INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 7

DUE: MONDAY, OCTOBER 28

(1) Let (M, ω) be a symplectic manifold. Let $(\mathcal{C}^{\infty}(M), \{,\})$ be the Poisson algebra of M. We have proved that

$$X_{\{f,g\}} = -[X_f, X_g] . (0.1)$$

We compute

$$\begin{split} \{f, \{g, h\}\} + \{g, \{h, f\}\} &= \omega(X_f, X_{\{g, h\}}) + \omega(X_g, X_{\{h, f\}}) \\ &= -X_f(\{g, h\}) - X_g(\{h, f\}) \\ &= X_f(X_g(h)) - X_g(X_f(h)) \\ &= [X_f, X_g](h) \\ &= -X_{\{f, g\}}(h) \quad \text{by (0.1)} \\ &= -\{h, \{f, g\}\} \;, \end{split}$$

and this proves the Jacobi identity. In this exercise, you are asked to prove the Jacobi identity using another argument.

(a) Let $\varphi_t = \exp(tX_h)$ be the flow of X_h . Prove that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} X_{\varphi_t^* f} = X_{X_h(f)} \ . \tag{0.2}$$

- (b) Note that $\varphi_t^* \{f, g\} = \{\varphi_t^* f, \varphi_t^* g\}$. Differentiate the equation with respect to t and evaluate at t = 0. Use it to conclude the Jacobi identity.
- (2) (from [CdS1, #1 of Howework 15]) Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function. f is called *strictly convex* if f''(x) > 0 for all $x \in \mathbb{R}$.
 - (a) Assuming that f is strictly convex, prove that the following four conditions are equivalent:
 - f' = 0 at some point x_0 ,
 - f has a local minimum at some point x_0 ,
 - f has a unique (global) minimum at some point x_0 ,
 - $f(x) \to \infty$ as $x \to \pm \infty$. (*Hint.* Strictly convexity implies that the graph of f must lie above its tangent line (of any point).)

The function f is *stable* if it satisfies one (and hence all) of these conditions. The same story works in higher dimensions as well, see [CdS1, #2 of Howework 15].

(b) For what values of a is the function $e^x + ax$ stable? For those values of a for which it is not stable, what does the graph look like?

(3) (from [CdS1, #3 of Howework 15]) let V be an n-dimensional vector space and $F: V \to \mathbb{R}$ be a smooth function. Since V is a vector space, there is a canonical identification $T_p^*V \cong V^*$, for every $p \in V$. Therefore, we can define a map

$$L_F: V \to V^*$$
 (Legendre transform)

by setting

$$L_F(p) = (dF)|_p \in T_p^* V \cong V^*$$

Show that, if F is strictly convex, then, for every point $p \in V$, L_F maps a neighborhood of p diffeomorphically onto a neighborhood of $L_F(p)$.

(4) (from [CdS1, #4, #6 of Howework 15]) Given any strictly convex function $F: V \to \mathbb{R}$, we will denote by S_F the set of $\ell \in V^*$ for which the function

$$F_{\ell}: V \to \mathbb{R}$$
$$p \mapsto F(p) - \ell(p)$$

is stable. Prove that:

- (a) The set S_F is open and convex.
- (b) L_F maps V diffeomorphically onto S_F .
- (c) If $\ell \in S_F$ and $p_0 = L_F^{-1}(\ell)$, then p_0 is the unique minimum point of the function F_{ℓ} .

Let $F^*: S_F \to \mathbb{R}$ be the function defined by

$$F^*(\ell) = -\min_{p \in V} F_{\ell}(p) .$$
 (0.3)

It is not hard to prove that the function F^* is also a smooth function, and is called the *dual* of the function F.

- (d) Prove the Young's inequality: $F(p) + F^*(\ell) \ge \ell(p)$ for any $p \in V$ and $\ell \in S_F$.
- (e) In Exercise (3), the Legendre transform is defined using derivative. Give a definition of $L_F(p)$ that does not involve taking derivative. (*Hint.* The construction of F^* does not use derivatives.)
- (5) (from [CdS1, #5 of Howework 15]) For the following strictly convex functions on \mathbb{R}^1 , find out the set S_f defined in Exercise (4).
 - (a) $f(x) = x^4$.
 - (b) $f(x) = e^x x$.

In general, S_F may not be the whole space V^* . A sufficient condition for $S_F = V^*$ is that F has quadratic growth at infinity. That is to say, there exists a positive-definite quadratic form Q on V and a constant K such that $F(p) \ge Q(p) - K$, for all $p \in V$.