INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 9

DUE: MONDAY, NOVEMBER 18

(1) Consider $\mathbb{C P}^{3}$ with the Fubini-Study form ω_{FS}. Consider the following \mathbf{S}^{1}-action:

$$
e^{i \phi} \bullet\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[z_{0}: e^{i \phi} z_{1}: e^{i \phi} z_{2}: z^{-i \phi} z_{3}\right]
$$

With \#3 of Homework 8, it is not to see that this \mathbf{S}^{1}-action is symplectic.
(a) Show that its moment map is

$$
\begin{equation*}
\mu\left(\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=-\frac{1}{2} \frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}}{\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}} . \tag{0.1}
\end{equation*}
$$

We identify the Lie algebra of \mathbf{S}^{1} with \mathbb{R}, and also its dual. (Hint. Remember that $\left(\mathbb{C P}^{3}, \omega_{\mathrm{FS}}\right)$ can be constructed as the symplectic reduction of $\left(\mathbb{C}^{4}, \omega_{0}\right)$.)

The denominator of the expression makes it homogeneous of degree 0 . And we do not have to impose the constraint condition $\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1$.
(b) Find out those points in $\mathbb{C P}^{3}$ where the stabilizer is non-trivial.

From 0.1 , the image of μ is $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Namely, the moment polytope is $\left[-\frac{1}{2}, \frac{1}{2}\right]$. If you did Part (b) correctly, \mathbf{S}^{1} acts freely on $\mu^{-1}(c)$ for any $c \in\left(-\frac{1}{2}, 0\right)$ or $\left(0, \frac{1}{2}\right)$. Therefore, we can perform symplectic reduction on these values of c. Let us try to visualize $\mu^{-1}\left(\frac{1}{4}\right) / \mathbf{S}^{1}$. Consider the map

$$
\begin{align*}
\pi: \mu^{-1}\left(\frac{1}{4}\right) \subset \mathbb{C P}^{3} & \rightarrow \mathbb{C P}^{2} \\
{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] } & \mapsto\left[\frac{z_{0}^{2}}{z_{3}}: z_{1}: z_{2}\right] . \tag{0.2}
\end{align*}
$$

(c) Check that π is well-defined on $\mu^{-1}\left(\frac{1}{4}\right)$.
(d) Prove that for any $p, q \in \mu^{-1}\left(\frac{1}{4}\right)$,

$$
\pi(p)=\pi(q) \quad \text { if and only if } \quad p=e^{i \phi} \bullet q
$$

for some $e^{i \phi} \in \mathbf{S}^{1}$.
If you keep working on this, you can use π to show that $\mu^{-1}(c) / \mathbf{S}^{1}$ is diffeomorphic to $\mathbb{C P}^{2}$ for any $c \in\left(0, \frac{1}{2}\right)$. However, the topology of $\mu^{-1}(c) / \mathbf{S}^{1}$ is different when $c \in\left(-\frac{1}{2}, 0\right)$. It is diffeomorphic to $\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}$. (The notation $\#$ means connected sum in manifold topology, and $\overline{\mathbb{C P}^{2}}$ is $\mathbb{C P}^{2}$ with opposite orientation. In algebraic geometry, $\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}$ is $\mathbb{C P}^{2}$ blow-up at one point.)
(2) Consider the degree 2 special linear group:

$$
\mathrm{SL}(2 ; \mathbb{R})=\{G \in \mathrm{GL}(2 ; \mathbb{R}) \mid \operatorname{det}(G)=1\}
$$

(a) Show that its Lie algebra consists of traceless matrices. Namely,

$$
\mathfrak{s l}(2 ; \mathbb{R})=\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{trace}(A)=0\right\}
$$

(b) With Part (a), we may choose the following basis for $\mathfrak{s l}(2 ; \mathbb{R})$:

$$
H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad X=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad Y=\left[\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Calculate their Lie brackets.
(c) Compute the Lie algebra cohomology of $\mathfrak{s l}(2 ; \mathbb{R})$.
(d) Show that $\operatorname{SL}(2 ; \mathbb{R})$ is homeomorphic to $\mathbb{H} \times \mathbf{S}^{1}$ where \mathbb{H} is the upper-half plane. (Hint. Any $G \in \mathrm{GL}(2 ; \mathbb{R})$ has a unique polar factorization: $G=P O$ where P is a positive-definite symmetric matrix, and O is orthogonal. The matrix P is the square root of $G G^{T}$, and $O=P^{-1} G$.)
If you solve this question correctly, it provides an example that the de Rham cohomology of the Lie group is different from the Lie algebra cohomology. Surely $\left(\mathbb{R}^{n},+\right)$ is the simplest example, but this one is more interesting.
(3) Draw the moment polytope for the following \mathbf{T}^{2}-action on $\left(\mathbb{C P}^{1} \times \mathbb{C P}^{1}, \pi_{1}^{*} \omega_{\mathrm{FS}}+\pi_{2}^{*} \omega_{\mathrm{FS}}\right)$, where π_{1} and π_{2} are the projection maps onto the two $\mathbb{C P}^{1}$-components.

$$
\left(e^{i \alpha}, e^{i \beta}\right) \bullet\left(\left[z_{0}, z_{1}\right],\left[w_{0}, w_{1}\right]\right)=\left(\left[z_{0}, e^{i \alpha} z_{1}\right],\left[w_{0}, e^{3 i \beta} w_{1}\right]\right) .
$$

