INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 12

DUE: MONDAY, DECEMBER 9

(1) Let $P \subset \mathbb{R}^{2}$ be a 2-dimensional Delzant polytope with vertices p_{1}, \ldots, p_{d} ordered in a counterclockwise fashion in the plane and edges given by the primitiv ${ }^{11}$ vectors $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{Z}^{2}$ where α_{i} points from p_{i} to $p_{i+1}, p_{d+1}:=p_{1}$. Show that there are integers e_{i} for $i=1, \ldots, d$ such that $e_{i} \alpha_{i}=\alpha_{i-1}+\alpha_{i+1}$, for $i=1, \ldots, d$ with $\alpha_{d+1}:=\alpha_{1}$ and $\alpha_{0}:=\alpha_{d} . \quad\left(\right.$ Hint. α_{i} and α_{i+1} constitute an integral basis for any i.)
(2) Let $P \subset\left(\mathbb{R}^{2}\right)^{*}$ be the convex hull of $(0,0),\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. Work out the Delzant construction for P. What follows is basically what you need to do.

- Find out u_{j} and λ_{j} for $j=1,2,3,4$.
- Work out $0 \rightarrow H \xrightarrow{i} \mathbf{T}^{4} \xrightarrow{\pi} \mathbf{T}^{2} \rightarrow 0$.
- Denote by μ be the moment map of the standard action of \mathbf{T}^{4} on \mathbb{C}^{4}, and normalize it by $\mu(0)=\left(-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}\right)$.
- Check directly that H acts on $\left(\iota^{*} \circ \mu\right)^{-1}(0)=\mu^{-1}\left(\pi^{*} P\right)$ freely.
- Choose a splitting $\mathbf{T}^{4} \stackrel{j}{\longleftarrow} \mathbf{T}^{2}$, and then \mathbf{T}^{2} acts on $\left(\iota^{*} \circ \mu\right)^{-1}(0) / H$ via j. Justify that the moment polytope is exactly P.

[^0]
[^0]: ${ }^{1}$ A primitive vector \mathbf{v} is a vector in \mathbb{Z}^{n}, and cannot be written as $s \mathbf{w}$ for $\mathbf{w} \in \mathbb{Z}^{n}, s \in \mathbb{Z}$ and $|s|>1$.

