INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 8

DUE: MONDAY, NOVEMBER 4

(1) (From [CdS1. Homework 16]) Let \mathcal{H} be the vector space of $n \times n$ Hermitian matrices. The unitary group $\mathrm{U}(n)$ acts on \mathcal{H} by conjugation:

$$
\begin{equation*}
A \cdot \xi=A \xi A^{-1} \tag{0.1}
\end{equation*}
$$

for $A \in \mathrm{U}(n), \xi \in \mathcal{H}$. For each (unordered) n-tuple of real numbers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, let \mathcal{H}_{λ} be the set of all $n \times n$ Hermitian matrices whose spectrum is λ.
(a) Show that the orbits of the $\mathrm{U}(n)$-action are \mathcal{H}_{λ}. For a fixed λ, what is the stabilizer of a point in \mathcal{H}_{λ} ? (Since the stabilizers of different points are conjugate to each other, it suffices to find the stabilizer of some particular point.)
(b) Show that the symmetric bilinear form on \mathcal{H},

$$
(V, W) \mapsto \operatorname{trace}(V W),
$$

is non-degenerate.
(c) Note that the Lie algebra of $\mathrm{U}(n)$ is the set of skew-Hermitian matrices. Namely, $\mathfrak{u}(n)=i \mathcal{H}$. For $\xi \in \mathcal{H}$, define a skew symmetric bilinear form ω_{ξ} on $\mathfrak{u}(n)$ by

$$
\omega_{\xi}(X, Y)=i \operatorname{trace}([X, Y] \xi)
$$

for any $X, Y \in i \mathcal{H}$. Check that

$$
\omega_{\xi}(X, Y)=i \operatorname{trace}(X[Y, \xi]) \quad \text { and } \quad[Y, \xi] \in \mathcal{H}
$$

(d) Show that the kernel of ω_{ξ} is

$$
K_{\xi}=\{Y \in \mathfrak{u}(n) \mid[Y, \xi]=0\}
$$

and show that K_{ξ} is the Lie algebra of the stabilizer of the action 0.1) at ξ.
It follows that ω_{ξ} 's induce a non-degenerate 2 -form on the orbits \mathcal{H}_{λ}. More precisely, the tangent space of \mathcal{H}_{λ} at ξ is identified with $\mathfrak{u}(n) / K_{\xi}$, and ω_{ξ} is a non-degenerate, skew-symmetric bilinear map on this vector space. Denote this two form by ω.
(e) Prove that $\mathrm{d} \omega=0$. Here are two facts that can help you:

- $(\mathrm{d} \omega)(X, Y, Z)=X(\omega(Y, Z))+Z(\omega(X, Y))+Y(\omega(Z, X))-\omega([Y, Z], X)-$ $\omega([X, Y], Z)-\omega([Z, X], Y)$ for any vector fields X, Y, Z. Note that for X, Y, Z, the left hand side involves only the evaluation.
- Given $X, Y, Z \in \mathfrak{u}(n)$, they can be regarded as vector field on \mathcal{H}_{λ} by $T_{\xi} \mathcal{H}_{\lambda}=$ $\mathfrak{u}(n) / K_{\xi}$. With this understood, the derivative of the function $\xi \mapsto \operatorname{trace}([X, Y] \xi)$ with respect to Z is

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \operatorname{trace}\left([X, Y]\left(e^{t Z} \xi e^{-t Z}\right)\right)=\operatorname{trace}([X, Y][Z, \xi])
$$

(f) With the above discussions, each orbit \mathcal{H}_{λ} is a compact symplectic manifold. Identify the manifold \mathcal{H}_{λ} for

$$
\lambda_{1} \neq \lambda_{2}=\cdots=\cdots=\lambda_{n} ?
$$

Namely, there are only two distinct eigenvalues: one has multiplicity 1 , and another has multiplicity $n-1$. In general, the manifold \mathcal{H}_{λ} is the so-called partial flag variety.

This construction is a special case of the coadjoint orbits: the orbits of the action $\mathrm{Ad}^{*}: G \rightarrow \mathrm{GL}\left(\mathfrak{g}^{*}\right)$ are symplectic manifolds. The coadjoint orbits appear in [CdS1, Homework 17].
(g) Show that, for any skew-Hermitian matrix $X \in \mathfrak{u}(n)$, the vector field on \mathcal{H} generated by X for the action 0.1 is $X_{\xi}^{\sharp}=[X, \xi]$ at any $\xi \in \mathcal{H}$. (Hint. This is basically the second fact in Item (e).)
(2) Compute the moment map for the following group actions on \mathbb{C}^{3} with the standard symplectic form $\omega_{0}=\frac{i}{2} \sum_{j=1}^{3} \mathrm{~d} z_{j} \wedge \mathrm{~d} \bar{z}_{j}$.
(a) $G=\mathbf{T}^{2}$: the action is

$$
\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right):\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} z_{2}, e^{-i\left(\theta_{1}+\theta_{2}\right)} z_{3}\right)
$$

(b) $G=\mathrm{U}(1) \times \mathbb{R}$: the action is

$$
\left(e^{i \theta}, x\right):\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(e^{i \theta} z_{1}, e^{-i \theta} z_{2}, z_{3}+x\right)
$$

(3) A complex manifold is a manifold with an atlas of charts to the open subsets in \mathbb{C}^{n}, such that the transition maps are holomorphic. On a complex manifold, the exterior derivative d can be decomposed as the following. Let $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ be the local complex coordinate. Introduce the vector fields and differential forms:

$$
\begin{aligned}
\frac{\partial}{\partial z_{j}} & =\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), & \mathrm{d} z_{j}=\mathrm{d} x_{j}+i \mathrm{~d} y_{j} \\
\frac{\partial}{\partial \bar{z}_{j}} & =\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right), & \mathrm{d} \bar{z}_{j}=\mathrm{d} x_{j}-i \mathrm{~d} y_{j}
\end{aligned}
$$

where $x_{j}=\operatorname{Re}\left(z_{j}\right)$ and $y_{j}=\operatorname{Im}\left(z_{j}\right)$. Define the operators ∂ and $\bar{\partial}$ by

$$
\partial=\sum_{j=1}^{n} \frac{\partial}{\partial z_{j}} \mathrm{~d} z_{j} \quad \text { and } \quad \bar{\partial}=\sum_{j=1}^{n} \frac{\partial}{\partial \bar{z}_{j}} \mathrm{~d} \bar{z}_{j}
$$

Since the transition maps are holomorphic, ∂ and $\bar{\partial}$ are invariant under coordiante change.

By writing everything in terms of x_{j} and y_{j}, we find that $\mathrm{d}=\partial+\bar{\partial}$. The condition $\mathrm{d}^{2}=0$ implies that

$$
\partial^{2}=0, \quad \bar{\partial}^{2}=0, \quad \partial \bar{\partial}+\bar{\partial} \partial=0
$$

Note that the standard symplectic form on \mathbb{C}^{n} can be written as $\frac{i}{2} \partial \bar{\partial}\left(\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)$.
The complex projective space is defined to be

$$
\mathbb{C P}^{n}=\frac{\left\{\left(u_{0}, u_{1}, \ldots, u_{n}\right) \in \mathbb{C}^{n+1} \backslash\{0\}\right\}}{\left(u_{0}, u_{1}, \ldots, u_{n}\right) \sim\left(\lambda u_{0}, \lambda u_{1}, \ldots, \lambda u_{n}\right) \text { for } \lambda \in \mathbb{C} \backslash\{0\}}
$$

(a) Consider the coordinate chart $U_{0}:\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mapsto\left[\left(1, z_{1}, z_{2}, \ldots, z_{n}\right)\right] \in \mathbb{C P}^{n}$ and $U_{1}:\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n} \mapsto\left[\left(w_{1}, 1, w_{2}, \ldots, w_{n}\right)\right] \in \mathbb{C P}^{n}$. Check that the transition function between U_{0} and U_{1} is holomorphic ${ }^{1}$. We can then construct an atlas using similar charts, and $\mathbb{C P}^{n}$ is a complex manifold.
(b) On U_{0}, consider that 2-form defined by

$$
\omega=\frac{i}{2} \partial \bar{\partial} \log \left(1+\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)
$$

Consider the similar expression on U_{1} (subsitute z_{j} by w_{j}). Check that the expression defines the same 2-form. (Hint. Suppose that h is a holomorphic function. Then $\partial \bar{\partial} \log |h|^{2}=\partial\left(|h|^{-2}(h \bar{\partial} \bar{h})\right)=\partial\left(\bar{h}^{-1} \bar{\partial} \bar{h}\right)=0$.)
It follows that ω is a 2 -form on $\mathbb{C P}^{n}$.
(c) Use 0.2 to show that $\mathrm{d} \omega=0$.
(d) Check that ω is non-degenerate at $(0,0, \ldots, 0) \in U_{0}$.

It is not hard to argue from Item (d) that ω is non-degenerate everywhere. It follows that ω defines a symplectic form on $\mathbb{C P}^{n}$. It is called the Fubini-Study form.

[^0]
[^0]: ${ }^{1}$ Namely, it only involves z_{j} but not \bar{z}_{j} Or, it is annihilated by $\frac{\partial}{\partial \bar{z}_{j}}$ for all j.

