INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 10

DUE: MONDAY, NOVEMBER 25

- (1) Let $A \in GL(2n; \mathbb{R})$ be skew-symmetric, $A = -A^T$. Consider its polar factorization¹ A = PJ. Show that A and P commute: AP = PA.
- (2) For a Lie group G, there exists, up to a constant multiple, a unique left-invariant volume form dV_L . There is also a right-invariant volume form dV_R , unique up to a constant multiple.

With any nonzero $\mu \in \Lambda^{\dim W} W^*$, we can define a group homomorphism

$$\begin{array}{rcl} \operatorname{det}: & \operatorname{GL}(W) & \to & (\mathbb{R} \setminus \{0\}, \times) \\ & A & \mapsto & \frac{\mu(Aw_1, Aw_2, \ldots)}{\mu(w_1, w_2, \ldots)} \end{array}$$

where $\{w_j\}_{j=1}^{\dim W}$ is a basis for W. Since μ is unique up to a constant multiple, det does not depend on the choice of μ .

(a) Show that

$$(R_{g^{-1}}^* \mathrm{d}V_L)|_e = (\det \mathrm{Ad}_g) \, (\mathrm{d}V_L)|_e$$

for any $g \in G$.

- (b) When G is compact and connected, prove that dV_L is also right-invariant.
- (c) Consider the following Lie group

C

$$G = \left\{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \mid x, y \in \mathbb{R}, \ y > 0 \right\}$$
.

Check that $dV_L = y^{-2} dx \wedge dy$ and $dV_R = y^{-1} dx \wedge dy$.

(3) Consider \mathbb{CP}^2 with the Fubini–Study form ω_{FS} . Consider the following \mathbf{T}^3 -action:

$$[e^{i\theta_0}, e^{i\theta_1}, e^{i\theta_2}) \bullet [z_0 : z_1 : z_2] = [e^{i\theta_0}z_0 : e^{i\theta_1}z_1 : e^{i\theta_2}z_2]$$

- (a) Calculate the moment map μ of this \mathbf{T}^3 -action, and draw the moment polytope.
- (b) If you did Part (a) correctly, the moment polytope should be a triangle. Denote it by \triangle . What are the pre-images under μ of the vertices and edges of \triangle ?
- (c) Find out the stabilizer of $p \in \mathbb{CP}^2$ for p in:
 - (i) μ^{-1} (vertex of \triangle);
 - (ii) μ^{-1} (edge of \triangle);
 - (iii) μ^{-1} (interior of \triangle).

¹See (2.d) of Homework 9, or the lecture note.

(4) Let \mathcal{H} be the vector space of $n \times n$ Hermitian matrices. The unitary group U(n) acts on \mathcal{H} by conjugation:

$$A \bullet \xi = A\xi A^{-1} \tag{0.1}$$

for $A \in U(n), \xi \in \mathcal{H}$.

For each (unordered) *n*-tuple of real numbers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, let \mathcal{H}_{λ} be the set of all $n \times n$ Hermitian matrices whose spectrum is λ . In (1.e) of Homework 8, we have shown that \mathcal{H}_{λ} admits a symplectic form defined by

$$\omega_{\xi}(X^{\sharp}, Y^{\sharp}) = i \operatorname{trace}([X, Y]\xi)$$

for any $\xi \in \mathcal{H}_{\lambda}$ and $X, Y \in \mathfrak{u}(n)$. The vector field X^{\sharp} on \mathcal{H}_{λ} is induced by the action (0.1).

Now, prove Schur's theorem:

(a) for any $\xi \in \mathcal{H}_{\lambda}$,

diag
$$(\xi)$$
 \in the convex hull of $\{(\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \dots, \lambda_{\sigma(n)}) \mid \sigma \in S_n\}$ (0.2)

where diag : $\mathcal{H} \to \mathbb{R}^n$ is the diagonal map, and S_n is the symmetric group;

(b) conversely, every point in the convex hull (0.2) is diag(ξ) for some $\xi \in \mathcal{H}_{\lambda}$.

(*Hint.* Consider $\mathbf{T}^n \subset \mathrm{U}(n)$. It acts on \mathcal{H}_{λ} by (0.1). What is its moment map? Where are the fixed points of this \mathbf{T}^n -action? What does the convexity theorem say in this case? You may also see note1104.)

- (c) When n = 3, draw the convex hull (0.2) for $\lambda_1 = -\frac{1}{2}$ and $\lambda_2 = \lambda_3 = 0$. (*Remark*. In (1.f) of Homework 8, we recognized that the corresponding \mathcal{H}_{λ} is \mathbb{CP}^2 . You can compare this part with (3.a) above.)
- (d) When n = 3, draw the convex hull (0.2) for $\lambda_1 = 0$, $\lambda_2 = 1$ and $\lambda_3 = 2$.
- (e) When n = 2, prove Schur's theorem directly. Namely, prove Part (a) and (b) for n = 2 using only linear algebra.