INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 14

DUE: MONDAY, DECEMBER 23

(1) (from [CdS1, Homework 10]) Let (M, J) be an almost complex manifold. Its Nijenhuis tensor \mathcal{N} is defined by

$$\mathcal{N}(v, w) = [Jv, Jw] - J[v, Jw] - J[Jv, w] - [v, w] ,$$

where v and w are vector fields on M.

- (a) Show that \mathcal{N} is actually a tensor.
- (b) Show that if M is a complex manifold and J is the corresponding complex structure, then $\mathcal{N} \equiv 0$.
- (c) Compute $\mathcal{N}(v, Jv)$. Deduce that, if M is a surface, then $\mathcal{N} \equiv 0$.
- (2) We calculated the Lie algebra cohomology of $SL(2; \mathbb{R})$ in Homework 9. Its Lie algebra consists of traceless matrices:

$$\mathfrak{sl}(2;\mathbb{R}) = \{ A \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{trace}(A) = 0 \}$$
.

The following matrices form a basis for $\mathfrak{sl}(2;\mathbb{R})$:

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \;, \qquad \qquad X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \;, \qquad \qquad Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \;.$$

They satisfy the following relations:

$$[H, X] = 2X$$
, $[H, Y] = -2Y$, $[X, Y] = H$. (0.1)

Now, consider a symplectic manifold (M^{2n}, ω) . Let $\Omega^*(M) = \bigoplus_k \Omega^k(M)$ be the space of all differential forms on M. Remember that ω gives an isomorphism between T^*M and TM, and then induces an isomorphism between Λ^2T^*M and Λ^2TM . Let Λ be the image of ω under this isomorphism, and it is called the *Poisson bivector*. With this understood, introduce three operators \mathcal{L} , Λ and \mathcal{H} on $\Omega^*(M)$:

$$\mathcal{L}(A) = \omega \wedge A$$
,

 $\Lambda(A) = \text{contract } A \text{ with the Poisson bivector } \Lambda$,

$$\mathcal{H}(A) = \sum_{k=0}^{2n} (n-k)(\Pi^k A)$$

where Π^k is the projection $\Omega^*(M) \to \Omega^k(M)$. Note that \mathcal{L} increases the degree of A by 2, Λ decreases the degree by 2, and \mathcal{H} preserves the degree.

(a) Write down the Poisson bivector Λ in terms of a Darboux coordinate.

(b) Show that \mathcal{L} , Λ and \mathcal{H} form an \mathfrak{sl}_2 -triple. That is to say, their brackets satisfy the relations (0.1).

If (M^{2n}, ω, J, g) is a compact Kähler manifold, one can show that \mathcal{L} , Λ and \mathcal{H} commute with the Laplace operator Δ_d . Then one can apply the representation theory of $\mathfrak{sl}(2; \mathbb{R})$ to study the de Rham cohomology of M. As a result, one can prove the Hard Lefschetz theorem. It says that

$$\mathcal{L}^k: \mathrm{H}^{n-k}_{\mathrm{dR}}(M) \longrightarrow \mathrm{H}^{n+k}_{\mathrm{dR}}(M)$$

is an isomorphism for any $k \in \{0, 1, \dots, n\}$.