
INTRODUCTION TO SYMPLECTIC GEOMETRY

HOMEWORK 5

DUE: MONDAY, OCTOBER 14

(1) (from [CdS1, §6.3]) Let U = R2, and X = R×{0} ⊂ U be the x-axis. For any t ∈ [0, 1],

define the map

ρt : U → U

(x, y) 7→ (x, ty)
.

(a) Write down the vector field vt. (Hint. If you take the derivative of ρt(x, y) in t,

you will obtain the vector field vt at ρt(x, y) but not at (x, y).)

(b) Let η = f(x, y)dx + g(x, y)dy be a smooth 1-form on U . Write down ρ∗t (ιvtη).

(Hint. ιvtη should be evaluated at ρt(x, y). To avoid confusion about the domain

and the target, you may use (x, z) as the coordinate for the target, and z = ty.)

(c) Let η = f(x, y)dx+ g(x, y)dy be a smooth 1-form on U . Write down ρ∗t (ιvtdη).

(d) Let η = f(x, y)dx+ g(x, y)dy be a smooth 1-form on U . Show that

η − f(x, 0)dx = d
( ∫ 1

0
ρ∗t (ιvtη)dt

)
+

∫ 1

0
ρ∗t (ιvtdη)dt .

(2) (from [CdS1, #1 of Homework 6]) Think S2 as the unit sphere in R3. For any p ∈ S2,

TpS
2 consists of all vectors orthogonal to p. Define a symplectic form on S2 by

ωp(u, v) = 〈p, u× v〉

where 〈 , 〉 is the standard inner product, and × is the exterior product. Parametrize

S2 by the cylindrical coordinate

(θ, z) 7→
(
(1− z2)

1
2 cos θ, (1− z2)

1
2 sin θ, z

)
where θ ∈ [0, 2π] and z ∈ (−1, 1). Write down ω in this coordinate.

(3) (from [CdS1, #2 of Homework 6]) Prove Darboux theorem in dimension two. Locally,

a symplectic form (area form in this case) is A(x, y) dx ∧ dy for some positive function

A(x, y). Note that it is the exterior derivative of −(
∫ y
0 A(x, s)ds)dx. Use this 1-form to

construct the Darboux coordinate.

(4) (from [CdS1, #3 of Homework 6]) In dimension two, suppose that ω0 and ω1 are sym-

plectic forms that induce the same orientation. Then, their convex combination1 still

defines a symplectic form. This is no longer true in higher dimensions. Consider the

following questions on R4.

1It means (1− t)ω0 + tω1 for some t ∈ [0, 1].
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(a) Let ω0 = dx1 ∧ dy1 + dx2 ∧ dy2, and ω1 = −ω0. Check that they induce the same

orientation on R4, but some convex combination degenerates.

(b) Show that ω0 and ω1 are deformation equivalent2. (Hint. This 2-form dx1 ∧
dy2 + dy1 ∧ dx2 might help you.)

(5) Proposition 8.2 of [CdS1]. Suppose that (V 2n, ω) is a symplectic vector space, and

U ⊂ V is a Lagrangian vector subspace. Let W be a vector subspace of V such that

W ⊕ U = V . Then from W , we can canonically build a Lagrangian complement to V .

Proof. (a) Prove that ω : U ×W → R is non-degenerate. (Namely, ∀u ∈ U\{0}, ∃v ∈W
such that ω(u, v) 6= 0, and ∀v ∈W\{0}, ∃u ∈ U such that ω(u, v) 6= 0.)

Hence, it induces an isomorphism ω′ : U → W ∗. In order to get a complement to V ,

consider

W ′ =
{
v +A(v) | v ∈W

}
where A : W → U is a linear map.

(b) Show that W ′ is Lagrangian if and only if

ω(v1, v2) =
(
ω′(A(v2))

)
(v1)−

(
ω′(A(v1))

)
(v2) (0.1)

for any v1, v2 ∈W .

Note that we can write ω(v1, v2) as

ω(v1, v2) = −s ω(v2, v1) + (1− s)ω(v1, v2) . (0.2)

It follows that ω′(A(v2)) = −s ω(v2, · ) and ω′(A(v1)) = (s− 1)ω(v1, · ). Therefore, the

canonical choice of s is 1
2 . The coefficient 1

2 is the canonical choice. With (0.1) and (0.2),

we take A(v) to be (ω′)−1
(
− 1

2ω(v, · )
)
. This finishes the proof of the proposition. �

(6) Proposition 8.3 of [CdS1]. Suppose that ω0 and ω1 are two linear symplectic struc-

tures on V 2n. Suppose that U ⊂ V is a Lagrangian vector subspace with respect to

both ω0 and ω1. Let W be a vector subspace of V such that W ⊕ U = V . Then from

W , we can canonically construct a linear isomorphism L : V → V such that L|U = IdU

and L∗ω1 = ω0.

Proof. Let W0 and W1 are the canonical complement to U given by Proposition 8.2,

with respect to ω0 and ω1. It follows from #5(a) that we can define a linear isomorphism

B : W0 →W1 by

B : W0
ω′0−→ U∗

(ω′1)
−1

−→ W1 .

We can extend it to a linear isomorphism on V by

L = IdU ⊕B : U ⊕W0 −→ U ⊕W1 .

(a) Check that L∗ω1 = ω0.

It is clear that L|U = IdU . This completes the proof of the proposition. �

2See [CdS1, Definition 7.1]
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