
INTRODUCTION TO SYMPLECTIC GEOMETRY

HOMEWORK 1

DUE: MONDAY, SEPTEMBER 16

(1) A line complex is a three-dimensional family of lines in the three-dimensional projective

space. In this exercise, we will construct a linear line complex, and connect it with

symplectic geometry.

This exercise focuses on V = R4. Denote by V ∗ the dual space of R4, and denote by

Λ2V ∗ the exterior square of V ∗. As a vector space, V ∗ ∼= R4 and Λ2V ∗ ∼= R6.

The manifold P(V ) = RP3 is the space of lines in V . The lines1 in P(V ) are the

projectification of two-dimensional linear subspaces of V .

(a) For any nonzero ψ ∈ Λ2V ∗, prove that the subspace ker(ψ) = {v ∈ V | ψ(v, ·) = 0}
is either {0} or a two dimensional subspace. Moreover, suppose that ψ1, ψ2 ∈ Λ2V ∗

are two nonzero elements whose kernel define the same two-dimensional subspace.

Prove that ψ1 and ψ2 are the constant multiple of each other. (Hint. Regard

elements in V as column vectors. Then any τ ∈ V ∗ ⊗ V ∗ can be represent by a

4 × 4 matrix Aτ . Namely, τ(v, w) = vTAτw where T means transpose. What is

special about the matrix Aψ when ψ ∈ Λ2V ∗ ⊂ V ∗ ⊗ V ∗?)

(b) For any two-dimensional subspace W of V , show that

W = ker(ψ)

for some ψ ∈ Λ2V ∗ with ψ∧ψ = 0. (Hint. W can be thought as the intersection

of two three-dimensional subspaces of V .)

(c) For any nonzero ψ ∈ Λ2V ∗ with ψ ∧ ψ = 0, show that dim ker(ψ) = 2 and ψ is

decomposable2.

The above discussion gives an identification{
lines in P(V )

} ∼= {
[ψ] ∈ P(Λ2V ∗)

∣∣ ψ ∧ ψ = 0
}

(0.1)

where [ψ] means the equivalent class of ψ under the identification ψ ∼ λψ for λ ∈ R\{0}.
Since the latter expression is the zero locus of an equation in RP5, the space of lines in

P(V ) is four-dimensional.

To construct a line complex (see the very beginning), we can intersect

C =
{

[ψ] ∈ P(Λ2V ∗)
∣∣ ψ ∧ ψ = 0

}
(0.2)

1Equivalently, a one-dimensional submanifold of P(V ) is called a line if it is an affine line in each standard

coordinate chart of P(V ).
2Namely, ψ = α ∧ β for some α, β ∈ V ∗.
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with a hypersurface in P(Λ2V ∗), and the dimension will be cut down by one. If the

hypersurface is a hyperplane3 in P(Λ2V ∗), the intersection is called a linear line complex.

(d) To be more precise, let x1, y1, x2, y2 be the coordinate on V = R4, and consider

ω = dx1 ∧ dy1 + dx2 ∧ dy2 ∈ Λ2V ∗ .

It defines a hyperplane in P(Λ2V ∗) by

D =
{

[ψ] ∈ P(Λ2V ∗)
∣∣ ψ ∧ ω = 0

}
. (0.3)

By intersecting C with D, we obtain a linear line complex. Prove the following

geometric characterization of L = C ∩ D:

[ψ] ∈ L ⇐⇒ ker(ψ) is two-dimensional, and ω|ker(ψ) = 0 . (0.4)

(Remark. Since dim ker(ψ) = 2, the last statement is equivalent to that ω(v1, v2) =

0 for a basis v1, v2 of ker(ψ). It does not mean that ker(ψ) ⊂ ker(ω). In fact,

ker(ω) = {0}.)
We now make a summary. The lines in P(V ) are two planes in V . In other words,

{lines in P(V )} is exactly the Grassmannian G(2, 4). The identification (0.1) is the so-

called Plücker embedding, which is a canonical embedding of a Grassmannian into a

projective space. The linear line complex L ⊂ G(2, 4) consists of all those two planes

on which ω vanishes. We will talk more about this ω vanishing condition later.

So far we have explained all the geometric ingredients. The last item asks you to

check that C, D and L are smooth manifold.

Let u1, u2, v1, v2, w1, w2 be the coordinate for Λ2V ∗ with respect to dx1∧dy1, dx2∧dy2,

dx1 ∧ dx2, −dy1 ∧ dy2, dx1 ∧ dy2, dy1 ∧ dx2. Namely, write any ψ ∈ Λ2V ∗ as

ψ = u1 dx1 ∧ dy1 + u2 dx2 ∧ dy2 + v1 dx1 ∧ dx2 − v2 dy1 ∧ dy2

+ w1 dx1 ∧ dy2 + w2 dy1 ∧ dx2 .

(e) Write down the defining equation for C and D in terms of this homogeneous coor-

dinate. Prove that C, D and L = C ∩ D are smooth manifolds.

(2) The purpose of this exercise is to give the geometric interpretation of the Legendre

transform in the simplest case. Suppose that f(v) is a strongly convex4, smooth function

on R. Let

y =
df

dv
. (0.5)

The strongly convexity guarantees that v → y(v) is a change of variable for R, and we

can also regard v as a function of y.

(a) Let Γf = {(v, f(v)) | v ∈ R} be the graph of f . Consider the tangent line of Γf at

(v0, f(v0)). Explain its relation to y(v0).

3Namely, it is the projectification of a hyperplane in Λ2V ∗ ∼= R6.
4Strongly convexity means that there exists some ε > 0 such that f ′′(v) ≥ ε for all v ∈ R.
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(b) Define h(y) to be

h(y) = vy − f(v) . (0.6)

Is h(y(v0)) related to the tangent line of Γf at (v0, f(v0))? (Hint. A tangent

line/plane of a graph always intersects the second/last axis.)

(c) Find out the inverse Legendre transform, i.e. express v in terms of y and h(y).

(Hint. Regard (0.6) as a function of v. What is its derivative?)

(d) Prove that

d2f

dv2
d2h

dy2
= 1 .

(Hint. Consider the Jacobians of y(v) and v(y).)

This exercise works in higher dimensions as well. We will discuss more about it later.
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