INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 5

DUE: MONDAY, OCTOBER 14

(1) (from [CdS1, §6.3]) Let $U = \mathbb{R}^2$, and $X = \mathbb{R} \times \{0\} \subset U$ be the x-axis. For any $t \in [0, 1]$, define the map

$$\rho_t: \quad U \quad \to \quad U \\
(x,y) \quad \mapsto \quad (x,ty) \quad .$$

- (a) Write down the vector field v_t . (*Hint*. If you take the derivative of $\rho_t(x, y)$ in t, you will obtain the vector field v_t at $\rho_t(x, y)$ but not at (x, y).)
- (b) Let $\eta = f(x,y)dx + g(x,y)dy$ be a smooth 1-form on U. Write down $\rho_t^*(\iota_{v_t}\eta)$. (*Hint.* $\iota_{v_t}\eta$ should be evaluated at $\rho_t(x,y)$. To avoid confusion about the domain and the target, you may use (x,z) as the coordinate for the target, and z = ty.)
- (c) Let $\eta = f(x,y)dx + g(x,y)dy$ be a smooth 1-form on U. Write down $\rho_t^*(\iota_{v_t}d\eta)$.
- (d) Let $\eta = f(x,y)dx + g(x,y)dy$ be a smooth 1-form on U. Show that

$$\eta - f(x,0) dx = d\left(\int_0^1 \rho_t^*(\iota_{v_t}\eta) dt\right) + \int_0^1 \rho_t^*(\iota_{v_t}d\eta) dt$$
.

(2) (from [CdS1, #1 of Homework 6]) Think \mathbf{S}^2 as the unit sphere in \mathbb{R}^3 . For any $p \in \mathbf{S}^2$, $T_p\mathbf{S}^2$ consists of all vectors orthogonal to p. Define a symplectic form on \mathbf{S}^2 by

$$\omega_p(u,v) = \langle p, u \times v \rangle$$

where \langle , \rangle is the standard inner product, and \times is the exterior product. Parametrize \mathbf{S}^2 by the cylindrical coordinate

$$(\theta, z) \mapsto ((1 - z^2)^{\frac{1}{2}} \cos \theta, (1 - z^2)^{\frac{1}{2}} \sin \theta, z)$$

where $\theta \in [0, 2\pi]$ and $z \in (-1, 1)$. Write down ω in this coordinate.

- (3) (from [CdS1, #2 of Homework 6]) Prove Darboux theorem in dimension two. Locally, a symplectic form (area form in this case) is $A(x,y) dx \wedge dy$ for some positive function A(x,y). Note that it is the exterior derivative of $-(\int_0^y A(x,s)ds)dx$. Use this 1-form to construct the Darboux coordinate.
- (4) (from [CdS1, #3 of Homework 6]) In dimension two, suppose that ω_0 and ω_1 are symplectic forms that induce the same orientation. Then, their convex combination¹ still defines a symplectic form. This is no longer true in higher dimensions. Consider the following questions on \mathbb{R}^4 .

¹It means $(1-t)\omega_0 + t\omega_1$ for some $t \in [0,1]$.

- (a) Let $\omega_0 = dx^1 \wedge dy^1 + dx^2 \wedge dy^2$, and $\omega_1 = -\omega_0$. Check that they induce the same orientation on \mathbb{R}^4 , but some convex combination degenerates.
- (b) Show that ω_0 and ω_1 are deformation equivalent². (Hint. This 2-form $dx^1 \wedge dy^2 + dy^1 \wedge dx^2$ might help you.)
- (5) **Proposition 8.2** of [CdS1]. Suppose that (V^{2n}, ω) is a symplectic vector space, and $U \subset V$ is a Lagrangian vector subspace. Let W be a vector subspace of V such that $W \oplus U = V$. Then from W, we can *canonically* build a Lagrangian complement to V.

Proof. (a) Prove that $\omega: U \times W \to \mathbb{R}$ is non-degenerate. (Namely, $\forall u \in U \setminus \{0\}$, $\exists v \in W$ such that $\omega(u, v) \neq 0$, and $\forall v \in W \setminus \{0\}$, $\exists u \in U$ such that $\omega(u, v) \neq 0$.)

Hence, it induces an isomorphism $\omega': U \to W^*$. In order to get a complement to V, consider

$$W' = \{v + A(v) \mid v \in W\}$$

where $A: W \to U$ is a linear map.

(b) Show that W' is Lagrangian if and only if

$$\omega(v_1, v_2) = (\omega'(A(v_2)))(v_1) - (\omega'(A(v_1)))(v_2)$$
(0.1)

for any $v_1, v_2 \in W$.

Note that we can write $\omega(v_1, v_2)$ as

$$\omega(v_1, v_2) = -s \,\omega(v_2, v_1) + (1 - s) \,\omega(v_1, v_2) \ . \tag{0.2}$$

It follows that $\omega'(A(v_2)) = -s \,\omega(v_2, \cdot)$ and $\omega'(A(v_1)) = (s-1) \,\omega(v_1, \cdot)$. Therefore, the canonical choice of s is $\frac{1}{2}$. The coefficient $\frac{1}{2}$ is the canonical choice. With (0.1) and (0.2), we take A(v) to be $(\omega')^{-1}(-\frac{1}{2}\omega(v, \cdot))$. This finishes the proof of the proposition. \square

(6) **Proposition 8.3** of [CdS1]. Suppose that ω_0 and ω_1 are two linear symplectic structures on V^{2n} . Suppose that $U \subset V$ is a Lagrangian vector subspace with respect to both ω_0 and ω_1 . Let W be a vector subspace of V such that $W \oplus U = V$. Then from W, we can canonically construct a linear isomorphism $L: V \to V$ such that $L|_U = \mathbf{Id}_U$ and $L^*\omega_1 = \omega_0$.

Proof. Let W_0 and W_1 are the canonical complement to U given by Proposition 8.2, with respect to ω_0 and ω_1 . It follows from #5(a) that we can define a linear isomorphism $B:W_0\to W_1$ by

$$B: W_0 \xrightarrow{\omega'_0} U^* \xrightarrow{(\omega'_1)^{-1}} W_1$$
.

We can extend it to a linear isomorphism on V by

$$L = \mathbf{Id}_U \oplus B : U \oplus W_0 \longrightarrow U \oplus W_1$$
.

(a) Check that $L^*\omega_1=\omega_0$.

It is clear that $L|_U = \mathbf{Id}_U$. This completes the proof of the proposition.

²See [CdS1, Definition 7.1]