INTRODUCTION TO SYMPLECTIC GEOMETRY SOLUTION FOR THE MIDTERM

THURSDAY, NOVEMBER 7, 2013

- (1) True/False questions, no justications needed. (1.5points each item)
 - (a) F Consider \mathbb{R}^6 with the standard symplectic form ω_0 . Any 4-dimensional subspace $U \subset \mathbb{R}^6$ is coisotropic, i.e. $U^{\omega_0} \subset U$. For instance, take $U = \operatorname{span}\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial y_2}\}$. Then $U^{\omega_0} = \operatorname{span}\{\frac{\partial}{\partial x_3}, \frac{\partial}{\partial y_3}\} \not\subset U$.
 - (b) T Any manifold Xⁿ can always be realized as a Lagrangian submanifold of some symplectic manifold (M²ⁿ, ω).
 X is always Lagrangian as the zero section in (T*X, ω_{can}).
 - (c) F There exists a symplectic matrix $A \in \text{Sp}(n)$ with $\det(A) = -1$. Symplectic form induces an orientation. It follows that $\text{Sp}(n) \subseteq \text{SL}(2n; \mathbb{R})$.
 - (d) $[\mathbf{F}]$ Let (M, ω) be a compact symplectic manifold. Suppose that there is an \mathbf{S}^{1} -action on M which preserves the symplectic form. Then, there exists a moment map $\mu : M \to \mathbb{R}$ of this \mathbf{S}^{1} -action. Consider $\mathbf{T}^{2} = \mathbb{R}^{2}/\mathbb{Z}^{2}$ with $\omega = dx \wedge dy$. Consider the \mathbf{S}^{1} -action as rotating the *x*-component. It is only symplectic, but not Hamiltonian.
 - (e) F The Klein bottle admits a symplectic structure. The Klein bottle is constructed by identifying the boundary of $[0,1] \times [0,1] \subset \mathbb{R}^2$ by the relations $(0,y) \sim (1,y)$ and $(x,0) \sim (1-x,1)$. The Klein bottle is not orientable.
 - (f) **F** $\mathbf{S}^3 \times \mathbb{CP}^3$ admits a symplectic structure. Since dim $\mathbf{S}^3 \times \mathbb{CP}^3 = 9$, it cannot be symplectic.
 - (g) T $\mathbf{T}^2 \times \mathbf{S}^2$ admits a symplectic structure. The product of symplectic manifolds is still symplectic.
 - (h) $[\mathbf{F}] \mathbf{S}^6$ admits a symplectic structure. Since \mathbf{S}^6 is compact and $\mathrm{H}^2_{\mathrm{dR}}(\mathbf{S}^6) = 0$, it cannot be symplectic.
 - (i) $[\mathbf{T}]$ Let (M, ω) be a compact symplectic manifold, and f, g be two smooth functions on M. Suppose that they Poisson commute, i.e. $\{f, g\} = 0$. Then, $\rho_t^* g = g$ where $\rho_t = \exp(tX_f)$. $\frac{\mathrm{d}}{\mathrm{d}t}\rho_t^* g = \rho_t^* \mathcal{L}_{X_t} g = \rho_t^* \omega(X_g, X_f) = 0.$

- (j) F There exists a smooth, strictly convex function F on \mathbb{R}^2 such that the image of its Legendre transform is $S_F = \{(r \cos \theta, r \sin \theta) \in \mathbb{R}^2 | r > 0 \text{ and } 0 < \theta < \frac{3\pi}{2}\}$. The region is not convex.
- (k) T Consider \mathbb{R}^4 with the standard symplectic form $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$. The flow ρ_t generated by the vector field $V = \sin(y_2)\frac{\partial}{\partial x_1} + y_1\cos(y_2)\frac{\partial}{\partial x_2}$ preserves the symplectic form ω_0 . $\mathcal{L}_V\omega_0 = d(\iota_V\omega) + \iota_V(d\omega) = d(\sin(y_2)dy_1 + y_1\cos(y_2)dy_2) = d^2(y_1\sin(y_2)) = 0.$
- (1) F Let (M^6, ω) be a compact, 6-dimensional symplectic manifold. Suppose that $\{\gamma_j : \mathbf{S}^3 \hookrightarrow M\}_{j \in \mathbb{N}}$ and $\gamma : \mathbf{S}^3 \hookrightarrow M$ are Lagrangian embeddings of the three sphere into M. It is possible that $\lim_{j\to\infty} \gamma_j = \gamma$ in the \mathcal{C}^1 -topology, and $\#\{\gamma_j(\mathbf{S}^3) \cap \gamma(\mathbf{S}^3)\} = 1$ for all j. (Here we simply count the total number of intersection points without considering the sign of intersection.)

Apply the Weinstein tubular neighborhood theorem on $\gamma(\mathbf{S}^3)$. Since $\lim_{j\to\infty} \gamma_j = \gamma$ in the \mathcal{C}^1 -topology, $\gamma_j(\mathbf{S}^3)$ must be given by the graph of closed 1-forms when j sufficiently large. Since $\mathrm{H}^1_{\mathrm{dR}}(\mathbf{S}^3) = 0$, closed 1-forms are the exterior derivative of functions. A smooth function on \mathbf{S}^3 has at least two critical points.

- (2) The question concerns about basic symplectic-geometric properties of cotangent bundles.
 - (a) Let X be a manifold. Write down the local expression for the tautological 1-form and the canonical symplectic form of T^*X . Let $\{x_j\}_{j=1}^n$ be a local coordinate on X, and $\{\xi_j\}_{j=1}^n$ be the corresponding coordinate for the fibers of T^*X . The tautological 1-form is $\alpha = \sum_{j=1}^n \xi_j dx_j$. The canonical symplectic form is $\omega_{\text{can}} = -d\alpha = \sum_{j=1}^n dx_j \wedge d\xi_j$.
 - (b) Think \mathbf{S}^3 as the unit sphere in \mathbb{R}^4 .
 - (i) Let $f : \mathbb{R}^4 \to \mathbb{R}$ be a smooth function. Construct a Lagrangian submanifold L_f of $(T^*\mathbf{S}^3, \omega_{\operatorname{can}})$ using f. Take L_f to be the graph of df.
 - (ii) Let $H = \{(\cos t, \sin t, 0, 0) | t \in \mathbb{R}/2\pi\mathbb{Z}\} \cup \{(0, 0, \cos t, \sin t) | t \in \mathbb{R}/2\pi\mathbb{Z}\}$ be the Hopf link in \mathbf{S}^3 . Construct a Lagrangian submanifold L_H of $(T^*\mathbf{S}^3, \omega_{\operatorname{can}})$ such that $L_H \cap \iota_0(\mathbf{S}^3) = H$ where $\iota_0(\mathbf{S}^3)$ is the zero section in $T^*\mathbf{S}^3$. Take L_H to be the conormal bundle of H. It follows from the construction of the conormal bundle that $L_H \cap \iota_0(\mathbf{S}^3) = H$.

(2+2+2=6points)

- (3) Let ω_0 and ω_1 be two symplectic forms on M. Let $i : N \hookrightarrow M$ be a compact submanifold. Suppose that $\omega_0|_p = \omega_1|_p$ for any $p \in N$. Then, the *local Moser theorem* asserts that there exists neighborhoods \mathcal{U}_0 and \mathcal{U}_1 of N in M, and a diffeomorphism $\varphi : \mathcal{U}_0 \to \mathcal{U}_1$ such that
 - $\varphi^* \omega_1 = \omega_0;$
 - $\varphi \circ i = i$; namely, φ is the identity map on N.
 - Now,
 - (a) State the Darboux theorem.

Let (M, ω) be a symplectic manifold. Then, for any $p \in M$, there exists a coordinate neighborhood $p \in U \subset M$ with coordinates $\{x_j, y_j\}_{j=1}^n$ such that $\omega = \sum_{j=1}^n \mathrm{d} x_j \wedge \mathrm{d} y_j$.

- (b) Prove the Darboux theorem. You are allowed to use the local Moser theorem. By symplectic linear algebra, $\omega|_p = \sum_{j=1}^n e_j^* \wedge f_j^*$ for a basis $\{e_j^*, f_j^*\}_{j=1}^n$ for T_p^*M . Consider the dual basis $\{e_j, f_j\}_{j=1}^n$ for T_pM . Choose a coordinate neighborhood $p \in U \subset M$ such that $\frac{\partial}{\partial x_j}|_p = e_j$ and $\frac{\partial}{\partial y_j}|_p = f_j$ for all j; this can always be done by a linear transform. Endow U with the symplectic form $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$. On the other hand, $\omega|_U$ is another symplectic form on U. By the construction of ω_0 , these two symplectic form meets the requirement of the local Moser theorem, with the manifold to be U and the compact submanifold to be p. Therefore, there exists neighborhoods \mathcal{U}_0 and \mathcal{U}_1 , and a diffeomorphism $\varphi: \mathcal{U}_0 \subset U \to \mathcal{U}_1 \subset U$ such that $\varphi^*\omega = \omega_0$. Then $\varphi: \mathcal{U}_0 \to \mathcal{U}_1 \subset M$ is a Darboux chart. (2 + 4 = 6points)
- (4) Suppose that τ is a symplectomorphism of (M, ω) . Its graph $\{(p, \tau(p)) | p \in M\} \subset M \times M$ is a Lagrangian submanifold with respect to $\operatorname{pr}_1^* \omega \operatorname{pr}_2^* \omega$. This relates a symplectormophism to a Lagrangian submanifold.

Let X be a manifold. Given a smooth function $f : X \times X \to \mathbb{R}$, we can apply the method of generating functions to construction a symplectomorphism of $(T^*X, \omega_{\text{can}})$ to itself.

(a) Describe the method of generating functions.

The graph of df, $Y_f = \{(x, \partial_x f, y, \partial_y f) \subset T^*X \times T^*X\}$, is Lagrangian with respect to $\operatorname{pr}_1^* \omega_{\operatorname{can}} + \operatorname{pr}_2^* \omega_{\operatorname{can}}$. By flipping the second fiber, $Y_f^{\sigma} = \{(x, \partial_x f, y, -\partial_y f) \subset T^*X \times T^*X\}$ is Lagrangian with respect to $\operatorname{pr}_1^* \omega_{\operatorname{can}} - \operatorname{pr}_2^* \omega_{\operatorname{can}}$. We may construct a symplectomorphism by solving $y = y(x,\xi)$ from $\partial_x f(x,y) = \xi$.

(b) What is the necessary condition on f to guarantee that we can locally construct a symplectomorphism?

From the Jacobian computation, also for the implicit function theorem, the condition is that $\left[\frac{\partial^2 f}{\partial x_i \partial y_k}\right]_{j,k}$ is non-degenerate.

(c) Consider the case when $X = \mathbb{R}$ and

$$\begin{array}{rcccc} f: & X \times X & \rightarrow & \mathbb{R} \\ & & (x,y) & \mapsto & (x^3 + 3x^2 + 4x)y + y^2 - 4 \ . \end{array}$$

Use the method of generating functions to construct the symplectomorphism *explicitly*.

$$\partial_x f = (3x^2 + 6x + 4)y = (3(x+1)^2 + 1)y \quad \Rightarrow \quad y = (3x^2 + 6x + 4)^{-1}\xi.$$

$$-\partial_y f = -(x^3 + 3x^2 + 4x) - 2y \quad \Rightarrow \quad \eta = -(x^3 + 3x^2 + 4x) - 2(3x^2 + 6x + 4)^{-1}\xi.$$

$$(2+1+3 = 6\text{points})$$

(5) Let Σ_g be a compact, oriented surface¹ of genus g. Let ω be an area form on Σ_g . Suppose that τ is an orientation-preserving self-diffeomorphism of Σ . It follows that $\tau^*\omega$ is also an area form. Prove that ω and $\tau^*\omega$ are strongly isotopic. That is to say, there is an isotopy $\rho_t : M \to M$ such that $\rho_1^*(\tau^*\omega) = \omega$.

Since dim $\Sigma = 2$, a symplectic form (with the same orientation) is the same as an area form. Since convex combinations of area forms are still area forms, $\omega_t = (1-t)\omega + t\tau^*\omega$ is a symplectic form for any $t \in [0, 1]$.

Since $\int_{\Sigma} \omega = \int_{\Sigma} \tau^* \omega$, ω and $\tau^* \omega$ define the same class in $\mathrm{H}^2_{\mathrm{dR}}(\Sigma)$. Thus, $\tau^* \omega - \omega = \mathrm{d}\eta$ for some 1-form η .

Consider the one-parameter family of vector field $v_t = -\omega_t^{-1}(\eta)$. Let ρ_t be the oneparameter family of diffeomorphism generated by v_t . We compute

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_t^*\omega_t = \rho_t^* \left(\mathcal{L}_{v_t}\omega_t + \frac{\mathrm{d}\omega_t}{\mathrm{d}t}\right)$$
$$= \rho_t^* \left(\mathrm{d}(\iota_{v_t}\omega_t) + \iota_{v_t}(\mathrm{d}\omega_t) - \omega + \tau^*\omega\right)$$
$$= \rho_t^*(-\mathrm{d}\eta + \mathrm{d}\eta) = 0 .$$

It follows that $\rho_1^*(\tau^*\omega) = \omega$. (7points)

(6) Regard \mathbf{S}^2 as the unit sphere in \mathbb{R}^3 . For any $p \in \mathbf{S}^2$, $T_p \mathbf{S}^2$ consists of all the vectors orthogonal to p. Define the symplectic form ω by $\omega_p(u, v) = \langle p, u \times v \rangle$ where \times is the usual cross product. The standard action of SO(3) on \mathbb{R}^3 maps \mathbf{S}^2 onto itself, and thus induces an action on \mathbf{S}^2 . The purpose of this exercise is to compute the moment map of this SO(3)-action on (\mathbf{S}^2, ω) .

The Lie algebra $\mathfrak{so}(3)$ consists of skew-symmetric matrices. It can be identified with \mathbb{R}^3 by

$$A = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \mapsto (a_1, a_2, a_3) .$$
 (0.1)

¹A surface is a manifold of real dimension 2.

(a) The adjoint action for matrix groups are given by the usual matric multiplication, $\operatorname{Ad}_{g} A = gAg^{-1}$. What is the adjoint action in terms of (0.1)? The dual space $\mathfrak{so}^{*}(3)$ can also be identified with \mathbb{R}^{3} via the usual inner product. What is the coadjoint action?

It follows from a straightforward (but tedious) computation that $\operatorname{Ad}_g A = g\vec{a}$ as the matrix multiplication. For the coadjoint action,

$$\begin{split} \langle \operatorname{Ad}_{g}^{*} \vec{\xi}, \vec{a} \rangle &= \langle \vec{\xi}, \operatorname{Ad}_{g^{-1}} \vec{a} \rangle \\ &= \langle \vec{\xi}, g^{-1} \vec{a} \rangle \\ &= \langle g \vec{\xi}, g(g^{-1} \vec{a}) \rangle = \langle g \vec{\xi}, \vec{a} \rangle \end{split}$$

for any $\vec{a} \in \mathbb{R}^3$. Hence, $\operatorname{Ad}_g^* \vec{\xi} = g\vec{\xi}$.

- (b) Each component of the cross product is a 2-form on \mathbb{R}^3 . What are they? Let x, y, z be the coordinate for \mathbb{R}^3 . The cross product is $(dy \wedge dz, dz \wedge dx, dx \wedge dy)$.
- (c) With Item (b), construct a 2-form $\tilde{\omega}$ on \mathbb{R}^3 whose restriction on \mathbf{S}^2 is the symplectic form. The 2-form $\tilde{\omega}$ needs not to be d-closed on \mathbb{R}^3 . From $\omega_p(u, v) = \langle p, u \times v \rangle$, we can take $\tilde{\omega}$ to be $xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$.
- (d) Compute $\iota_{A^{\sharp}}\tilde{\omega}$ on \mathbb{R}^3 for any $A \in \mathfrak{so}(3)$. Let $g = e^{tA}$. It follows from a straightforward computation that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}e^{tA}(x,y,z) = (a_2z - a_3y, a_3x - a_1z, a_1y - a_2x)$$
$$= (a_1, a_2, a_3) \times (x, y, z) \ .$$

Hence,

$$\begin{split} \iota_{A^{\sharp}} \tilde{\omega} &= (a_1 y^2 - a_2 x y - a_3 x z + a_1 z^2) \mathrm{d}x \\ &+ (-a_1 x y + a_2 x^2 + a_2 z^2 - a_3 y z) \mathrm{d}y \\ &+ (a_3 x^2 - a_1 x z - a_2 y z + a_3 y^2) \mathrm{d}z \end{split}$$

(e) Restrict $\iota_{A^{\sharp}}\tilde{\omega}$ on $\mathbf{S}^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$, and use it to find out the moment map.

We first use $x^2 + y^2 + z^2 = 1$ to rewrite $\iota_{A^{\sharp}} \omega$ as

$$u_{A^{\sharp}}\omega = (a_1\mathrm{d}x + a_2\mathrm{d}y + a_3\mathrm{d}z) - (a_1x + a_2y + a_3z)(x\mathrm{d}x + y\mathrm{d}y + z\mathrm{d}z) \;.$$

Since $d(x^2 + y^2 + z^2) = 0$, the second term vanishes on S^2 , and

$$\iota_{A^{\sharp}}\omega = (a_1 \mathrm{d}x + a_2 \mathrm{d}y + a_3 \mathrm{d}z) = \mathrm{d}\langle (x, y, z), (a_1, a_2, a_3) \rangle .$$

It follows that $\mu(x, y, z) = (x, y, z) + (c_1, c_2, c_3)$ via the identification of $\mathfrak{so}^*(3)$ with \mathbb{R}^3 . The SO(3)-equivariant condition implies that (c_1, c_2, c_3) must be the zero vector. Therefore, $\mu : \mathbf{S}^2 \to \mathbb{R}^3$ is the original embedding.

(1+1+1+1+3 = 7 points)