INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 2

DUE: MONDAY, SEPTEMBER 23

(1) (Symplectic linear algebra, from [CdS1, Homework 1]) Let (V^{2n}, ω) be a symplectic vector space, and $U \subset V$ be a subspace. The symplectic orthogonal of U is defined to be

$$U^{\omega} = \left\{ v \in V \mid \omega(v, u) = 0 \quad \text{for any } u \in U \right\} \,.$$

Prove the following statements.

- (a) $\dim U + \dim U^{\omega} = \dim V$.
- (b) $(U^{\omega})^{\omega} = U.$
- (c) For any two subspaces U_1 and U_2 , $U_1 \subseteq U_2$ if and only if $U_1^{\omega} \supseteq U_2^{\omega}$.
- (d) U is symplectic¹ if and only if $V = U \oplus U^{\omega}$.

A subspace U is called *isotropic* if $U \subseteq U^{\omega}$. That is to say, ω vanishes on $U \times U$. A subspace U is called *coisotropic* if $U^{\omega} \subseteq U$.

- (e) U is Lagrangian² if and only if U is isotropic and dim $U = \frac{1}{2} \dim V$.
- (2) (Symplectic group, from [M&S, Lemma 2.20]) Denote by I_n the $n \times n$ identity matrix. Let J_n be the following $2n \times 2n$ matrix

$$J_n = \left[\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array} \right] \; .$$

The symplectic group is defined to be

$$\operatorname{Sp}(n) = \left\{ B \in \operatorname{GL}(2n; \mathbb{R}) \mid B^T J_n B = J_n \right\}.$$

Prove the following statements. (The *multiplicity* here means the *algebraic* multiplicity, not the *geometric* multiplicity.)

- (a) For any B ∈ Sp(n), λ is an eigenvalue of B if and only if λ⁻¹ is an eigenvalue of B. Moreover, they have the same multiplicities. (*Hint.* Is B^T related to B⁻¹ in some way?)
- (b) If ± 1 is an eigenvalue of $B \in \text{Sp}(n)$, then it must occur with even multiplicities. (*Hint.* Start with -1.)
- (c) Find an element of $SL(4; \mathbb{R})$ that does not belong to Sp(2).

(3) True or False. No justications are needed.

(a) T F There exists a one dimensional subspace of (\mathbb{R}^2, ω_0) that is not Lagrangian.

¹The definition introduced in class is that $\omega|_U$ is non-degenerate.

²The definition introduced in class is that $U = U^{\omega}$.

- (b) T F Any hyperplane (codimension one subspace) of $(\mathbb{R}^{2n}, \omega_0)$ is coisotropic.
- (c) $\overline{\mathbf{T}}$ F Any element of $\operatorname{Sp}(n)$ is diagonalizable.
- (4) Suppose that W is a finite dimensional vector space. Let W^* be the dual space. For any subspace U of W, set

$$\mathcal{A}(U) = \{ f \in W^* \mid f(u) = 0 \text{ for any } u \in U \}$$

to be the annihilator of U. Show that $U \times \mathcal{A}(U)$ is a Lagrangian subspace of $(W \times W^*, \omega_{\text{can}})$. You can find the definition of $(W \times W^*, \omega_{\text{can}})$ in [CdS1, #9 of Homework 1].

(5) (**Bonus**) Prove that $\text{Sp}(n) \subseteq \text{SL}(2n; \mathbb{R})$ using block matrix. You can find some properties of the determinant of a block matrix on

http://en.wikipedia.org/wiki/Determinant#Block_matrices.