INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 8

DUE: MONDAY, NOVEMBER 4

(1) (From [CdS1. Homework 16]) Let \mathcal{H} be the vector space of $n \times n$ Hermitian matrices. The unitary group U(n) acts on \mathcal{H} by conjugation:

$$A \cdot \xi = A\xi A^{-1} , \qquad (0.1)$$

for $A \in U(n)$, $\xi \in \mathcal{H}$. For each (unordered) *n*-tuple of real numbers $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, let \mathcal{H}_{λ} be the set of all $n \times n$ Hermitian matrices whose spectrum is λ .

- (a) Show that the orbits of the U(n)-action are \mathcal{H}_{λ} . For a fixed λ , what is the stabilizer of a point in \mathcal{H}_{λ} ? (Since the stabilizers of different points are conjugate to each other, it suffices to find the stabilizer of some particular point.)
- (b) Show that the symmetric bilinear form on \mathcal{H} ,

$$(V, W) \mapsto \operatorname{trace}(VW)$$
,

is non-degenerate.

(c) Note that the Lie algebra of U(n) is the set of skew-Hermitian matrices. Namely, $\mathfrak{u}(n) = i\mathcal{H}$. For $\xi \in \mathcal{H}$, define a skew symmetric bilinear form ω_{ξ} on $\mathfrak{u}(n)$ by

$$\omega_{\xi}(X,Y) = i \operatorname{trace}([X,Y]\xi)$$

for any $X, Y \in i\mathcal{H}$. Check that

$$\omega_{\xi}(X,Y) = i \operatorname{trace}(X[Y,\xi]) \text{ and } [Y,\xi] \in \mathcal{H}.$$

(d) Show that the kernel of ω_{ξ} is

$$K_{\xi} = \{Y \in \mathfrak{u}(n) \mid [Y, \xi] = 0\}$$
,

and show that K_{ξ} is the Lie algebra of the stabilizer of the action (0.1) at ξ . It follows that ω_{ξ} 's induce a *non-degenerate* 2-form on the orbits \mathcal{H}_{λ} . More precisely, the tangent space of \mathcal{H}_{λ} at ξ is identified with $\mathfrak{u}(n)/K_{\xi}$, and ω_{ξ} is a non-degenerate, skew-symmetric bilinear map on this vector space. Denote this two form by ω . (e) Prove that $d\omega = 0$. Here are two facts that can help you:

• $(d\omega)(X,Y,Z) = X(\omega(Y,Z)) + Z(\omega(X,Y)) + Y(\omega(Z,X)) - \omega([Y,Z],X) - \omega([X,Y],Z) - \omega([Z,X],Y)$ for any vector fields X, Y, Z. Note that for X, Y, Z, the left hand side involves only the evaluation.

• Given $X, Y, Z \in \mathfrak{u}(n)$, they can be regarded as vector field on \mathcal{H}_{λ} by $T_{\xi}\mathcal{H}_{\lambda} = \mathfrak{u}(n)/K_{\xi}$. With this understood, the derivative of the function $\xi \mapsto \operatorname{trace}([X, Y]\xi)$ with respect to Z is

$$\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\operatorname{trace}([X,Y](e^{tZ}\xi e^{-tZ})) = \operatorname{trace}([X,Y][Z,\xi]) \ .$$

(f) With the above discussions, each orbit \mathcal{H}_{λ} is a *compact symplectic manifold*. Identify the manifold \mathcal{H}_{λ} for

$$\lambda_1 \neq \lambda_2 = \dots = \dots = \lambda_n$$
?

Namely, there are only two distinct eigenvalues: one has multiplicity 1, and another has multiplicity n - 1. In general, the manifold \mathcal{H}_{λ} is the so-called *partial flag variety*.

This construction is a special case of the *coadjoint orbits*: the orbits of the action $\operatorname{Ad}^* : G \to \operatorname{GL}(\mathfrak{g}^*)$ are symplectic manifolds. The coadjoint orbits appear in [CdS1, Homework 17].

- (g) Show that, for any skew-Hermitian matrix $X \in \mathfrak{u}(n)$, the vector field on \mathcal{H} generated by X for the action (0.1) is $X_{\xi}^{\sharp} = [X, \xi]$ at any $\xi \in \mathcal{H}$. (*Hint.* This is basically the second fact in Item (e).)
- (2) Compute the moment map for the following group actions on \mathbb{C}^3 with the standard symplectic form $\omega_0 = \frac{i}{2} \sum_{j=1}^3 \mathrm{d} z_j \wedge \mathrm{d} \bar{z}_j$.
 - (a) $G = \mathbf{T}^2$: the action is

$$(e^{i\theta_1}, e^{i\theta_2}): (z_1, z_2, z_3) \mapsto (e^{i\theta_1}z_1, e^{i\theta_2}z_2, e^{-i(\theta_1 + \theta_2)}z_3).$$

(b) $G = U(1) \times \mathbb{R}$: the action is

$$(e^{i\theta}, x): (z_1, z_2, z_3) \mapsto (e^{i\theta}z_1, e^{-i\theta}z_2, z_3 + x).$$

(3) A complex manifold is a manifold with an atlas of charts to the open subsets in \mathbb{C}^n , such that the transition maps are holomorphic. On a complex manifold, the exterior derivative d can be decomposed as the following. Let $\{z_1, z_2, \ldots, z_n\}$ be the local complex coordinate. Introduce the vector fields and differential forms:

$$\frac{\partial}{\partial z_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right) , \qquad dz_j = dx_j + i dy_j ,$$
$$\frac{\partial}{\partial \bar{z}_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) , \qquad d\bar{z}_j = dx_j - i dy_j$$

where $x_j = \operatorname{Re}(z_j)$ and $y_j = \operatorname{Im}(z_j)$. Define the operators ∂ and $\overline{\partial}$ by

$$\partial = \sum_{j=1}^{n} \frac{\partial}{\partial z_j} \mathrm{d} z_j$$
 and $\bar{\partial} = \sum_{j=1}^{n} \frac{\partial}{\partial \bar{z}_j} \mathrm{d} \bar{z}_j$

Since the transition maps are holomorphic, ∂ and $\overline{\partial}$ are invariant under coordiante change.

By writing everything in terms of x_j and y_j , we find that $d = \partial + \bar{\partial}$. The condition $d^2 = 0$ implies that

$$\partial^2 = 0$$
, $\bar{\partial}^2 = 0$, $\partial\bar{\partial} + \bar{\partial}\partial = 0$. (0.2)

Note that the standard symplectic form on \mathbb{C}^n can be written as $\frac{i}{2}\partial\bar{\partial}(\sum_{j=1}^n |z_j|^2)$.

The complex projective space is defined to be

$$\mathbb{CP}^{n} = \frac{\left\{ (u_{0}, u_{1}, \dots, u_{n}) \in \mathbb{C}^{n+1} \setminus \{0\} \right\}}{(u_{0}, u_{1}, \dots, u_{n}) \sim (\lambda u_{0}, \lambda u_{1}, \dots, \lambda u_{n}) \text{ for } \lambda \in \mathbb{C} \setminus \{0\}}$$

- (a) Consider the coordinate chart $U_0 : (z_1, \ldots, z_n) \in \mathbb{C}^n \mapsto [(1, z_1, z_2, \ldots, z_n)] \in \mathbb{CP}^n$ and $U_1 : (w_1, \ldots, w_n) \in \mathbb{C}^n \mapsto [(w_1, 1, w_2, \ldots, w_n)] \in \mathbb{CP}^n$. Check that the transition function between U_0 and U_1 is holomorphic¹. We can then construct an atlas using similar charts, and \mathbb{CP}^n is a complex manifold.
- (b) On U_0 , consider that 2-form defined by

$$\omega = \frac{i}{2} \partial \bar{\partial} \log(1 + \sum_{j=1}^{n} |z_j|^2) .$$

Consider the similar expression on U_1 (subsitute z_j by w_j). Check that the expression defines the same 2-form. (*Hint.* Suppose that h is a holomorphic function. Then $\partial \bar{\partial} \log |h|^2 = \partial (|h|^{-2}(h \bar{\partial} \bar{h})) = \partial (\bar{h}^{-1} \bar{\partial} \bar{h}) = 0.)$

- It follows that ω is a 2-form on \mathbb{CP}^n .
- (c) Use (0.2) to show that $d\omega = 0$.
- (d) Check that ω is non-degenerate at $(0, 0, \ldots, 0) \in U_0$.

It is not hard to argue from Item (d) that ω is non-degenerate everywhere. It follows that ω defines a symplectic form on \mathbb{CP}^n . It is called the *Fubini–Study form*.

¹Namely, it only involves z_j but not \bar{z}_j Or, it is annihilated by $\frac{\partial}{\partial \bar{z}_j}$ for all j.