, a3)〉 .

It follows that µ(x, y, z) = (x, y, z) + (c1, c2, c3) via the identification of so∗(3)

with R3. The SO(3)-equivariant condition implies that (c1, c2, c3) must be the zero

vector. Therefore, µ : S2 → R3 is the original embedding.
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(1 + 1 + 1 + 1 + 3 = 7points)
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