INTRODUCTION TO SYMPLECTIC GEOMETRY HOMEWORK 2

DUE: MONDAY, SEPTEMBER 23

(1) (Symplectic linear algebra, from [CdS1, Homework 1]) Let $\left(V^{2 n}, \omega\right)$ be a symplectic vector space, and $U \subset V$ be a subspace. The symplectic orthogonal of U is defined to be

$$
U^{\omega}=\{v \in V \mid \omega(v, u)=0 \quad \text { for any } u \in U\} .
$$

Prove the following statements.
(a) $\operatorname{dim} U+\operatorname{dim} U^{\omega}=\operatorname{dim} V$.
(b) $\left(U^{\omega}\right)^{\omega}=U$.
(c) For any two subspaces U_{1} and $U_{2}, U_{1} \subseteq U_{2}$ if and only if $U_{1}^{\omega} \supseteq U_{2}^{\omega}$.
(d) U is symplecti \rrbracket^{\prod} if and only if $V=U \oplus U^{\omega}$.

A subspace U is called isotropic if $U \subseteq U^{\omega}$. That is to say, ω vanishes on $U \times U$. A subspace U is called coisotropic if $U^{\omega} \subseteq U$.
(e) U is Lagrangian ${ }^{2}$ if and only if U is isotropic and $\operatorname{dim} U=\frac{1}{2} \operatorname{dim} V$.
(2) (Symplectic group, from [M\&S, Lemma 2.20]) Denote by I_{n} the $n \times n$ identity matrix. Let J_{n} be the following $2 n \times 2 n$ matrix

$$
J_{n}=\left[\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right] .
$$

The symplectic group is defined to be

$$
\mathrm{Sp}(n)=\left\{B \in \mathrm{GL}(2 n ; \mathbb{R}) \mid B^{T} J_{n} B=J_{n}\right\}
$$

Prove the following statements. (The multiplicity here means the algebraic multiplicity, not the geometric multiplicity.)
(a) For any $B \in \operatorname{Sp}(n), \lambda$ is an eigenvalue of B if and only if λ^{-1} is an eigenvalue of B. Moreover, they have the same multiplicities. (Hint. Is B^{T} related to B^{-1} in some way?)
(b) If ± 1 is an eigenvalue of $B \in \operatorname{Sp}(n)$, then it must occur with even multiplicities. (Hint. Start with -1.)
(c) Find an element of $\operatorname{SL}(4 ; \mathbb{R})$ that does not belong to $\operatorname{Sp}(2)$.
(3) True or False. No justications are needed.
(a) T F There exists a one dimensional subspace of $\left(\mathbb{R}^{2}, \omega_{0}\right)$ that is not Lagrangian.

[^0](b) T F Any hyperplane (codimension one subspace) of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ is coisotropic.
(c) T F Any element of $\operatorname{Sp}(n)$ is diagonalizable.
(4) Suppose that W is a finite dimensional vector space. Let W^{*} be the dual space. For any subspace U of W, set
$$
\mathcal{A}(U)=\left\{f \in W^{*} \mid f(u)=0 \quad \text { for any } u \in U\right\}
$$
to be the annihilator of U. Show that $U \times \mathcal{A}(U)$ is a Lagrangian subspace of ($W \times$ $\left.W^{*}, \omega_{\text {can }}\right)$. You can find the definition of ($W \times W^{*}, \omega_{\text {can }}$) in [CdS1, \#9 of Homework 1].
(5) (Bonus) Prove that $\operatorname{Sp}(n) \subseteq \mathrm{SL}(2 n ; \mathbb{R})$ using block matrix. You can find some properties of the determinant of a block matrix on

[^0]: ${ }^{1}$ The definition introduced in class is that $\left.\omega\right|_{U}$ is non-degenerate.
 ${ }^{2}$ The definition introduced in class is that $U=U^{\omega}$.

