INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 10

DUE: MONDAY, NOVEMBER 25

(1) Let $A \in \mathrm{GL}(2 n ; \mathbb{R})$ be skew-symmetric, $A=-A^{T}$. Consider its polar factorization ${ }^{11}$ $A=P J$. Show that A and P commute: $A P=P A$.
(2) For a Lie group G, there exists, up to a constant multiple, a unique left-invariant volume form $\mathrm{d} V_{L}$. There is also a right-invariant volume form $\mathrm{d} V_{R}$, unique up to a constant multiple.

With any nonzero $\mu \in \Lambda^{\operatorname{dim} W} W^{*}$, we can define a group homomorphism

$$
\begin{aligned}
\operatorname{det}: \quad \mathrm{GL}(W) & \rightarrow(\mathbb{R} \backslash\{0\}, \times) \\
A & \mapsto \frac{\mu\left(A w_{1}, A w_{2}, \ldots\right)}{\mu\left(w_{1}, w_{2}, \ldots\right)}
\end{aligned}
$$

where $\left\{w_{j}\right\}_{j=1}^{\operatorname{dim} W}$ is a basis for W. Since μ is unique up to a constant multiple, det does not depend on the choice of μ.
(a) Show that

$$
\left.\left(R_{g^{-1}}^{*} \mathrm{~d} V_{L}\right)\right|_{e}=\left.\left(\operatorname{det} \mathrm{Ad}_{g}\right)\left(\mathrm{d} V_{L}\right)\right|_{e}
$$

for any $g \in G$.
(b) When G is compact and connected, prove that $\mathrm{d} V_{L}$ is also right-invariant.
(c) Consider the following Lie group

$$
G=\left\{\left.\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}, y>0\right\} .
$$

Check that $\mathrm{d} V_{L}=y^{-2} \mathrm{~d} x \wedge \mathrm{~d} y$ and $\mathrm{d} V_{R}=y^{-1} \mathrm{~d} x \wedge \mathrm{~d} y$.
(3) Consider $\mathbb{C P}^{2}$ with the Fubini-Study form ω_{FS}. Consider the following \mathbf{T}^{3}-action:

$$
\left(e^{i \theta_{0}}, e^{i \theta_{1}}, e^{i \theta_{2}}\right) \bullet\left[z_{0}: z_{1}: z_{2}\right]=\left[e^{i \theta_{0}} z_{0}: e^{i \theta_{1}} z_{1}: e^{i \theta_{2}} z_{2}\right] .
$$

(a) Calculate the moment map μ of this \mathbf{T}^{3}-action, and draw the moment polytope.
(b) If you did Part (a) correctly, the moment polytope should be a triangle. Denote it by \triangle. What are the pre-images under μ of the vertices and edges of \triangle ?
(c) Find out the stabilizer of $p \in \mathbb{C P}^{2}$ for p in:
(i) $\mu^{-1}($ vertex of $\triangle)$;
(ii) μ^{-1} (edge of \triangle);
(iii) μ^{-1} (interior of \triangle).

[^0](4) Let \mathcal{H} be the vector space of $n \times n$ Hermitian matrices. The unitary group $\mathrm{U}(n)$ acts on \mathcal{H} by conjugation:
\[

$$
\begin{equation*}
A \bullet \xi=A \xi A^{-1} \tag{0.1}
\end{equation*}
$$

\]

for $A \in \mathrm{U}(n), \xi \in \mathcal{H}$.
For each (unordered) n-tuple of real numbers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, let \mathcal{H}_{λ} be the set of all $n \times n$ Hermitian matrices whose spectrum is λ. In (1.e) of Homework 8, we have shown that \mathcal{H}_{λ} admits a symplectic form defined by

$$
\omega_{\xi}\left(X^{\sharp}, Y^{\sharp}\right)=i \operatorname{trace}([X, Y] \xi)
$$

for any $\xi \in \mathcal{H}_{\lambda}$ and $X, Y \in \mathfrak{u}(n)$. The vector field X^{\sharp} on \mathcal{H}_{λ} is induced by the action (0.1).

Now, prove Schur's theorem:
(a) for any $\xi \in \mathcal{H}_{\lambda}$,

$$
\begin{equation*}
\operatorname{diag}(\xi) \in \text { the convex hull of }\left\{\left(\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \ldots, \lambda_{\sigma(n)}\right) \mid \sigma \in S_{n}\right\} \tag{0.2}
\end{equation*}
$$

where diag: $\mathcal{H} \rightarrow \mathbb{R}^{n}$ is the diagonal map, and S_{n} is the symmetric group;
(b) conversely, every point in the convex hull 0.2 is $\operatorname{diag}(\xi)$ for some $\xi \in \mathcal{H}_{\lambda}$.
(Hint. Consider $\mathbf{T}^{n} \subset \mathrm{U}(n)$. It acts on \mathcal{H}_{λ} by 0.1. What is its moment map? Where are the fixed points of this \mathbf{T}^{n}-action? What does the convexity theorem say in this case? You may also see note1104.)
(c) When $n=3$, draw the convex hull 0.2 for $\lambda_{1}=-\frac{1}{2}$ and $\lambda_{2}=\lambda_{3}=0$. (Remark. In (1.f) of Homework 8, we recognized that the corresponding \mathcal{H}_{λ} is $\mathbb{C P}^{2}$. You can compare this part with (3.a) above.)
(d) When $n=3$, draw the convex hull 0.2 for $\lambda_{1}=0, \lambda_{2}=1$ and $\lambda_{3}=2$.
(e) When $n=2$, prove Schur's theorem directly. Namely, prove Part (a) and (b) for $n=2$ using only linear algebra.

[^0]: ${ }^{1}$ See (2.d) of Homework 9, or the lecture note.

