INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 13

DUE: MONDAY, DECEMBER 16

This Homework set is taken from [CdS1, Homework 8].

- (1) Let V be a 2n-dimensional vector space. Let S(V) and J(V) be the spaces of (linear) symplectic forms and (linear) complex structures on V, respectively.
 - (a) Take an $\omega \in \mathcal{S}(V)$. Let Sp be the group of symplectomorphisms of (V, ω) . Show that $\mathcal{S}(V) = \operatorname{GL}(V)/\operatorname{Sp}(V, \omega)$. Here, $\operatorname{GL}(V)$ is the group of \mathbb{R} -linear isomorphisms of V.
 - (b) Take a $J \in \mathcal{J}(V)$. Let GL(V, J) be the group of complex isomorphisms of (V, J). Show that $\mathcal{J}(V) = GL(V)/GL(V, J)$.
- (2) Consider $\mathbb{R}^{2n} \cong \mathbb{C}^n$ endowed with the standard metric, complex structure, and the symplectic form. The groups leave these structures invariant are O(2n), $GL(n;\mathbb{C})$ and Sp(n), respectively. You can find the definition of Sp(n) in Homework 2. We can identify a complex $n \times n$ matrix with a $(2n) \times (2n)$ matrix by

$$X + iY \mapsto \begin{bmatrix} X & -Y \\ Y & X \end{bmatrix}$$
.

With this understood, consider the following subgroups of $GL(2n; \mathbb{R})$:

$$O(2n)$$
, $GL(n; \mathbb{C})$, $Sp(n)$ and $U(n)$.

Show that the intersection of any two of them is U(n).

- (3) Let (V, ω) be a symplectic vector space of dimension 2n, and let $J: V \to V$ be a complex structure on V.
 - (a) Prove that, if J is ω -compatible and L is a Lagrangian subspace of (V, ω) , then JL is also Lagrangian and $JL = L^{\perp}$, where \perp denotes orthogonality with respect to the positive inner product $g(u, v) = \omega(u, Jv)$.
 - (b) Deduce that J is ω -compatible if and only if there exists a symplectic basis for V of the form

$$e_1, e_2, \ldots, e_n, f_1 = Je_1, f_2 = Je_2, \ldots, f_n = Je_n$$

where $\omega(e_i, e_j) = \omega(f_i, f_j) = 0$ and $\omega(e_i, f_j) = \delta_{ij}$.