INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 5

DUE: MONDAY, OCTOBER 14

(1) (from $[\mathrm{CdS} 1, \S 6.3])$ Let $U=\mathbb{R}^{2}$, and $X=\mathbb{R} \times\{0\} \subset U$ be the x-axis. For any $t \in[0,1]$, define the map

$$
\begin{array}{cccc}
\rho_{t}: & U & \rightarrow & U \\
& (x, y) & \mapsto & (x, t y)
\end{array}
$$

(a) Write down the vector field v_{t}. (Hint. If you take the derivative of $\rho_{t}(x, y)$ in t, you will obtain the vector field v_{t} at $\rho_{t}(x, y)$ but not at (x, y).)
(b) Let $\eta=f(x, y) \mathrm{d} x+g(x, y) \mathrm{d} y$ be a smooth 1-form on U. Write down $\rho_{t}^{*}\left(\iota_{v_{t}} \eta\right)$. (Hint. $\iota_{v_{t}} \eta$ should be evaluated at $\rho_{t}(x, y)$. To avoid confusion about the domain and the target, you may use (x, z) as the coordinate for the target, and $z=t y$.)
(c) Let $\eta=f(x, y) \mathrm{d} x+g(x, y) \mathrm{d} y$ be a smooth 1 -form on U. Write down $\rho_{t}^{*}\left(\iota_{v_{t}} \mathrm{~d} \eta\right)$.
(d) Let $\eta=f(x, y) \mathrm{d} x+g(x, y) \mathrm{d} y$ be a smooth 1 -form on U. Show that

$$
\eta-f(x, 0) \mathrm{d} x=\mathrm{d}\left(\int_{0}^{1} \rho_{t}^{*}\left(\iota_{v_{t}} \eta\right) \mathrm{d} t\right)+\int_{0}^{1} \rho_{t}^{*}\left(\iota_{v_{t}} \mathrm{~d} \eta\right) \mathrm{d} t
$$

(2) (from $\left[\mathrm{CdS} 1, \# 1\right.$ of Homework 6]) Think \mathbf{S}^{2} as the unit sphere in \mathbb{R}^{3}. For any $p \in \mathbf{S}^{2}$, $T_{p} \mathbf{S}^{2}$ consists of all vectors orthogonal to p. Define a symplectic form on \mathbf{S}^{2} by

$$
\omega_{p}(u, v)=\langle p, u \times v\rangle
$$

where \langle,$\rangle is the standard inner product, and \times$ is the exterior product. Parametrize \mathbf{S}^{2} by the cylindrical coordinate

$$
(\theta, z) \mapsto\left(\left(1-z^{2}\right)^{\frac{1}{2}} \cos \theta,\left(1-z^{2}\right)^{\frac{1}{2}} \sin \theta, z\right)
$$

where $\theta \in[0,2 \pi]$ and $z \in(-1,1)$. Write down ω in this coordinate.
(3) (from [CdS1, \#2 of Homework 6]) Prove Darboux theorem in dimension two. Locally, a symplectic form (area form in this case) is $A(x, y) \mathrm{d} x \wedge \mathrm{~d} y$ for some positive function $A(x, y)$. Note that it is the exterior derivative of $-\left(\int_{0}^{y} A(x, s) \mathrm{d} s\right) \mathrm{d} x$. Use this 1-form to construct the Darboux coordinate.
(4) (from $\left[\mathrm{CdS} 1, \# 3\right.$ of Homework 6]) In dimension two, suppose that ω_{0} and ω_{1} are symplectic forms that induce the same orientation. Then, their convex combination ${ }^{1}$ still defines a symplectic form. This is no longer true in higher dimensions. Consider the following questions on \mathbb{R}^{4}.

[^0](a) Let $\omega_{0}=\mathrm{d} x^{1} \wedge \mathrm{~d} y^{1}+\mathrm{d} x^{2} \wedge \mathrm{~d} y^{2}$, and $\omega_{1}=-\omega_{0}$. Check that they induce the same orientation on \mathbb{R}^{4}, but some convex combination degenerates.
(b) Show that ω_{0} and ω_{1} are deformation equivalent ${ }^{2}$. (Hint. This 2 -form $\mathrm{d} x^{1} \wedge$ $\mathrm{d} y^{2}+\mathrm{d} y^{1} \wedge \mathrm{~d} x^{2}$ might help you.)
(5) Proposition 8.2 of [CdS1]. Suppose that $\left(V^{2 n}, \omega\right)$ is a symplectic vector space, and $U \subset V$ is a Lagrangian vector subspace. Let W be a vector subspace of V such that $W \oplus U=V$. Then from W, we can canonically build a Lagrangian complement to V.

Proof. (a) Prove that $\omega: U \times W \rightarrow \mathbb{R}$ is non-degenerate. (Namely, $\forall u \in U \backslash\{0\}, \exists v \in W$ such that $\omega(u, v) \neq 0$, and $\forall v \in W \backslash\{0\}, \exists u \in U$ such that $\omega(u, v) \neq 0$.)
Hence, it induces an isomorphism $\omega^{\prime}: U \rightarrow W^{*}$. In order to get a complement to V, consider

$$
W^{\prime}=\{v+A(v) \mid v \in W\}
$$

where $A: W \rightarrow U$ is a linear map.
(b) Show that W^{\prime} is Lagrangian if and only if

$$
\begin{equation*}
\omega\left(v_{1}, v_{2}\right)=\left(\omega^{\prime}\left(A\left(v_{2}\right)\right)\right)\left(v_{1}\right)-\left(\omega^{\prime}\left(A\left(v_{1}\right)\right)\right)\left(v_{2}\right) \tag{0.1}
\end{equation*}
$$

for any $v_{1}, v_{2} \in W$.
Note that we can write $\omega\left(v_{1}, v_{2}\right)$ as

$$
\begin{equation*}
\omega\left(v_{1}, v_{2}\right)=-s \omega\left(v_{2}, v_{1}\right)+(1-s) \omega\left(v_{1}, v_{2}\right) . \tag{0.2}
\end{equation*}
$$

It follows that $\omega^{\prime}\left(A\left(v_{2}\right)\right)=-s \omega\left(v_{2}, \cdot\right)$ and $\omega^{\prime}\left(A\left(v_{1}\right)\right)=(s-1) \omega\left(v_{1}, \cdot\right)$. Therefore, the canonical choice of s is $\frac{1}{2}$. The coefficient $\frac{1}{2}$ is the canonical choice. With 0.1 and 0.2 , we take $A(v)$ to be $\left(\omega^{\prime}\right)^{-1}\left(-\frac{1}{2} \omega(v, \cdot)\right)$. This finishes the proof of the proposition.
(6) Proposition 8.3 of [CdS1]. Suppose that ω_{0} and ω_{1} are two linear symplectic structures on $V^{2 n}$. Suppose that $U \subset V$ is a Lagrangian vector subspace with respect to both ω_{0} and ω_{1}. Let W be a vector subspace of V such that $W \oplus U=V$. Then from W, we can canonically construct a linear isomorphism $L: V \rightarrow V$ such that $\left.L\right|_{U}=\mathbf{I d}_{U}$ and $L^{*} \omega_{1}=\omega_{0}$.

Proof. Let W_{0} and W_{1} are the canonical complement to U given by Proposition 8.2, with respect to ω_{0} and ω_{1}. It follows from $\# 5(a)$ that we can define a linear isomorphism $B: W_{0} \rightarrow W_{1}$ by

$$
B: W_{0} \xrightarrow{\omega_{0}^{\prime}} U^{*} \xrightarrow{\left(\omega_{1}^{\prime}\right)^{-1}} W_{1} .
$$

We can extend it to a linear isomorphism on V by

$$
L=\mathbf{I d}_{U} \oplus B: U \oplus W_{0} \longrightarrow U \oplus W_{1} .
$$

(a) Check that $L^{*} \omega_{1}=\omega_{0}$.

It is clear that $\left.L\right|_{U}=\mathbf{I d}_{U}$. This completes the proof of the proposition.

[^1]
[^0]: ${ }^{1}$ It means $(1-t) \omega_{0}+t \omega_{1}$ for some $t \in[0,1]$.

[^1]: ${ }^{2}$ See [CdS1, Definition 7.1]

