INTRODUCTION TO SYMPLECTIC GEOMETRY SOLUTION FOR THE MIDTERM

THURSDAY, NOVEMBER 7, 2013

(1) True/False questions, no justications needed. (1.5points each item)
(a) F Consider \mathbb{R}^{6} with the standard symplectic form ω_{0}. Any 4-dimensional subspace $U \subset \mathbb{R}^{6}$ is coisotropic, i.e. $U^{\omega_{0}} \subset U$.
For instance, take $U=\operatorname{span}\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial y_{2}}\right\}$. Then $U^{\omega_{0}}=\operatorname{span}\left\{\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial y_{3}}\right\} \not \subset U$.
(b) T Any manifold X^{n} can always be realized as a Lagrangian submanifold of some symplectic manifold $\left(M^{2 n}, \omega\right)$.
X is always Lagrangian as the zero section in $\left(T^{*} X, \omega_{\text {can }}\right)$.
(c) F There exists a symplectic matrix $A \in \operatorname{Sp}(n)$ with $\operatorname{det}(A)=-1$.

Symplectic form induces an orientation. It follows that $\operatorname{Sp}(n) \subseteq \operatorname{SL}(2 n ; \mathbb{R})$.
(d) F Let (M, ω) be a compact symplectic manifold. Suppose that there is an \mathbf{S}^{1} action on M which preserves the symplectic form. Then, there exists a moment $\operatorname{map} \mu: M \rightarrow \mathbb{R}$ of this \mathbf{S}^{1}-action.
Consider $\mathbf{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ with $\omega=\mathrm{d} x \wedge \mathrm{~d} y$. Consider the \mathbf{S}^{1}-action as rotating the x-component. It is only symplectic, but not Hamiltonian.
(e) F The Klein bottle admits a symplectic structure. The Klein bottle is constructed by identifying the boundary of $[0,1] \times[0,1] \subset \mathbb{R}^{2}$ by the relations $(0, y) \sim(1, y)$ and $(x, 0) \sim(1-x, 1)$.
The Klein bottle is not orientable.
(f) $\mathrm{F} \mathrm{S}^{3} \times \mathbb{C P}^{3}$ admits a symplectic structure.

Since $\operatorname{dim} \mathbf{S}^{3} \times \mathbb{C P}^{3}=9$, it cannot be symplectic.
(g) T $\mathbf{T}^{2} \times \mathbf{S}^{2}$ admits a symplectic structure.

The product of symplectic manifolds is still symplectic.
(h) $\mathrm{F} \mathbf{S}^{6}$ admits a symplectic structure.

Since \mathbf{S}^{6} is compact and $\mathrm{H}_{\mathrm{dR}}^{2}\left(\mathbf{S}^{6}\right)=0$, it cannot be symplectic.
(i) T Let (M, ω) be a compact symplectic manifold, and f, g be two smooth functions on M. Suppose that they Poisson commute, i.e. $\{f, g\}=0$. Then, $\rho_{t}^{*} g=g$ where $\rho_{t}=\exp \left(t X_{f}\right)$.
$\frac{\mathrm{d}}{\mathrm{d} t} \rho_{t}^{*} g=\rho_{t}^{*} \mathcal{L}_{X_{f}} g=\rho_{t}^{*} \omega\left(X_{g}, X_{f}\right)=0$.
(j) F There exists a smooth, strictly convex function F on \mathbb{R}^{2} such that the image of its Legendre transform is $S_{F}=\left\{(r \cos \theta, r \sin \theta) \in \mathbb{R}^{2} \mid r>0\right.$ and $\left.0<\theta<\frac{3 \pi}{2}\right\}$. The region is not convex.
(k) \boxed{T} Consider \mathbb{R}^{4} with the standard symplectic form $\omega_{0}=\mathrm{d} x_{1} \wedge \mathrm{~d} y_{1}+\mathrm{d} x_{2} \wedge \mathrm{~d} y_{2}$. The flow ρ_{t} generated by the vector field $V=\sin \left(y_{2}\right) \frac{\partial}{\partial x_{1}}+y_{1} \cos \left(y_{2}\right) \frac{\partial}{\partial x_{2}}$ preserves the symplectic form ω_{0}.
$\mathcal{L}_{V} \omega_{0}=\mathrm{d}\left(\iota_{V} \omega\right)+\iota_{V}(\mathrm{~d} \omega)=\mathrm{d}\left(\sin \left(y_{2}\right) \mathrm{d} y_{1}+y_{1} \cos \left(y_{2}\right) \mathrm{d} y_{2}\right)=\mathrm{d}^{2}\left(y_{1} \sin \left(y_{2}\right)\right)=0$.
(l) F Let $\left(M^{6}, \omega\right)$ be a compact, 6-dimensional symplectic manifold. Suppose that $\left\{\gamma_{j}: \mathbf{S}^{3} \hookrightarrow M\right\}_{j \in \mathbb{N}}$ and $\gamma: \mathbf{S}^{3} \hookrightarrow M$ are Lagrangian embeddings of the three sphere into M. It is possible that $\lim _{j \rightarrow \infty} \gamma_{j}=\gamma$ in the \mathcal{C}^{1}-topology, and $\#\left\{\gamma_{j}\left(\mathbf{S}^{3}\right) \cap\right.$ $\left.\gamma\left(\mathbf{S}^{3}\right)\right\}=1$ for all j. (Here we simply count the total number of intersection points without considering the sign of intersection.)
Apply the Weinstein tubular neighborhood theorem on $\gamma\left(\mathbf{S}^{3}\right)$. Since $\lim _{j \rightarrow \infty} \gamma_{j}=\gamma$ in the \mathcal{C}^{1}-topology, $\gamma_{j}\left(\mathbf{S}^{3}\right)$ must be given by the graph of closed 1-forms when j sufficiently large. Since $H_{d R}^{1}\left(\mathbf{S}^{3}\right)=0$, closed 1-forms are the exterior derivative of functions. A smooth function on \mathbf{S}^{3} has at least two critical points.
(2) The question concerns about basic symplectic-geometric properties of cotangent bundles.
(a) Let X be a manifold. Write down the local expression for the tautological 1-form and the canonical symplectic form of $T^{*} X$.
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be a local coordinate on X, and $\left\{\xi_{j}\right\}_{j=1}^{n}$ be the corresponding coordinate for the fibers of $T^{*} X$. The tautological 1-form is $\alpha=\sum_{j=1}^{n} \xi_{j} \mathrm{~d} x_{j}$. The canonical symplectic form is $\omega_{\text {can }}=-\mathrm{d} \alpha=\sum_{j=1}^{n} \mathrm{~d} x_{j} \wedge \mathrm{~d} \xi_{j}$.
(b) Think \mathbf{S}^{3} as the unit sphere in \mathbb{R}^{4}.
(i) Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be a smooth function. Construct a Lagrangian submanifold L_{f} of $\left(T^{*} \mathbf{S}^{3}, \omega_{\text {can }}\right)$ using f.
Take L_{f} to be the grapf of $\mathrm{d} f$.
(ii) Let $H=\{(\cos t, \sin t, 0,0) \mid t \in \mathbb{R} / 2 \pi \mathbb{Z}\} \cup\{(0,0, \cos t, \sin t) \mid t \in \mathbb{R} / 2 \pi \mathbb{Z}\}$ be the Hopf link in \mathbf{S}^{3}. Construct a Lagrangian submanifold L_{H} of $\left(T^{*} \mathbf{S}^{3}, \omega_{\text {can }}\right)$ such that $L_{H} \cap \iota_{0}\left(\mathbf{S}^{3}\right)=H$ where $\iota_{0}\left(\mathbf{S}^{3}\right)$ is the zero section in $T^{*} \mathbf{S}^{3}$.
Take L_{H} to be the conormal bundle of H. It follows from the construction of the conormal bundle that $L_{H} \cap \iota_{0}\left(\mathbf{S}^{3}\right)=H$.
$(2+2+2=6$ points $)$

(3) Let ω_{0} and ω_{1} be two symplectic forms on M. Let $i: N \hookrightarrow M$ be a compact submanifold. Suppose that $\left.\omega_{0}\right|_{p}=\left.\omega_{1}\right|_{p}$ for any $p \in N$. Then, the local Moser thoerem asserts that there exists neighborhoods \mathcal{U}_{0} and \mathcal{U}_{1} of N in M, and a diffeomorphism $\varphi: \mathcal{U}_{0} \rightarrow \mathcal{U}_{1}$ such that

- $\varphi^{*} \omega_{1}=\omega_{0}$;
- $\varphi \circ i=i$; namely, φ is the identity map on N.

Now,
(a) State the Darboux theorem.

Let (M, ω) be a symplectic manifold. Then, for any $p \in M$, there exists a coordinate neighborhood $p \in U \subset M$ with coordinates $\left\{x_{j}, y_{j}\right\}_{j=1}^{n}$ such that $\omega=\sum_{j=1}^{n} \mathrm{~d} x_{j} \wedge$ $\mathrm{d} y_{j}$.
(b) Prove the Darboux theorem. You are allowed to use the local Moser theorem. By symplectic linear algebra, $\left.\omega\right|_{p}=\sum_{j=1}^{n} e_{j}^{*} \wedge f_{j}^{*}$ for a basis $\left\{e_{j}^{*}, f_{j}^{*}\right\}_{j=1}^{n}$ for $T_{p}^{*} M$. Consider the dual basis $\left\{e_{j}, f_{j}\right\}_{j=1}^{n}$ for $T_{p} M$. Choose a coordinate neighborhood $p \in U \subset M$ such that $\left.\frac{\partial}{\partial x_{j}}\right|_{p}=e_{j}$ and $\left.\frac{\partial}{\partial y_{j}} \right\rvert\, p=f_{j}$ for all j; this can always be done by a linear transform. Endow U with the symplectic form $\omega_{0}=\sum_{j=1}^{n} \mathrm{~d} x_{j} \wedge \mathrm{~d} y_{j}$. On the other hand, $\left.\omega\right|_{U}$ is another symplectic form on U. By the construction of ω_{0}, these two symplectic form meets the requirement of the local Moser theorem, with the manifold to be U and the compact submanifold to be p. Therefore, there exists neighborhoods \mathcal{U}_{0} and \mathcal{U}_{1}, and a diffeomorphism $\varphi: \mathcal{U}_{0} \subset U \rightarrow \mathcal{U}_{1} \subset U$ such that $\varphi^{*} \omega=\omega_{0}$. Then $\varphi: \mathcal{U}_{0} \rightarrow \mathcal{U}_{1} \subset M$ is a Darboux chart.
($2+4=6$ points $)$
(4) Suppose that τ is a symplectomorphism of (M, ω). Its graph $\{(p, \tau(p)) \mid p \in M\} \subset$ $M \times M$ is a Lagrangian submanifold with respect to $\operatorname{pr}_{1}^{*} \omega-\operatorname{pr}_{2}^{*} \omega$. This relates a symplectormophism to a Lagrangian submanifold.

Let X be a manifold. Given a smooth function $f: X \times X \rightarrow \mathbb{R}$, we can apply the method of generating functions to construction a symplectomorphism of $\left(T^{*} X, \omega_{\text {can }}\right)$ to itself.
(a) Describe the method of generating functions.

The graph of $\mathrm{d} f, Y_{f}=\left\{\left(x, \partial_{x} f, y, \partial_{y} f\right) \subset T^{*} X \times T^{*} X\right\}$, is Lagrangian with respect to $\mathrm{pr}_{1}^{*} \omega_{\text {can }}+\mathrm{pr}_{2}^{*} \omega_{\text {can }}$. By flipping the second fiber, $Y_{f}^{\sigma}=\left\{\left(x, \partial_{x} f, y,-\partial_{y} f\right) \subset\right.$ $\left.T^{*} X \times T^{*} X\right\}$ is Lagrangian with respect to $\operatorname{pr}_{1}^{*} \omega_{\text {can }}-\operatorname{pr}_{2}^{*} \omega_{\text {can }}$. We may construct a symplectomorphism by solving $y=y(x, \xi)$ from $\partial_{x} f(x, y)=\xi$.
(b) What is the necessary condition on f to guarantee that we can locally construct a symplectomorphism?
From the Jacobian computation, also for the implicit function theorem, the condition is that $\left[\frac{\partial^{2} f}{\partial x_{j} \partial y_{k}}\right]_{j, k}$ is non-degenerate.
(c) Consider the case when $X=\mathbb{R}$ and

$$
\begin{aligned}
f: X \times X & \rightarrow \mathbb{R} \\
(x, y) & \mapsto\left(x^{3}+3 x^{2}+4 x\right) y+y^{2}-4 .
\end{aligned}
$$

Use the method of generating functions to construct the symplectomorphism explicitly.
$\partial_{x} f=\left(3 x^{2}+6 x+4\right) y=\left(3(x+1)^{2}+1\right) y \quad \Rightarrow \quad y=\left(3 x^{2}+6 x+4\right)^{-1} \xi$.
$-\partial_{y} f=-\left(x^{3}+3 x^{2}+4 x\right)-2 y \quad \Rightarrow \quad \eta=-\left(x^{3}+3 x^{2}+4 x\right)-2\left(3 x^{2}+6 x+4\right)^{-1} \xi$. ($2+1+3=6$ points)
(5) Let Σ_{g} be a compact, oriented surfac ξ^{1} of genus g. Let ω be an area form on Σ_{g}. Suppose that τ is an orientation-preserving self-diffeomorphism of Σ. It follows that $\tau^{*} \omega$ is also an area form. Prove that ω and $\tau^{*} \omega$ are strongly isotopic. That is to say, there is an isotopy $\rho_{t}: M \rightarrow M$ such that $\rho_{1}^{*}\left(\tau^{*} \omega\right)=\omega$.

Since $\operatorname{dim} \Sigma=2$, a symplectic form (with the same orientation) is the same as an area form. Since convex combinations of area forms are still area forms, $\omega_{t}=(1-t) \omega+t \tau^{*} \omega$ is a symplectic form for any $t \in[0,1]$.

Since $\int_{\Sigma} \omega=\int_{\Sigma} \tau^{*} \omega, \omega$ and $\tau^{*} \omega$ define the same class in $\mathrm{H}_{\mathrm{dR}}^{2}(\Sigma)$. Thus, $\tau^{*} \omega-\omega=\mathrm{d} \eta$ for some 1-form η.

Consider the one-parameter family of vector field $v_{t}=-\omega_{t}^{-1}(\eta)$. Let ρ_{t} be the oneparameter family of diffeomorphism generated by v_{t}. We compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{t}^{*} \omega_{t} & =\rho_{t}^{*}\left(\mathcal{L}_{v_{t}} \omega_{t}+\frac{\mathrm{d} \omega_{t}}{\mathrm{~d} t}\right) \\
& =\rho_{t}^{*}\left(\mathrm{~d}\left(\iota_{v_{t}} \omega_{t}\right)+\iota_{v_{t}}\left(\mathrm{~d} \omega_{t}\right)-\omega+\tau^{*} \omega\right) \\
& =\rho_{t}^{*}(-\mathrm{d} \eta+\mathrm{d} \eta)=0 .
\end{aligned}
$$

It follows that $\rho_{1}^{*}\left(\tau^{*} \omega\right)=\omega$.
(7points)
(6) Regard \mathbf{S}^{2} as the unit sphere in \mathbb{R}^{3}. For any $p \in \mathbf{S}^{2}, T_{p} \mathbf{S}^{2}$ consists of all the vectors orthogonal to p. Define the symplectic form ω by $\omega_{p}(u, v)=\langle p, u \times v\rangle$ where \times is the usual cross product. The standard action of $\mathrm{SO}(3)$ on \mathbb{R}^{3} maps \mathbf{S}^{2} onto itself, and thus induces an action on \mathbf{S}^{2}. The purpose of this exercise is to compute the moment map of this $\mathrm{SO}(3)$-action on $\left(\mathbf{S}^{2}, \omega\right)$.

The Lie algebra $\mathfrak{s o}(3)$ consists of skew-symmetric matrices. It can be identified with \mathbb{R}^{3} by

$$
A=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \tag{0.1}\\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \mapsto\left(a_{1}, a_{2}, a_{3}\right) .
$$

[^0](a) The adjoint action for matrix groups are given by the usual matric multiplication, $\operatorname{Ad}_{g} A=g A g^{-1}$. What is the adjoint action in terms of 0.1 ? The dual space $\mathfrak{s o}^{*}(3)$ can also be identified with \mathbb{R}^{3} via the usual inner product. What is the coadjoint action?
It follows from a straightforward (but tedious) computation that $\operatorname{Ad}_{g} A=g \vec{a}$ as the matrix multiplication. For the coadjoint action,
\[

$$
\begin{aligned}
\left\langle\operatorname{Ad}_{g}^{*} \vec{\xi}, \vec{a}\right\rangle & =\left\langle\vec{\xi}, \operatorname{Ad}_{g^{-1}} \vec{a}\right\rangle \\
& =\left\langle\vec{\xi}, g^{-1} \vec{a}\right\rangle \\
& =\left\langle g \vec{\xi}, g\left(g^{-1} \vec{a}\right)\right\rangle=\langle g \vec{\xi}, \vec{a}\rangle
\end{aligned}
$$
\]

for any $\vec{a} \in \mathbb{R}^{3}$. Hence, $\operatorname{Ad}_{g}^{*} \vec{\xi}=g \vec{\xi}$.
(b) Each component of the cross product is a 2 -form on \mathbb{R}^{3}. What are they?

Let x, y, z be the coordinate for \mathbb{R}^{3}. The cross product is $(\mathrm{d} y \wedge \mathrm{~d} z, \mathrm{~d} z \wedge \mathrm{~d} x, \mathrm{~d} x \wedge \mathrm{~d} y)$.
(c) With Item (b), construct a 2 -form $\tilde{\omega}$ on \mathbb{R}^{3} whose restriction on \mathbf{S}^{2} is the symplectic form. The 2 -form $\tilde{\omega}$ needs not to be d-closed on \mathbb{R}^{3}.
From $\omega_{p}(u, v)=\langle p, u \times v\rangle$, we can take $\tilde{\omega}$ to be $x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y$.
(d) Compute $\iota_{A^{\sharp}} \tilde{\omega}$ on \mathbb{R}^{3} for any $A \in \mathfrak{s o}(3)$.

Let $g=e^{t A}$. It follows from a straighforward computation that

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} e^{t A}(x, y, z) & =\left(a_{2} z-a_{3} y, a_{3} x-a_{1} z, a_{1} y-a_{2} x\right) \\
& =\left(a_{1}, a_{2}, a_{3}\right) \times(x, y, z)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
{ }^{\iota_{A} \sharp} \tilde{\omega}= & \left(a_{1} y^{2}-a_{2} x y-a_{3} x z+a_{1} z^{2}\right) \mathrm{d} x \\
& +\left(-a_{1} x y+a_{2} x^{2}+a_{2} z^{2}-a_{3} y z\right) \mathrm{d} y \\
& +\left(a_{3} x^{2}-a_{1} x z-a_{2} y z+a_{3} y^{2}\right) \mathrm{d} z .
\end{aligned}
$$

(e) Restrict $\iota_{A^{\sharp}} \tilde{\omega}$ on $\mathbf{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$, and use it to find out the moment map.
We first use $x^{2}+y^{2}+z^{2}=1$ to rewrite $\iota_{A^{\sharp}} \omega$ as

$$
\iota_{A^{\sharp}} \omega=\left(a_{1} \mathrm{~d} x+a_{2} \mathrm{~d} y+a_{3} \mathrm{~d} z\right)-\left(a_{1} x+a_{2} y+a_{3} z\right)(x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z) .
$$

Since $\mathrm{d}\left(x^{2}+y^{2}+z^{2}\right)=0$, the second term vanishes on \mathbf{S}^{2}, and

$$
\iota_{A^{\sharp}} \omega=\left(a_{1} \mathrm{~d} x+a_{2} \mathrm{~d} y+a_{3} \mathrm{~d} z\right)=\mathrm{d}\left\langle(x, y, z),\left(a_{1}, a_{2}, a_{3}\right)\right\rangle .
$$

It follows that $\mu(x, y, z)=(x, y, z)+\left(c_{1}, c_{2}, c_{3}\right)$ via the identification of $\mathfrak{s o}^{*}(3)$ with \mathbb{R}^{3}. The $\mathrm{SO}(3)$-equivariant condition implies that $\left(c_{1}, c_{2}, c_{3}\right)$ must be the zero vector. Therefore, $\mu: \mathbf{S}^{2} \rightarrow \mathbb{R}^{3}$ is the original embedding.

$$
(1+1+1+1+3=7 \text { points })
$$

[^0]: ${ }^{1}$ A surface is a manifold of real dimension 2.

