INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 4

DUE: MONDAY, OCTOBER 7

(1) (from [M&S, §8.2]) Let S be the strip $\{(x, y) \in \mathbb{R} \times [1, 2]\}$ with the symplectic form $\omega = dx \wedge dy$. Suppose that

$$\psi(x,y) = (h(x,y), g(x,y)) : S \to S$$

is a diffeomorphism satisfying the following conditions.

• ψ comes from a diffeomorphism on the cylinder $C = \{(x, y) \in \mathbb{R}/\mathbb{Z} \times [1, 2]\}$; namely,

$$h(x+1,y) = h(x,y) + 1$$
, $g(x+1,y) = g(x,y)$. (0.1)

- ψ preserves the symplectic form: $\psi^* \omega = \omega$.
- ψ preserves the two boundary components:

$$g(x,1) = 1$$
, $g(x,2) = 2$ (0.2)

for any $x \in \mathbb{R}$.

• ψ twists the boundaries in opposite directions:

$$h(x,1) < x$$
, $h(x,2) > x$ (0.3)

for any $x \in \mathbb{R}$.

Then, the Poincaré–Birkhoff theorem asserts that ψ has at least two geometrically distinct fixed points.

Here are some questions about the Poincaré–Birkhoff theorem.

- (a) Does the map $\psi_1(x, y) = (x + \frac{1}{2}, y)$ admit any fixed point? Can we apply the Poincaré–Birkhoff theorem on ψ_1 ?
- (b) Does the map $\psi_2(x, y) = (x + y \frac{3}{2}, y^2 2y + 2)$ admit any fixed point? Can we apply the Poincaré–Birkhoff theorem on ψ_2 ?
- (c) Prove that $(C, \omega = dx \wedge dy)$ is symplectomorphic to the annulus

$$A = \{(u, v) \in \mathbb{R}^2 \mid 1 \le u^2 + v^2 \le 2\} \text{ with } \omega = \frac{1}{\pi} \mathrm{d}u \wedge \mathrm{d}v$$

(d) The standard map $\psi_0(x, y) = (x + y - \frac{3}{2}, y)$ fixes $\{y = \frac{3}{2}\}$. When a map ψ is close to the standard map, it is easier to show that ψ has at least two geometrically distinct point.

Suppose that ψ satisfies all the conditions of the Poincaré–Birkhoff theorem. Moreover, suppose that ψ satisfies the *monotone twist* condition:

$$y < y' \qquad \Longrightarrow \qquad h(x, y) < h(x, y') \qquad (0.4)$$

for any $x \in \mathbb{R}$.

- (i) It follows from (0.4) that for every $x \in \mathbb{R}$, there exists a unique $y = w(x) \in (1,2)$ such that h(x, w(x)) = x. Prove that w(x+1) = w(x).
- (ii) It is not hard to show that w(x) is continuous. With the help of Item (i),

 $\Gamma = \{ (x, w(x)) \mid x \in \mathbb{R} \}$

is a closed curve in the cylinder C. We can also regard Γ as a closed curve in the annulus A. Prove that Γ must intersect $\psi(\Gamma)$ at least two points. (*Hint*. The map ψ is area preserving.)

(iii) Prove that each intersection point $(x, w(x)) \in \Gamma \cap \psi(\Gamma)$ is a fixed point of ψ .

The following picture is a vector field on the annulus A. There is a symplectomorphism associated with this vector field. Note that the vector field has exactly two zeros, and they are the fixed point of the symplectomorphism. This example shows that it is *impossible* to improve the lower bound to be three points. And the Poincaré–Birkhoff theorem is sharp. (Later on, you will be asked to construct this symplectomorphism.)

- (2) For the following vector fields on \mathbb{R}^2 , find out the corresponding one-parameter group of diffeomorphisms.
 - (a) v = (x, y).

(b)
$$v = (y, -x)$$
.

- (c) v = ((y+2)x, 1).
- (3) Consider the following two symplectic forms

 $\omega_0 = (25 + \sin x \cos y) dx \wedge dy \qquad \text{and} \qquad \omega_1 = 25 dx \wedge dy$

on the torus $T^2 = (\mathbb{R}/2\pi\mathbb{Z}) \times (\mathbb{R}/2\pi\mathbb{Z})$. Apply the Moser's trick to construct an isotopy ρ_t such that $\rho_1^* \omega_1 = \omega_0$.

- (a) Check that ω_0 and ω_1 meet the requirement of [CdS1, Theorem 7.2].
- (b) Find a 1-form μ such that $\omega_1 \omega_0 = d\mu$. Note that μ is not unique.
- (c) Write down the *t*-dependent vector field $v_t = -\omega_t^{-1}(\mu)$.
- (d) Solve the isotopy generated by v_t . This is harder than Question (2). The vector field is no longer independent of t. (*Hint.* Try to construct some quantity whose derivative in t is zero. Thus, it is a conserved quantity along the flow.)