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Abstract. Let Y be a compact, oriented 3-manifold with a contact
form a. For any Dirac operator D, we study the asymptotic behavior
of the spectral flow between D and D + cl(− ir

2
a) as r → ∞. If a is

the Thurston–Winkelnkemper contact form whose monodromy is the
product of Dehn twists along disjoint circles, we prove that the next
order term of the spectral flow function is O(r).

1. Introduction

1.1. Asymptotic spectral flow. For a pair of purely imaginary-valued
1-forms A0 and A1, choose a path of 1-forms A(s) connecting A0 to A1.
For a Dirac operator D, consider the family of Dirac operators {DA(s) =

D + cl(A(s)
2 )}s∈[0,1], which is D perturbed by the Clifford action of A(s).

The eigenvalues of each DA(s) are unbounded from above and below, and
vary continuously along the path. The spectral flow is the algebraic count
of the zero crossings: a zero crossing contributes to the count with +1 if the
eigenvalue crosses zero from a negative to a positive value as s increases, and
count with −1 if the eigenvalue crosses zero from a positive to a negative
value as s increases. If the path is suitably generic, only these two cases
arise. This count is the spectral flow function. Moreover, Atiyah, Patodi
and Singer ([APS3, p.95]) observed that the spectral flow function is equal to
a certain index on [0, 1]×Y . They also proved that this index ([APS1, (4.3)])
is path independent ([APS3, p.89]). Therefore, the spectral flow function
depends only on the ordered pair (DA0 ,DA1).

If we have a real-valued 1-form a, we can consider the spectral flow with
A0 = 0 and A1 = − ir

2 a. The spectral flow can be thought as a function of
r, which we denote by sfa(D, r). In [T2, section 5] and [T3], Taubes studied
the asymptotic behavior of the spectral flow function as r →∞. He proved:

Theorem 1.1 ([T2]). There exists constants δ ∈ (0, 1/2) and c with the
following significance. Suppose that Y is a compact, oriented 3-manifold
equipped with a SpinC-structure, and D is the corresponding SpinC-Dirac
operator. Then, for any real-valued 1-form a with ||a||C3 ≤ 1, the spectral
flow function satisfies∣∣sfa(D, r)− r2

32π2

∫
Y
a ∧ da

∣∣ ≤ c r 3
2

+δ(1.1)
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for all r ≥ c.

This theorem specifies the leading order term of the spectral flow function,
and gives a bound on the next order term.

As mentioned previously, Atiyah, Patodi and Singer ([APS3, p.95]) showed
that the spectral flow gives the index of an associated Dirac operator. To
give the basic idea, we briefly explain the finite dimensional case. Suppose
that H− and H+ are two m×m, non-degenerate Hermitian matrices. Con-
nect them by a path of Hermitian matrices: H(s) with H(s) = H− for
s ≤ −1 and H(s) = H+ for s ≥ 1. The zero crossings of the eigenvalues of
H(s) is the spectral flow for H− and H+. It is easy to see that the spectral
flow only depends on H− and H+, not on the path H(s). With H(s), define
the operator D : C∞(R,Cm)→ C∞(R,Cm) by

D = ∂s +H(s)

where s is the coordinate on R. This operator D is a Fredholm operator.
Its index is given by the spectral flow between H− and H+.

1.2. Next order term on a contact 3-manifold. Theorem 1.1 is one of
the main ingredients in the proof of the Weinstein conjecture ([T2]). It is
used to obtain the energy bound. However, theorem 1.1 is established for
any 1-form. When a is a contact form, much evidence (see below) suggests
that the Dirac operator D−ira is related to the Reeb vector field, and its
spectral flow function sfa(D, r) behaves better. In this paper, we consider
the size of the next order term when a is a contact form.

Question. For a contact form a with an adapted Riemannian metric, is
the next order term of the spectral flow function sfa(D, r) of order O(r) as
r →∞?

The construction of Dirac operators requires a Riemannian metric. We
always choose an adapted metric to make it easier to compare the spectral
flow function. On a contact 3-manifold, an adapted Riemannian metric is a
metric such that |a| = 1 and da = 2 ∗a, where ∗ is the Hodge star operator.
The existence of such a metric is proved by [CH]. In this paper, we give an
affirmative answer to the question in following situation:

Main Theorem (Theorem 2.2). Suppose that the monodromy of an open
book decomposition is the product of Dehn twists along disjoint circles, and
a is the associated Thurston–Winkelnkemper contact form. Then, with a
certain adapted metric, the next order term of the spectral flow function of
the canonical Dirac operator D is of order O(r). Namely, there exists a
constant c such that∣∣sfa(D, r)− r2

32π2

∫
Y
a ∧ da

∣∣ ≤ c r .
for all r ≥ 1.
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Here is why such a bound on the next order term is expected. As r →∞,
the zero modes of the Dirac operators D−ira have the following properties:

(i) their derivative along the direction of the Reeb vector field is close
to the multiplication by ir/2;

(ii) on the contact hyperplane, they almost satisfy the Cauchy–Riemann
equation.

The precise statements appear in proposition 3.1. In this regard, the Dirac
equation is very similar to the almost holomorphic equation in [D] and [IMP].
This being the case, the general case looks locally like the circle bundle case.

Suppose that Y is a U(1)-bundle over a Riemann surface Σ with negative
Euler number, and a is a connection 1-form whose curvature form is nowhere
zero. It follows that −ia is a contact form on Y . The adapted metric is
chosen to be invariant under the U(1)-action. Its spectral flow function can
be computed by the Riemann–Roch formula, and the next order term is of
order O(r). A careful study of the Dirac operator on such 3-manifolds can
be found in [N].

The above explanation also suggests that the zero locus of the zero modes
ψ is related to the Reeb vector field. Since the derivative of ψ along the Reeb
vector field is about irψ/2, the derivative of |ψ|2 along the Reeb vector field
is small. Since ψ almost solves the Cauchy–Riemann equation on the con-
tact hyperplane, the number of zeros of ψ on the contact hyperplane should
be dominated by r. Therefore, the question of the next order term of the
spectral flow can be viewed as the first step to understand the zero modes
of D−ira.

This paper is organized as follows:
Section 2 provides the background for this paper. In section 2.1, we set

up the conventions of Dirac operators on contact 3-manifold and spectral
flow functions. Section 2.2 is a review on open book decompositions and the
constructions of Thurston–Winkelnkemper contact forms.

Section 3 contains some basic estimates on the zero modes of D−ira.
Proposition 3.1 is the cornerstone of all the estimates in this paper.

In section 4, we writes down the Dirac equation on different regions of the
open book decomposition. For the tubular neighborhood of the binding and
the Dehn-twist region, we construct a contact form on S1×S2. This contact
form captures the geometry of these two regions, and it is easier to study the
Dirac equation on S1 × S2. On the region with trivial monodromy, almost
zero modes of the Dirac operator are constructed by the Riemann–Roch
theorem.

In section 5, we study the Dirac equation on the model manifold S1×S2.
There are two main ingredients. First, we construct an approximation for
the zero eigensections of the Dirac operator in this model case. Second,
we cut the interval [0, r] into subintervals such that there are sparse zero
crossings near the endpoints of each subinterval.
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In section 6, we combine above results to obtain the lower bound of the
spectral flow function.

Section 7 is a further study of the Dirac equation on the region where the
monodromy is trivial. We describe the boundary behavior of the solutions
carefully.

In the last section, we prove the upper bound of the spectral flow function.
Unlike the eigensections of a fixed Dirac operator, zero eigensections of a
family of Dirac operators are not necessarily orthogonal to one another. This
section is devoted to overcoming this difficulty.

Acknowledgements. This paper forms part of the author’s Ph.D. the-
sis. The author would like to thank his thesis advisor Cliff Taubes for his
guidance in this project. He would also like to thank Po-Ning Chen and
Valentino Tosatti for helpful discussions, and to thank the anonymous ref-
eree for the many useful comments, suggestions and corrections.. Part of
this work was done while the author visited MSRI during the academic year
2009–2010. He is grateful to MSRI and to the organizers of the “Symplectic
and Contact Geometry and Topology” program for their hospitality.

2. Preliminary

In this section, we set up the background on the spectral flow function
and the open book decomposition.

2.1. Spectral flow of a contact form. We now review the Dirac operator
and its spectral flow. We focus on the canonical Dirac operator perturbed by
the contact form. We will not do the general SpinC-structure constructions.
See [M, ch.2 & ch.3] for a complete treatment for general SpinC-structures.
Below we mostly follow [T2].

2.1.1. Canonical SpinC-structure. Let Y be a closed oriented connected 3-
manifold with a contact form a. Fix an adapted metric on Y . Denote the
Reeb vector field by e3. It has unit length measured by any adapted metric.

Consider the contact hyperplane field ker(a) ⊂ TY . With the orientation
given by da, it is a Hermitian line bundle over Y . More precisely, for any
v ∈ ker(a), let J(v) be the metric dual of vyda. The complex line bundle is
spanned by local sections v − iJ(v) with v ∈ ker(a). The Hermitian metric
is induced from the adapted metric. We denote this Hermitian line bundle
by K−1, and its inverse bundle K is called the canonical line bundle. The
bundle C⊕K−1 has a Clifford action

cl : TY −→ End(C⊕K−1)

defined as follows. The bundle C is the pull-back of C over a point by the map
Y → point. Let 1C be the pull-back of 1 by the map Y → point. For any

oriented orthonormal frame on the contact hyperplane {e1, e2}, 1√
2
(e1− ie2)
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is a unit-normed, trivializing section of K−1. With this trivialization, the
Clifford action is given by the Pauli matrices

cl(e1) =

[
0 −1
1 0

]
, cl(e2) =

[
0 i
i 0

]
, cl(e3) =

[
i 0
0 −i

]
.

The bundle C⊕K−1 together with this Clifford action is called the canonical
SpinC-structure.

2.1.2. Dirac operator. A SpinC-connection on the canonical SpinC-structure
is a Hermitian connection ∇A on C ⊕ K−1, which is compatible with the
Clifford action in the following sense:

∇A(cl(v)ψ) = cl(∇v)ψ + cl(v)∇Aψ

for any vector field v and any section ψ of C⊕K−1. Here ∇v is the covariant
derivative of v with respect to the Levi-Civita connection on TY .

Given a SpinC-connection, define the Dirac operator to be the composition

C∞(C⊕K−1)
∇A−→ C∞(T ∗Y ⊗ (C⊕K−1))

cl−→ C∞(C⊕K−1)

The Clifford action is extended to the cotangent bundle by the metric dual.
According to [H, lemma 10.1], there exists a unique SpinC-connection

such that the section (1C, 0) is annihilated by the associated Dirac operator.
This connection is called the canonical connection. We denote it by ∇0,
and denote its associated Dirac operator by D0. Perturb the canonical
connection by −ira/2 with r ≥ 0

∇r = ∇0 −
ir

2
a ,(2.1)

and consider the corresponding Dirac operator

Dr = D0 + cl(
−ir
2
a) .(2.2)

Note that cl(a) acts as i on the C-component and as −i on the K−1-
component.

2.1.3. Local expression of the canonical connection. We now write down the
canonical connection in terms of the trivialization explained in 2.1.1. The
complete treatment of the local computation of a SpinC-connection and its
Dirac operator can be found in [M, section 3.2 & 3.3].

Let {e1, e2, e3} be a local orthonormal frame as explained in 2.1.1, and let
{θkj }j 6=k be the Levi-Civita connection 1-form. Namely, ∇ej =

∑
k 6=j θ

k
j ⊗ek

where ∇ is the Levi-Civita connection. Using the trivialization {1C,
1√
2
(e1−

ie2)} of C ⊕ K−1, we identify the local sections with C2-valued functions.
We claim that the canonical connection ∇0ψ is

dψ − 1

2

(
θ2

1 cl(e3) + θ1
3 cl(e2) + θ3

2 cl(e1)
)
(ψ) +

i

2
(−2a+ θ2

1)ψ(2.3)
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where dψ is the usual exterior derivative of a C2-function. According to [M,
(3.3)], (2.3) defines a SpinC-connection.

To prove that the above expression is the canonical connection, it remains
to check that (1C, 0) is annihilated by the associated Dirac operator. Let
{ω1, ω2, ω3} be the dual coframe of {ej}. Since the metric is adapted, ω3

is the contact form a. By comparing da = 2ω1 ∧ ω2 with the structure
equation dω3 = −

∑
j 6=3 θ

3
j ∧ ωj , we conclude that θ3

1(e3) = 0 = θ3
2(e3) and

θ3
1(e2) − θ3

2(e1) = 2. By calculating d2a = 0 = 2d(ω1 ∧ ω2) in terms of
the structure eqaution, we conclude that θ3

1(e1) + θ3
2(e2) = 0. With these

relations, the Dirac operator of (2.3) is

3∑
i=1

cl(ei)ei(ψ) +

[
0 −iθ2

1(e1)− θ2
1(e2)

0 −2 + θ2
1(e3)

]
ψ .(2.4)

It is clear that (1C, 0) is annihilated by the operator. Thus, the local expres-
sion of the canonical connection∇0 is given by (2.3), and the local expression
of its associated Dirac operator D0 is given by (2.4).

2.1.4. Spectral flow function. We now define the spectral flow function for
the family of Dirac operators {Ds}s∈[0,r]. The construction is borrowed from
[T2, subsection 5.1].

The spectral flow for the family {Ds}s∈[0,r] is defined with the help of a
certain stratified, real-analytic set in R× [0, r]. This set is denoted by E . Its
stratification is given by

E = E1 ⊃ E2 ⊃ · · · ,

where El of the set of pairs (λ, s) such that λ is an eigenvalue of Ds with
multiplicity l or greater. Each El is a closed set. Moreover, as can be proved
using the results in [K, chapter 7], each El∗ = El − El+1 is an open and
real analytic submanifold of R × [0, r]. The collection {El∗} are called the
smooth strata of E . When the 1-dimensional smooth strata are oriented by
the pull-back from R× [0, r] of the 1-form ds. The zero dimensional strata
can be consistently oriented so that the formal, weighted sum E∗ =

∑
l∈N El∗

defines a locally closed cycle in R× [0, r]. It also follows from the results in
[K, chapter 7] that ∑

l∈N

∫
El∗

dh = 0

for any smooth function h on R× (0, r) with compact support.
Sard’s theorem finds a dense, open set U ⊂ R with the property that

the two maps from a point ? to R × [0, r] that send ? to (λ, 0) and to
(λ, r), respectively, are both transverse to the smooth strata of E for all
λ ∈ U. With this understood, the spectral flow for {Ds}s∈[0,r] is defined as
follows. Fix λ0 ∈ U and λ0 < 0. By Sard’s theorem, there exist smooth,
oriented paths σ ⊂ R × [0, r] that start at (λ0, 0), end at (λ0, r), and are
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transverse to the smooth strata of E . Such a path has the following well-
defined intersection number with E :

sfa(r, λ0) =
∑
l∈N

∑
p∈σ∩El∗

ι(p)l ,

where ι(p) ∈ {−1, 1} is the sign of intersection. To describe the sign of
intersection, suppose that σ is the graph of a smooth function from [0, r] to
R. The pull-back of dλ from E to R× [0, r] at a point (λ, u) can be written
as λ′du with

λ′ =

∫
Y
〈ψ, cl(

−i
2
a)ψ〉 ,(2.5)

where ψ is a unit-normed eigensection of Du with eigenvalue λ. The sign of
λ′ at an intersection point with the image of a graph σ is the factor ι(p).

If λ0 is sufficiently close to 0, sfa(r, λ0) is independent of λ0. The spectral
flow function for {Du}u∈[0,r] is defined to be

sfa(r) = lim
λ0→0−

sfa(r, λ0) .

2.2. Open book decomposition. We briefly review open book decom-
positions of disjoint Dehn twists. For a complete discussion of open book
decompositions, see [OS, chapter 9] or [E] and the references therein. The
notations introduced in this section will be used throughout the paper.

2.2.1. Open book decomposition. An (abstract) open book decomposition con-
sists of a Riemann surface Σ̄ with boundaries {Cj}j∈J , and a self-diffeomorphism
τ which is the identity near the boundary. The map τ is called the mon-
odromy of the open book. The 3-manifold Y is obtained by the following
construction. First, form the mapping torus

Σ̄×τ S1 =
Σ̄× [0, 2π]

(p, 2π) ∼ (τ(p), 0)
.

Its boundary is the disjoint union of tori,
∐
j Cj × S1. Next, attach solid

tori
∐
j S

1 ×D2 to Σ̄ ×τ S1, where the longitude is identified with the Cj-

factor, and the meridian is identified with the S1-factor. Note that there is
an S1-family of Σ̄ in Y , and they are referred as the pages. The cores of the
attached solid tori are called the bindings.

In the next section, the handle attaching will be described explicitly in
terms of local coordinates.

2.2.2. Contact form. Given an open book decomposition, Thurston and
Winkelnkemper [TW] construct a contact form a on it, which has the fol-
lowing significance:

• on the mapping torus Σ̄ ×τ S1, the Reeb vector field is transverse
to the pages, and da restricted on the pages is an area form;
• on the attaching solid tori, a is of a certain standard form, and the

bindings are Reeb orbits.
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By the celebrated work of Giroux [G], this construction produces every
contact structure up to isotopy.

We now describe the contact form. We first explain the case when the
monodromy is the identity map, then do the case when the monodromy is
the product of Dehn twists along disjoint circles. In what follows, ε is a
constant smaller than 1/100. The precise value of ε will be chosen in the
construction of Dehn twists.

With trivial monodromy. If the monodromy is the identity map, the map-
ping torus is Σ̄×S1. Near each boundary circle Cj , let ρeit be the coordinate
on its collar neighborhood where ρ ∈ [1, 1 + 20ε) and Cj = {ρ = 1}. Choose
a 1-form µΣ̄ on Σ̄ satisfying

• dµΣ̄ is an area form on Σ̄;

• 2µΣ̄ = (2− ρ)dt on the collar neighborhood of Cj .

Such µΣ̄ always exist ([OS, p.141]). Let eiφ be the coordinate on the S1-
component of Σ̄× S1. The contact form on this region is taken to be

a = V dφ+ 2µΣ̄(2.6)

where V is a constant greater than 1. Later, V will be adjusted to be a
larger constant. We remark that the total area of dµΣ̄ is given by∫

Σ̄
dµΣ̄ =

∑
j

∫
Cj

µΣ̄ = π ·#{boundary components} .

Attaching handles. Let (eit, ρeiφ) be the coordinate on the attaching solid
torus S1×D2 where ρeiφ is the polar coordinate and ρ ≤ 1. The handle at-
taching is done by identifying the coordinates with the above region. Choose
two smooth functions f and g which only depend on ρ such that

• when ρ ∈ [1− 5ε, 1], the function f is V , and g is 2− ρ;

• when ρ ∈ [0, 10ε], the function f is ρ2, and g is 2− ρ2;

• f ′(ρ) ≥ 0, and g′(ρ) < 0 except at ρ = 0.

It is not hard to see the existence of f and g. The contact form on the
attaching solid torus is taken to be

a = f(ρ)dφ+ g(ρ)dt .(2.7)

When ρ < 10ε, it is equal to xdy − ydx + (2 − x2 − y2)dt in terms of the
rectangular coordinate x+ iy = ρeiφ. Hence, the 1-form a is smooth on the
solid torus S1 ×D2.

Disjoint Dehn twists. A Dehn twist along a simple closed curve Γ is a certain
type of monodromy. Roughly speaking, it is obtained by cutting a collar
neighborhood of Γ, twisting 2π to the right and re-gluing. The precise
description in terms of local coordinates will be given shortly.
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If the monodromy is the product of Dehn twists along disjoint circles {Γl},
the contact form only needs to be modified on the tubular neighborhood of
{Γl}.

Note that dµΣ̄ is a symplectic form and Γl is a Lagrangian submanifold.
By the Weinstein tubular neighborhood theorem, there exists a coordinate
(ρ, eit) on a tubular neighborhood of Γl such that dµΣ̄ = dt ∧ dρ with
Γl = {ρ = 0}. Choose ε small enough so that ρ ∈ (−35ε, 35ε). By adding
the differential of a smooth function, we may assume that 2µΣ̄ is 2(vl−ρ)dt
on the tubular neighborhood of Γl. The period constant 2πvl =

∫
Γl
µΣ̄ is

determined by the original choice of µΣ̄.
To perform the Dehn twist along Γl, choose a smooth function σl(ρ)

satisfying

σl(ρ) =

{
0 when ρ ≤ −10ε

±Nl when ρ ≥ 10ε

where the plus/minus sign corresponds to the right-handed/left-handed (pos-
itive/negative) Dehn twist, and Nl ∈ N corresponds to the power of the
Dehn twist. With σl chosen, the (±Nl)-Dehn twist along Γl is given by

(ρ, eit) 7→ (ρ, ei(t+2πσl(ρ))). The mapping torus of the tubular neighborhood
of Γl is

(−35ε, 35ε)× S1 × [0, 2π]

(ρ, eit, 2π) ∼ (ρ, ei(t+2πσl(ρ)), 0)
.

Let φ be the coordinate on the interval [0, 2π]. If we take V to be a large
constant such that

V ≥ 1 + 2
∣∣(vl − ρ)2σ′l(ρ)

∣∣+ 2
∣∣(vl − ρ)σl(ρ)

∣∣(2.8)

for |ρ| < 35ε, then the 1-form

a = V dφ+ 2(vl − ρ)dt+ 2φ(vl − ρ)σ′l(ρ)dρ(2.9)

is a contact form which coincides with (2.6) when |ρ| > 10ε. More precisely,
(2.9) is a contact form on (−35ε, 35ε)× S1 × [0, 2π], and is invariant under

the identification map (ρ, eit, φ) 7→ (ρ, ei(t+2πσl(ρ)), φ− 2π).

Definition 2.1. Let Σ be the surface obtained by cutting out the tubular
neighborhood of Γl, {|ρ| < 20ε}, from Σ̄. The monodromy is the identity on
Σ. The restriction of µΣ̄ on Σ is denoted by µΣ.

2.3. Spectral flow estimate. With the above construction, here is the
precise statement of our main result:

Theorem 2.2. Suppose that the monodromy of the open book decomposition
is the product of Dehn twists along some disjoint circles. For the contact
form a given by (2.6), (2.7) and (2.9), there exist an adapted Riemannian
metric and a constant c such that∣∣∣sfa(r)− r2

32π2

∫
Y
a ∧ da

∣∣∣ ≤ c r
9



for all r ≥ 1.

The proof is done by the gluing construction. For simplicity, we will
assume that there is only one Dehn twist and one binding, and we will
suppress the subscript l. If there is more than one Dehn twist or binding,
the argument is essentially the same.

Remark. Throughout this paper, the constants c only depend on the con-
tact form and the adapted Riemannian metric, and do not depend on r.
Within each proof, the subscript of the constants c(∗) is only for indicating
that they might change (usually increase) after each step. The constants
c(∗) in two different proofs have nothing to do with each other.

3. Some estimates

The purpose of this section is to derive some basic estimates on the zero
eigensections of Dr. It is crucial that the perturbation term of Dr is the
contact form. The estimates in this section do not involve the open book
decomposition.

We write a section ψ of the canonical SpinC bundle C⊕K−1 as (α, β). We
will refer to α and β as the first and the second component of ψ, respectively.
Remember that under the Clifford action, a acts as i on the first component
and acts as −i on another component.

Proposition 3.1. For any δ1 ≥ 0, there is a constant c determined by the
contact form and the adapted metric such that the following holds.

(i) Suppose that ψ = (α, β) is a eigensection of Dr for some r ≥ c, and
the magnitude of the corresponding eigenvalue is less then or equal
to δ1. Then∫

Y
|β|2 + r−1

∫
Y
|∇rβ|2 ≤ c r−1

∫
Y
|α|2 .

Hence,
∫
Y |Drβ|2 ≤ c

∫
Y |α|

2.

(ii) Furthermore, suppose that there is a C1-family of eigenvalues λ(s)
of Dr+s near some r ≥ c, and |λ(0)| ≤ δ1. Then

|λ′(0)− 1

2
| ≤ c

r
.

Therefore, there exist only positive zero crossings for the spectral
flow for r ≥ c.

Proof. The Weitzenböck formula ([M, proposition 5.1.5]) reads

D2
rψ = ∇∗r∇rψ +

κ

4
ψ + cl(

FA0

2
)ψ − ircl(∗a)ψ

where κ is the scalar curvature and FA0 is the curvature of the canonical
connection. Take the inner product with β, and integrate the equation over
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Y . We have

δ2
1

∫
Y
|β|2 ≥

∫
Y

(
|∇rβ|2 + 〈N(∇rα) +N ′(α), β〉

+
κ

4
|β|2 + 〈cl(

FA0

2
)ψ,ψ〉+ r|β|2

)
where N(∇rα) = i cl(tr〈∇a,∇rα〉) and N ′(α) = i

2 cl(∇∗∇a)α. The term

N(∇rα) + N ′(α) has the same K−1-component as ∇∗r∇rα. Notice that
N and N ′ are operators independent of r. After integration by parts, we
conclude that

δ2
1

∫
Y
|β|2 ≥

∫
Y

(
(r − c1)|β|2 +

1

2
|∇rβ|2 − c2|α|2

)
.

Property (i) of the proposition follows from this inequality.

To prove property (ii), let ψ = (α, β) be a unit-normed eigensection of
Dr with eigenvalue λ(0). According to (2.5),

λ′(0) =
1

2

∫
Y

(|α(0)|2 − |β(0)|2) =
1

2
−
∫
Y
|β(0)|2 .

This equation together with property (i) proves property (ii). �

Property (ii) of proposition 3.1 says that the rate of change of the spec-
trum near a zero crossing gets closer to 1/2 as r →∞. It has the following
consequence.

Corollary 3.2. For any δ1 > 0, there exist a constant c > 0 determined
by the contact form and the adapted metric such that the following holds.
Suppose that λ is an eigenvalue of Dr with r ≥ c and 4|λ| ≤ δ1. Then, (r, λ)
belongs to a trajectory of eigenvalues which contributes to the spectral flow
with +1 somewhere in the interval

[r − 2λ− c

r
, r − 2λ+

c

r
] .

Proof. According to 2.1.4, we may choose a trajectory (r + s, µ(s)) for
s ∈ (−3λ, 3λ) such that µ(0) = λ and µ(s) is continuous and piecewise
differentiable. Such a trajectory is not unique, but any choice will suffice.
By (2.5), |µ′(s)| ≤ 1

2 as long as µ(s) is differentiable at s. It follows that

|µ(s)| ≤ 5
2 |λ| < δ1 for any s ∈ (−3λ, 3λ). Therefore, property (ii) of propo-

sition 3.1 implies that |µ′(s)− 1
2 | ≤

c
r provided µ is differentiable at s. The

corollary follows from this estimate. �

Two zero eigensections at different r might not be orthogonal to each
other. However, property (i) of proposition 3.1 implies that they are close
to being orthogonal. More precisely, we have:

Proposition 3.3. There exists a constant c > 0 which determined by the
contact form and the adapted metric such that the following holds. Suppose

11



that ψ1 and ψ2 are zero modes of Dr1 and Dr2 with r1 ≥ c, r2 ≥ c and
r1 6= r2 and they are of unit L2-norm. Then

∣∣ ∫
Y
〈ψ1, ψ2〉

∣∣ ≤ c(r1r2)−
1
2 .

Proof. We write ψ1 = (α1, β1) and ψ2 = (α2, β2), and compute

0 =

∫
Y

(
〈Dr1ψ1, ψ2〉 − 〈ψ1, Dr2ψ2〉

)
=

∫
Y
〈(Dr1 −Dr2)ψ1, ψ2〉

= (r1 − r2)

∫
Y

(
〈α1, α2〉 − 〈β1, β2〉

)
.

It follows from r1 6= r2 that
∫
Y 〈α1, α2〉 =

∫
Y 〈β1, β2〉. Hence,

∫
Y 〈ψ1, ψ2〉 =

2
∫
Y 〈β1, β2〉. By property (i) of proposition 3.1 and the Cauchy–Schwarz

inequality, this completes the proof of the proposition. �

4. The Dirac equations

In this section, we will write down the Dirac equations on different regions
of the 3-manifold of an open book decomposition. The adapted metric for
theorem 2.2 will also be specified.

4.1. The tubular neighborhood of the binding. The tubular neighbor-
hood of the binding has coordinate (eit, ρeiφ) ∈ S1 ×D2. The contact form
is given by (2.7),

a = fdφ+ gdt .

The contact form with the following two coframes

ω1 = cosφdρ− sinφ
(f ′

2
dφ+

g′

2
dt
)
,

ω2 = sinφdρ+ cosφ
(f ′

2
dφ+

g′

2
dt
)

specifies the Riemannian metric, a2 + (ω1)2 + (ω2)2. It is easy to see that
the coframe is smooth except at ρ = 0. For ρ < 10ε, ω1 = dx + ydt and
ω2 = dy − xdt in terms of the rectangular coordinate x + iy = ρeiφ. Thus,
they form a smooth orthonormal coframe on S1 × D2. As explained in
2.1.1, their dual frame induces a trivialization of C⊕K−1. On the tubular
neighborhood of the binding, this trivialization identifies the sections of
C ⊕K−1 with C2-valued functions. By (2.2) and (2.4), the Dirac operator

12



Dr on ψ = (α, β) is

Drψ =



r

2
α+

i

2∆
(−g′∂φα+ f ′∂tα)

+ e−iφ
(
− ∂ρβ +

i

∆
(g∂φβ − f∂tβ) +

g −∆′

∆
β
)
,

eiφ
(
∂ρα+

i

∆
(g∂φα− f∂tα)

)
− (

r

2
+ 1− g′

2∆
+
f ′′g′ − f ′g′′

8∆
)β − i

2∆
(−g′∂φβ + f ′∂tβ)

(4.1)

where ∆ = 1
2(f ′g − fg′). The volume form is ∆dρ ∧ dφ ∧ dt. Note that the

Dirac operator is invariant under the two S1-actions in eiφ and eit.
At ρ = 0, the coordinate has a singularity, and we shall use the rectangular

coordinate z = ρeiφ. Remember that f = ρ2 and g = 2− ρ2 when 0 ≤ ρ ≤
10ε. The Dirac operator is

Drψ =


r

2
α+

i

2
(∂φα+ ∂tα) + (−2∂zβ −

i

2
z̄(∂φβ + ∂tβ)− z̄

2
β) ,

(2∂z̄α−
i

2
z(∂φα+ ∂tα))− r + 3

2
β − i

2
(∂φβ + ∂tβ) .

(4.2)

The volume form is 2ρdρ ∧ dφ ∧ dt = idz ∧ dz̄ ∧ dt. We can regard (4.2) as
an operator on C× S1.

4.2. The Dehn-twist region. For the Dehn-twist region, we work on
(−35ε, 35ε)×S1×[0, 2π], and consider the operators and functions which are
invariant under the identification map. Before making the identification, we
have coordinate (ρ, eit, φ) ∈ (−35ε, 35ε)×S1× [0, 2π]. With this understood,
the contact form is given by (2.9),

a = V dφ+ 2(v − ρ)dt+ 2φ(v − ρ)σ′dρ .

The following two coframes

ω1 = cosφdρ− sinφ(−dt− φσ′dρ− (v − ρ)σ′dφ) ,

ω2 = sinφdρ+ cosφ(−dt− φσ′dρ− (v − ρ)σ′dφ)

together with the contact form specify the Riemannian metric, a2 + (ω1)2 +
(ω2)2. Note that ω1 and ω2 are both smooth and invariant under the identi-
fication map. As explained in 2.1.1, their dual frame gives a trivialization of
C⊕K−1. On the Dehn-twsit region, we use this trivialization to identify the
sections of C ⊕K−1 with C2-valued functions on (−35ε, 35ε) × S1 × [0, 2π]
satisfying

ψ(ρ, ei(t+2πσ(ρ)), 0) = ψ(ρ, eit, 2π) .
13



By (2.2) and (2.4), the Dirac operator Dr on ψ = (α, β) is

Drψ =



r

2
α+

i

∆̃

(
∂φα− (v − ρ)σ′∂tα

)
+ e−iφ

2(v − ρ)− ∆̃′

∆̃
β

+ e−iφ
(
− (∂ρβ − φσ′∂tβ) +

iV

∆̃
(−∂tβ +

2(v − ρ)

V
∂φβ)

)
,

eiφ
(
(∂ρα− φσ′∂tα) +

iV

∆̃
(−∂tα+

2(v − ρ)

V
∂φα)

)
− (

r

2
+ 1 +

1

∆̃
+

((v − ρ)σ)′′

2∆̃
)β − i

∆̃
(∂φβ − (v − ρ)σ′∂tβ)

where ∆̃ = V − 2(v − ρ)2σ′. The volume form is ∆̃dφ ∧ dt ∧ dρ. Consider
the untwisting of α and β:

α̃(ρ, t, φ) = α(ρ, t− φσ(ρ), φ) , β̃(ρ, t, φ) = β(ρ, t− φσ(ρ), φ) .(4.3)

After the untwisting, the Dirac operator on ψ̃ = (α̃, β̃) is

D̃rψ̃ =



r

2
α̃+

i

∆̃

(
∂φα̃− ((v − ρ)σ)′∂tα̃

)
+ e−iφ

2(v − ρ)− ∆̃′

∆̃
β̃

+ e−iφ
(
− ∂ρβ̃ +

i

∆̃
((−V + 2(v − ρ)σ)∂tβ̃ + 2(v − ρ)∂φβ̃)

)
,

eiφ
(
∂ρα̃+

i

∆̃
((−V + 2(v − ρ)σ)∂tα̃+ 2(v − ρ)∂φα̃)

)
− (

r

2
+ 1 +

1

∆̃
+

((v − ρ)σ)′′

2∆̃
)β̃ − i

∆̃
(∂φβ̃ − ((v − ρ)σ)′∂tβ̃) .

(4.4)

The untwisting operator (4.3) and the Dirac equation (4.4) have the fol-
lowing features.

(i) The untwisting operator (4.3) is only defined locally. In general, it
cannot extend to the whole 3-manifold.

(ii) Note that α̃(ρ, t, 2π) = α(ρ, t− 2πσ(ρ), 2π) = α(ρ, t, 0) = α̃(ρ, t, 0).

Hence, after the untwisting α̃ and β̃ are 2π-periodic in both t and φ.
With this understood, the Dirac operator (4.4) is invariant under
these two S1-actions. Namely, for any (eit0 , eiφ0) ∈ S1 × S1,

D̃r

(
ψ̃(ρ, t+ t0, φ+ φ0)

)
= (D̃rψ̃)(ρ, t+ t0, φ+ φ0) .

(iii) The Dirac operator (4.4) is of the same form as that on the tubular
neighborhood of the binding (4.1). More precisely, it corresponds

to f̃ = V − 2(v − ρ)σ and g̃ = 2(v − ρ) in (4.1), and ∆̃ is equal to
1
2(f̃ ′g̃ − f̃ g̃′).

4.3. Associated contact form on S1 × S2. In this section, we construct
S1 × S2’s by compatifying the tubular neighborhood of the binding and
the Dehn-twist region. We also construct contact forms on these S1 × S2,
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associated to (2.7) and (2.9). It is convenient to regard the Dirac operators
in section 4.1 and 4.2 as being defined on S1 × S2.

4.3.1. On the tubular neighborhood of the binding. The tubular neighbor-
hood of the binding is a solid torus, S1 × D2. Topologically, we construct
the S1 × S2 by attaching another solid torus, S1 ×D2. The attaching map
on ∂(S1 ×D2) = S1 × S1 is the identity map.

We now describe the S1×S2 in terms of the coordinate. Let eit be the co-
ordinate for the S1-factor. Let (ρ, eiφ) ∈ [0, 2]×S1 be the (re-parametrized)
spherical coordinate for the S2-factor. To be more precise, choose a positive
smooth function ν(ρ) in ρ ∈ [0, 2] such that ν(ρ) = 1 when ρ ≤ 10ε or

ρ ≥ 2 − 10ε, and
∫ 2

0 ν(ρ)dρ = π/2. The parametrization of the unit sphere

is given by
(

sin(
∫ ρ

0 ν(s)ds) cosφ, sin(
∫ ρ

0 ν(s)ds) sinφ, cos(
∫ ρ

0 ν(s)ds)
)
.

To construct the contact form, choose two smooth functions f(ρ) and g(ρ)
in ρ ∈ [0, 2] such that:

• when ρ ∈ [0, 1], the functions f(ρ) and g(ρ) coincide with the func-
tions constructed in section 2.2;
• when ρ ∈ (1, 1 + 10ε], f(ρ) = V and g(ρ) = 2− ρ;
• when ρ ∈ [2− 10ε, 2], f(ρ) = (2− ρ)2 and g(ρ) = −2 + (2− ρ)2;
• the functions f and f ′g − fg′ are positive when ρ ∈ (0, 2).

It is not hard to see that there always exist such f and g. The contact form
is taken to be

a = f(ρ)dφ+ g(ρ)dt .(4.5)

The above conditions on f and g guarantee that a is a smooth contact form.
The volume form 1

2a ∧ da is equal to ∆dρ ∧ dφ ∧ dt where

∆ =
1

2
(f ′g − fg′) .(4.6)

4.3.2. On the Dehn-twist region. After the untwisting (4.3), the Dehn-twist
region is the solid torus (eit, ρ, eiφ) ∈ S1 × [−35ε, 35ε] × S1. Topologically,
S1×S2 is obtained by attaching two solid torus, S1×D2. The original solid
tori has two boundary components, S1 × {±35ε} × S1. The attaching map
is the identity map on S1 × S1 .

In this case, we take a similar coordinate on the S1 × S2. Let eit be
the coordinate for the S1-factor. Let (ρ, eiφ) ∈ [−2, 2] × S1 be the (re-
parametrized) spherical coordinate for the S2-factor.

To construct the contact form, choose two smooth functions f̃(ρ) and g̃(ρ)
in ρ ∈ [0, 2] satisfying the following properties:

• when ρ ∈ (−35ε, 35ε), f̃(ρ) = V − 2(v− ρ)σ(ρ) and g̃(ρ) = 2(v− ρ);

• when ρ ∈ [2−10ε, 2], f̃(ρ) = (2−ρ)2 and g̃(ρ) = −2|v|−2+(2−ρ)2;

• when ρ ∈ [−2,−2+10ε], f̃(ρ) = (ρ+2)2 and g̃(ρ) = 2|v|+2−(ρ+2)2;

• the functions f̃ and f̃ ′g̃ − f̃ g̃′ are positive when ρ ∈ (−2, 2).
15



With these two functions, the contact form is taken to be a = f̃(ρ)dφ +

g̃(ρ)dt. The volume form 1
2a∧ da is ∆̃dρ∧ dφ∧ dt where ∆̃ = 1

2(f̃ ′g̃− f̃ g̃′).

4.3.3. The canonical SpinC-structure of the associated contact form.

Definition 4.1. For each boundary component and Dehn-twist region of
the page, the above construction gives a contact form (4.5) on S1 × S2.
These contact forms will be referred as the associated contact forms.

We now choose an adapted metric and fix a trivialization of C⊕K−1 of
the associated contact form on the S1 × S2. We focus on the associated
contact form of the tubular neighborhood of the binding. For the associated
contact form of the Dehn-twist region, the construction is essentially the
same. The only difference is that f and g are replaced by f̃ and g̃.

Consider the following two coframes

ω1 = cosφdρ− sinφ(
f ′

2
dφ+

g′

2
dt) , ω2 = sinφdρ+ cosφ(

f ′

2
dφ+

g′

2
dt) .

As explained in section 4.1, they are smooth on the whole space, S1 × S2.
The adapted metric is taken to be a2 + (ω1)2 + (ω2)2. Let {e1, e2, e3} be
the dual frame of {ω1, ω2, a}. According to section 2.1.1, {1C,

1√
2
(e1− ie2)}

induces a global trivialization of the canonical SpinC-bundle C⊕K−1. When
working with the Dirac operator on the associated S1 × S2, we will always
use this trivialization to identify the sections of C ⊕ K−1 with C2-valued
functions on S1 × S2.

With such a choice of the metric and the trivialization, the local expression
of the Dirac operator is given by (4.1) and (4.4), respectively. We will study
the Dirac equations of the associated contact forms carefully in section 5.

4.4. The part with trivial monodromy. On the part of the page where
the monodromy is the identity map, the contact form is

a = V dφ+ 2µΣ .

Choose a Riemannian metric ds2
Σ on Σ such that

• the area form is dµΣ;

• near the tubular neighborhood of the binding, ds2
Σ = dρ2 + 1

4dt2 in
terms of the coordinates in section 4.1;

• near the Dehn-twist region, ds2
Σ = dρ2 + dt2 in terms of the coor-

dinates in section 4.2.

The Riemannian metric on Σ×S1 is taken to be a2 +ds2
Σ. Near the binding

and the Dehn-twist region, it is not hard to check that this metric agrees
with the metric defined in 4.1 and 4.2.
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Any locally defined, oriented orthonormal frame on Σ, u1 and u2, gives
rise to the following frame for the contact hyperplane on the 3-manifold:

e1 = cosφu1 − sinφu2 −
2

V
µΣ(cosφu1 − sinφu2)∂φ ,

e2 = sinφu1 + cosφu2 −
2

V
µΣ(sinφu1 + cosφu2)∂φ .

As discussed in 2.1.1, the dual frame induces a trivialization of C ⊕ K−1.
By examining the transition function of K−1 in terms of this trivialization,
we find that K−1 = π∗K−1

Σ , where K−1
Σ is the anti-canonical bundle of Σ

determined by the metric and dµΣ. More precisely, let θ1 and θ2 be the dual
coframe of u1 and u2 on Σ. Then e1 − ie2 is identified as θ1 − iθ2. By (2.2)
and (2.4), the Dirac operator Dr on ψ = (α, β) is

Drψ =



r

2
α+

i

V
∂φα+ e−iφ

(
− u1(β) + iu2(β)− 2

V
µΣ(−u1 + iu2)∂φβ

+
2i

V
µΣ(−u1 + iu2)β + iθ2

1(−u1 + iu2)β
)
,

eiφ
(
u1(α) + iu2(α)− 2

V
µΣ(u1 + iu2)∂φα

)
− (

r

2
+ 1 +

1

V
)β − i

V
∂φβ

where θ2
1 is the Levi-Civita connection for the metric ds2

Σ on Σ; namely,
∇e1 = θ2

1 ⊗ e2.
Consider the separation of variables:

α = αne
inφ(2πV )−

1
2 , β = βne

i(n+1)φ(2πV )−
1
2 .(4.7)

Before separation of variables, α is a function on S1 ×Σ, and β is a section
of K−1 over S1×Σ. After the separation of variable, αn is a function on Σ,
and βn is a section of K−1

Σ over Σ. The Dirac operator on the frequency n
components is  (

r

2
− n

V
)αn + ∂̄∗nβn ,

∂̄nαn − (
r

2
+ 1− n

V
)βn

(4.8)

where ∂̄n and ∂̄∗n are the Cauchy–Riemann operators on C⊕K−1
Σ with the

connection perturbed by −2in
V µΣ. Subject to suitable boundary conditions,

their index is given by [APS1, (4.3)]. The boundary conditions will be
explained later. By the computation in [BGV, p.148-149] and [APS1, (4.5)],
the characteristic class term can be expressed in terms of the curvature of
the connection and the Euler characteristic of Σ. The formula reads

dim ker ∂̄n − dim ker ∂̄∗n =
n

V π

∫∫
Σ

dµΣ +
1

2
χ(Σ) +

1

2
(ηn + hn)(∂Σ)(4.9)

where χ(Σ) is the Euler characteristic of Σ, and ηn(∂Σ) and hn(∂Σ) are the
correction terms from the boundary. Since the boundary of Σ is a disjoint
union of circles, the correction terms ηn(∂Σ) and hn(∂Σ) are uniformly
bounded for all n.
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In [APS1], the connection is required to depend only on ∂Σ in a small
neighborhood of ∂Σ. With the notation in subsections 4.1 and 4.2, the
connection is required to be independent of ρ near ∂Σ. Our connection µΣ

does not satisfy this property. However, µΣ is affine in ρ, and ∂Σ is a disjoint
union of S1’s. With a slight modification, the index formula (4.9) still holds
in our setting. We will explain the modification at the end of this section.

In [APS1], there are adjoint boundary conditions for ∂̄n and ∂̄∗n. On the
collar neighborhood of the boundary,

∂̄n = ∂ρ + ∂/n and ∂̄∗n = −∂ρ + ∂/n .

where ρ is the coordinate transverse to the boundary. The operator ∂/n is the
restriction of ∂̄n and ∂̄∗n on the boundary, and it is a Dirac operator on the
boundary. The Atiyah–Patodi–Singer (APS for short) boundary condition
says that the restriction of αn on the boundary only has components in the
negative eigenspaces of ∂/n, and βn only has non-negative ones. We now give
an explicit description of the boundary conditions.

Adjacent to the tubular neighborhood of the binding. We follow the notations
in section 4.1, and take u1 = ∂ρ, u2 = 2∂t. The surface Σ is described by
ρ ≥ 1. The operators ∂̄n and ∂̄∗n are

∂̄nαn = ∂ραn − 2i∂tαn −
2n(2− ρ)

V
αn ,

∂̄∗nβn = −∂ρβn − 2i∂tβn −
2n(2− ρ)

V
βn ,

(4.10)

and ∂/n is −2i∂t − 2n
V . Let αn = αn,m(ρ)eimt and βn = βn,m(ρ)eimt. The

APS boundary condition isαn,m(1) = 0 when m ≥ n

V
,

βn,m(1) = 0 when m <
n

V
.

(4.11)

Adjacent to the Dehn-twist region. We follow the notations in section 4.2,
and take u1 = ∂ρ, u2 = ∂t. The region Σ is the union of where ρ ≥ 20ε and
ρ ≤ −20ε. The operators ∂̄n and ∂̄∗n are

∂̄nαn = ∂ραn − i∂tαn −
2n(v − ρ)

V
αn ,

∂̄∗nβn = −∂ρβn − i∂tβn −
2n(v − ρ)

V
βn .

(4.12)

At ρ = 20ε, ∂/n is −i∂t − 2n(v−20ε)
V . At ρ = −20ε, since ∂ρ does not point

inward, ∂/n is i∂t + 2n(v+20ε)
V . Let αn = αn,m(ρ)eimt and βn = βn,m(ρ)eimt.
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The APS boundary condition at ρ = 20ε is
αn,m(20ε) = 0 when m ≥ 2n

v − 20ε

V
,

βn,m(20ε) = 0 when m < 2n
v − 20ε

V
.

(4.13)

The condition at ρ = −20ε is
αn,m(−20ε) = 0 when m ≤ 2n

v + 20ε

V
,

βn,m(−20ε) = 0 when m > 2n
v + 20ε

V
.

(4.14)

In order to use the index formula (4.9) to compute dim ker ∂̄n, we need to
know that dim ker ∂̄∗n = 0.

Lemma 4.2. There exists a constant c such that the following holds. For
all n ≥ c, if βn satisfies the APS boundary condition,∫

Σ
|βn|2 ≤ cn−1

∫
Σ
|∂̄∗nβn|2 .

In particular, ∂̄∗n only has trivial solution for any n ≥ c.

Proof. The integration by parts formula gives∫
Σ
|∂̄∗nβn|2 =

∫
Σ
|∇nβn|2 +

∫
Σ

(
2n

V
+
κΣ

4
)|βn|2 +

∫
∂Σ
〈∂/nβn, βn〉

where κΣ is the scalar curvature. The APS boundary condition for βn implies
that

∫
∂Σ〈∂/nβn, βn〉 is non-negative. Hence, if n ≥ V max |κΣ|, we obtain the

inequality of the lemma. �

For any integer n ≥ c in lemma 4.2, the dimension of ker ∂̄n is given by
the right hand side of (4.9). Solutions of ∂̄n automatically solve the Dirac
equation (4.8) with r given by

γn =
2n

V
.(4.15)

However, they only solve the Dirac equation on Σ × S1. In order to get
smooth sections on the 3-manifold Y , we need to do some modifications.

Definition 4.3. For any δ ∈ (−15ε, 5ε), let Σδ be the extension/curtailment
of Σ defined by

• {ρ ≥ 1 − δ} for the part adjacent to the tubular neighborhood of
the binding, in terms of the coordinate in section 4.1.

• {ρ ≤ −20ε + δ or ρ ≥ 20ε − δ} for the part adjacent to the Dehn-
twist region, in terms of the coordinate in section 4.2.

Positive δ corresponds to the extension, and negative δ corresponds to the
curtailment. When δ = 0, Σ0 = Σ.
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Definition 4.4. Let χΣ be the cut-off function which is equal to 1 on Σε×S1

and equal to 0 on Y \(Σ2ε × S1), and only depends on ρ over (Σ2ε\Σε)× S1

in terms of the coordinate in sections 4.1 and 4.2,

Suppose that αn solves ∂̄n. On the part adjacent to the tubular neigh-
borhhood of the binding, αn is equal to∑

m< n
V

cn,m exp
(
− n

V
(ρ− 2 +

V m

n
)2
)
eimt(4.16)

where cn,m are constants. The expression also solves ∂̄n on the region where
ρ ≥ 1 − 2ε, and it also obeys the corresponding APS boundary condition.
On the part adjacent to the Dehn-twist region, the situation is similar.
Therefore, any solution of ∂̄n on Σ can be extended uniquely to a solution
on Σ2ε, and the extension obeys the corresponding APS boundary condition
on Σ2ε. When m < n

V , the function (ρ − 2 + V m
n )2 is monotone decreasing

for ρ ∈ (1− 2ε, 1]. It implies that∫
Σ2ε\Σ

|αn|2 ≤
∫

Σ\Σ−2ε

|αn|2 ≤
∫

Σ
|αn|2 ,

and thus the extension is still square integrable.
Consider the following construction of the almost eigensections: for each

solution of ∂̄n, extend it to Σ2ε, and multiply it by the cut-off function
χΣ. This process is linear, and it ends up with a vector space of the same
dimension as ker ∂̄n. Choose an orthonormal basis with respect to the L2-
inner product on Σ2ε. Denote the basis by {ξn,l}, where l runs from 1 to
the number on the right hand side of (4.9). They are smooth functions on
Y . Their properties are summarized in the following proposition.

Proposition 4.5. There exists a constant c which has the following signifi-
cance: For any integer n ≥ c, let ψn,l be the section of C⊕K−1 over Σ×S1

whose first component is

ξn,le
inφ(2πV )−

1
2

and second component is zero. Here, ξn,l is given by the above construction.
Then, ∫

Y
|Drψn,l −

r − γn
2

ψn,l|2 ≤ c exp(−n
c

)

for any r > 0, and γn is defined by (4.15). Moreover,∫
Y
〈ψn,l, ψn,l′〉 =

∫
Y
〈Drψn,l, ψn,l′〉 = 0 ,∣∣ ∫

Y
〈Drψn,l, Drψn,l′〉

∣∣ ≤ c exp(−n
c

)

for any l 6= l′.
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Proof. For each section ψn,l, there exists a function αn,l which solves ∂̄n on
Σ2ε and is extended from Σ, such that ξn,l = χΣαn,l. From the expression
(4.16), there exists a constant c1 such that∫

Σ2ε\Σε
|αn,l|2 ≤ c1 exp(− n

c1
)

∫
Σε

|αn,l|2 .(4.17)

By (4.8), the first component of Drψn,l is

r − γn
2

χΣαn,le
inφ(2πV )−

1
2 =

r − γn
2

ξn,le
inφ(2πV )−

1
2 .

The second component of Drψn,l is equal to

χ′Σαn,le
i(n+1)φ(2πV )−

1
2

which is supported on Σ2ε\Σε. Since {χΣαn,l} = {ξn,l} forms an orthonor-
mal set in L2(Σ2ε), the above expression of Drψn,l with (4.17) proves the
proposition. �

4.4.1. A remark on the APS index theorem. We now explain why the index
formula (4.9) still holds in our setting. For simplicity, we only emphasize it
for the boundary component adjacent to the tubular neighborhood of the
binding. To start, choose a smooth function h(ρ) in ρ ∈ [1, 1 + 20ε) such
that

• h(ρ) = 1 for ρ ∈ [1, 1ε];
• h(ρ) = 2− ρ for ρ ∈ [1 + 2ε, 1 + 20ε);
• h(ρ) is non-increasing in ρ.

Let µh be the 1-form which is equal h(ρ)dt near the boundary of Σ, and
is equal to µΣ away from the boundary of Σ. Stokes theorem implies that∫ ∫

Σ dµΣ =
∫ ∫

Σ dµh.

We take the same metric ds2
Σ on Σ. Let ∂̄n,h and ∂̄∗n,h be the Cauchy–

Riemann operators on C ⊕K−1
Σ with the connection perturbed by −2in

V µh.
Since h(ρ) is equal to 1 on the tubular neighborhood of ∂Σ, it meets the
requirement of [APS1, (4.3)]. Thus, the index is given by the right hand
side of (4.9).

We claim that dim ker ∂̄n = dim ker ∂̄n,h. The operators ∂̄n and ∂̄n,h share
the same boundary condition, as described by (4.11). For any solution αn
of ∂̄n, it can be expressed as (4.16) on Σ\Σ−20ε. Let αn,h be equal to αn on
Σ−20ε, and equal to∑
m< n

V

cn,m exp
(
− 2n

V

∫ ρ

1+2ε
(h(s)− V m

n
)ds
)

exp
(
− n

V
(2ε− 1 +

V m

n
)2
)
eimt

on Σ\Σ−20ε. It is not hard to see that αn,h is smooth and solves ∂̄n,h. The
construction of αn,h from αn gives a linear map from ker ∂̄n to ker ∂̄n,h,

which we denote by Πh. On the other hand, the inverse map Π−1
h is given

by solving the ordinary differential equation on Σ\Σ−20ε. Therefore, ker ∂̄n
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and ker ∂̄n,h are isomorphic to each other. A similar construction implies
that ker ∂̄∗n and ker ∂̄∗n,h are isomorphic to each other.

5. The model case: S1 × S2

In this section, we study the Dirac equations of the associated contact
forms (4.5) on S1×S2. The S1×S2 associated to the tubular neighborhood
of the binding will be denoted by Y̌ . The Dirac operators will be denoted
by Ďr, and the sections will be denoted by ψ̌. The S1 × S2 associated to
the Dehn-twist region will be denoted by Ỹ . The Dirac operators will be
denoted by D̃r, and the sections will be denoted by ψ̃. Their spectral flow
function will be denoted by šfa(r) and s̃fa(r), respectively. We will focus
on the associated contact form of the tubular neighborhood of the binding.
For the associated contact form of the Dehn-twist region, the argument is
completely parallel, and the details will be omitted.

Recall that we fix a global trivialization of C⊕K−1 to identify its sections
with C2-valued functions. The corresponding Dirac operator is given by
(4.1), and it is invariant under the two global S1-actions in eiφ and eit. Hence,
the eigenspaces of the Dirac operator split according to the frequencies with
respect to these two S1-actions. The splitting allows us to study the spectral
flow function directly. Let Sk,m be the following space of sections:{

ψ = (α, β)
∣∣ ∂φψ = ikψ + i(0, β), ∂tψ = imψ

}
.

The following notions will be used throughout the paper.

Definition 5.1. For the associated contact form (4.5) of the tubular neigh-
borhood of the binding, the function g/f is monotone decreasing in ρ. For
each positive integer k and integer m, there is a unique ρ̌k,m ∈ (0, 2) such
that kg(ρ̌k,m) = mf(ρ̌k,m). Let γ̌k,m be

mf ′(ρ̌k,m)− kg′(ρ̌k,m)

∆(ρ̌k,m)
=

2k

f(ρ̌k,m)
=

2m

g(ρ̌k,m)

where ∆ is defined by (4.6). The last equality only makes sense at where
g(ρ̌k,m) 6= 0. If k = 0 and m > 0, let ρ̌k,m = 0 and γ̌k,m −m. If k = 0 and
m < 0, let ρ̌k,m = 2 and γ̌k,m = −m.

For the associated contact form of the Dehn-twist region, γ̃k,m is defined

in the same way: replace f , g and ∆ by f̃ , g̃ and ∆̃, and ρ̃k,m lies in the

interval [−2, 2]. For k = 0 and m 6= 0, γ̃k,m = sign(m)m
|v|+1 .

We will have various cut-off functions for different purpose. They will be
denoted by χ with some sub/superscript. If there is no sub/superscript, it
is the following one:

Definition 5.2. Let χ(x) be the cut-off function on R with χ(x) = 1 when
|x| ≤ 1

2 and χ(x) = 0 when |x| ≥ 1.
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5.1. Uniqueness of zero crossing. In order to prove the upper bound in
theorem 2.2 for the associated contact forms, we need to know that the zero
crossing of Ďr on each Sk,m is unique.

Proposition 5.3. For the associated contact form (4.5) on Y̌ , there exists
a constant c > 0 such that the following holds.

(i) For each k and m, the Dirac operator Ďr on Sk,m has at most one
zero crossing for r ≥ c.

(ii) If k is negative, or both k and m are zero, there is no zero crossing
for r ≥ c.

(iii) If the Dirac operator does have a zero crossing on Sk,m at some
r ≥ c, then

r ∈ [γ̌k,m − c, γ̌k,m + c] .

Proof. Suppose there is a ψ̌ = (α̌, β̌) ∈ Sk,m such that Ďrψ = 0 and∫
Y̌ |ψ̌|

2 = 1. We will first prove that ψ̌ is small except near ρ̌k,m, then

prove that ψ̌ is similar to the unique solution of the linearized equation at
ρ̌k,m.

By proposition 3.1 and (4.1), there exists a constant c1 such that∫
Y̌

∣∣(r +
kg′ −mf ′

∆
)α̌
∣∣2 =

∫
|pr1(Ďrβ̌)|2 ≤ c1

∫
Y̌
|α̌|2 ,(5.1) ∫

Y̌

∣∣eiφ(∂ρα̌−
kg −mf

∆
α̌)
∣∣2 =

∫
|pr2(Ďrβ̌)|2 ≤ c1

∫
Y̌
|α̌|2(5.2)

provided r ≥ c1. Here, pr1 and pr2 stand for the projection onto the C
and K−1-component, respectively. We denote (r + kg′−mf ′

∆ )α̌ by D1α̌, and

eiφ(∂ρα̌− kg−mf
∆ α̌) by D2α̌.

Rough relations between k, m and r. Consider the integral of the real part
of 〈D1α̌, f α̌〉+ 〈D2α̌, e

iφf ′α̌〉. With (5.1), (5.2), we have

−c′1
∫
Y̌
|α̌|2 ≤

∫
Y̌

(
(rf − 2k)|α̌|2 +

1

2
f ′∂ρ|α̌|2

)
≤ c′1

∫
Y̌
|α̌|2 .

Note that f ′∂ρ is a globally defined vector field on Y̌ . With integration by
parts, there exist a constant c2 such that

−c2

∫
Y̌
|α̌|2 ≤

∫
Y̌

(rf − 2k)|α̌|2 ≤ c2

∫
Y̌
|α̌|2 ,

−c2

∫
Y̌
|α̌|2 ≤

∫
Y̌

(rg − 2m)|α̌|2 ≤ c2

∫
Y̌
|α̌|2

(5.3)

provided r ≥ c1. The second line is obtained by the same argument on
〈D1α̌, gα̌〉 + 〈D2α̌, e

iφg′α̌〉. Let c3 = c2 + max{f, |g|}. It follows from (5.3)
that

2k ≤ rc3 , 2|m| ≤ rc3(5.4)
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provided r ≥ c1. On the other hand, it is straightforward to bound r in
terms of k and m. By (5.1), there exists a constant c4 such that

r ≤ c4(|k|+ |m|)(5.5)

provided r ≥ c4. It follows that k and m cannot both be zero.

Some estimates on α. Consider the integral of |fD1α̌ + e−iφf ′D2α̌|2. By
(5.1) and (5.2), we have∫

Y̌
(rf − 2k)2|α̌|2 + |f ′∂ρα̌|2 + (rf − 2k)f ′∂ρ|α̌|2 ≤ c′′1

∫
Y̌
|α̌|2 .

Throw away the second term, and perform integration by parts on the third
term. With (5.4), there exists a constant c5 such that∫

Y̌
(rf − 2k)2|α̌|2 ≤ rc5

∫
Y̌
|α̌|2(5.6)

provided r ≥ c1. The same argument on |gD1α̌+e−iφg′D2α̌|2 and |e−iφ∆D2α̌|2
implies that ∫

Y̌
(rg − 2m)2|α̌|2 ≤ rc5

∫
Y̌
|α̌|2 ,(5.7) ∫

Y̌
(kg −mf)2|α̌|2 ≤ rc5

∫
Y̌
|α̌|2(5.8)

provided r ≥ c1.
We separate the discussion into two cases according to whether

|m| < (
1

32ε2
− 1)k or |m| ≥ (

1

32ε2
− 1)k .

Case 1. When |m| < ( 1
32ε2
−1)k, k can only be positive. We are going to use

(5.8) to obtain a refined estimate on α. Note that ρ̌n,m (given by definition
5.1) lies within (8ε, 2− 8ε). The function |kg −mf | can only be small near
ρ̌n,m. More precisely, there is a constant c6 > 0 such that

|kg −mf | ≥

{
1
c6
r when |ρ− ρ̌k,m| ≥ ε ,

1
c6
r|ρ− ρk,m| when |ρ− ρ̌k,m| < ε .

(5.9)

provided r ≥ c6. Here is the proof of (5.9): The condition |m| < ( 1
32ε2
− 1)k

and (5.5) implies that k is greater than some multiple of r. When ρ ≤ 7ε
or ρ ≥ 2 − 7ε, it is straightforward to verify (5.9). When ρ ∈ (7ε, 2 − 7ε),
(5.9) follows from Taylor’s theorem on 1

f (kg−mf) and the monotonicity of
1
f (kg −mf).

With (5.8) and (5.9), there exist a constant c7 such that∫
Y̌
|α̌|2 ≤ c7

∫
|ρ−ρ̌k,m|≤c7r−

1
2

|α̌|2(5.10)

provided r ≥ c7.
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Refined estimate on r. By (5.1) and (5.10),

c1

∫
Y̌
|α̌|2 ≥

∫
|ρ−ρ̌k,m|≤c7r−

1
2

∣∣(r − mf ′ − kg′

∆
)α̌
∣∣2

≥
∫
|ρ−ρ̌k,m|≤c7r−

1
2

((r − γ̌k,m)2

2
|α̌|2 −

∣∣(γ̌k,m − mf ′ − kg′

∆
)α̌
∣∣2)

≥
∫
Y̌

(r − γ̌k,m)2

2c7
|α̌|2 − c8

∫
Y̌
|α̌|2 .

For the last inequality, note that the derivative of mf ′−kg′
∆ at ρ̌k,m is zero.

Taylor’s theorem on γ̌k,m − mf ′−kg′
∆ implies that∣∣γ̌k,m − mf ′ − kg′

∆
)
∣∣2 ≤ c′8r2|ρ− ρ̌k,m|4 ≤ c8

for any ρ with |ρ− ρ̌k,m| ≤ c7r
− 1

2 .
Thus, there exits a constant c9 such that

|r − γ̌k,m| ≤ c9(5.11)

provided r ≥ c9. It follows that any zero crossing on Sk,m must happen
somewhere very close to γ̌k,m. It also implies that γ̌k,m and r are of the
same order.

Zeroth order approximation of α̌. Consider the linearized operator of e−iφD2

at ρ̌k,m:

Lk,m = ∂x + γ̌k,mx

where x is ρ − ρ̌k,m. If we regard Lk,m as an operator on R, the theory
of the 1-dimensional harmonic oscillator applies. See [R, chapter 9] for the
properties of the harmonic oscillator. If γ̌k,m > 0, Lk,m has the following
properties. Its kernel is 1-dimensional, and is spanned by

ξ̌k,m = (
γ̌k,m
π

)
1
4 exp(−

γ̌k,m
2

x2) .(5.12)

It has a right inverse operator Gk,m : C∞cpt(R)→ C∞(R) which satisfies∫
R
〈Gk,mη, ξ̌k,m〉 = 0 and

∫
R
|Gk,mη|2 ≤

1

γ̌k,m

∫
R
|η|2

for any η ∈ C∞cpt(R). More precisely, the operator −∂2
x + γ̌2

k,mx
2 + γ̌k,m has

positive spectrum, and induce an spectral decomposition. According to [R,
(9.3)], Gk,m is given by(

− ∂x + γ̌k,mx
)
◦
(
− ∂2

x + γ̌2
k,mx

2 + γ̌k,m
)−1

.

Consider the cut-off function χ(r
1
3x). By (5.8) and (5.9),∫

Y̌

∣∣∣(1− χ(r
1
3x)
)
α̌
∣∣∣2 ≤ c10r

− 1
3

∫
Y̌
|α̌|2 .(5.13)
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We compute Lk,m(χ(r
1
3x)α̌):∫

Y̌

∣∣∣Lk,m(χ(r
1
3x)α̌

)∣∣∣2 ≤ 2

∫ ∣∣∂x(χ(r
1
3x)) α̌|2 +

(
χ(r

1
2x)
)2∣∣Lk,m(α̌)

∣∣2
≤ 2

∫ ∣∣∂x(χ(r
1
3x)) α̌|2 + 4

∫ (
χ(r

1
2x)
)2|D2α̌|2

+ 4

∫ (
χ(r

1
2x)
)2∣∣(Lk,m − e−iφD2)(α̌)

∣∣2 .
The second term is controlled by (5.2). The operator Lk,m − e−iφD2 does

not involve taking derivatives, and |Lk,m− e−iφD2| ≤ c′10rx
2 on the support

of χ(r
1
2x) by the Taylor series expansion. With (5.2) and (5.11), we have∫

Y̌

∣∣∣Lk,m(χ(r
1
3x)α̌

)∣∣∣2(5.14)

≤ c′′10

(
r

2
3

∫
1
2
r−

1
3≤|x|≤r−

1
3

|α̌|2 +

∫
Y̌
|α̌|2 + r

4
3

∫
|x|≤r−

1
3

x2|α̌|2
)

≤ c′′′10r
1
3

∫
Y̌
|α̌|2

provided r ≥ c10. Let

χ(r
1
3x)α̌ = α̌k,m(x)ei(kφ+mt)∆−

1
2 (2π)−1 .

If we regard α̌k,m(x) as being defined on R and applyGk,m on Lk,m
(
α̌k,m(x)

)
,

we conclude that

α̌k,m = ck,mξ̌k,m + ξ̌⊥k,m(5.15)

with

∫
R
|ξ̌⊥k,m|2 ≤ c11r

− 2
3

∫
Y̌
|α̌|2 ,

and |ck,m|2 = |α̌k,m − ξ̌⊥k,m|2 ≥ (1− c11r
− 1

3 )

∫
Y̌
|α̌|2

for some constant c11.
Now, (5.15), (5.13) and (5.11) imply that there exists a constant c12 with

the following significance. Suppose that Ďr on Sk,m has two zero modes ψ̌1

and ψ̌2 at r1 ≥ c12 and r2 ≥ c12, respectively. Then,∣∣ ∫
Y̌
〈α̌1, α̌2〉

∣∣2 ≥ (1− c12r
− 1

3 )

∫
Y̌
|α̌1|2

∫
Y̌
|α̌2|2 .

This contradicts proposition 3.3, and the uniqueness in case 1 follows.

Case 2 with m > 0. When |m| ≥ ( 1
32ε2
− 1)k, let us further assume that

m > 0. The case when m < 0 will be discussed later. The first task is to
show that α̌ is small on the region where ρ ≥ 9ε. To start, (5.7) implies that∫

ρ≥2−9ε
|α̌|2 ≤ c5r

−1

∫
Y̌
|α̌|2 .
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If k ≤ 0, (5.6) implies that∫
9ε≤ρ≤2−9ε

|α̌|2 ≤ c13r
−1

∫
Y̌
|α̌|2 .

for some constant c13.
If k ≥ 0, it is easy to see that there exists a constant c14 > 0 such that

kg −mf ≤ −c14m when 9ε ≤ ρ ≤ 2− 9ε .

By (5.8) and (5.5), there exists a constant c15 such that∫
9ε≤ρ≤2−9ε

|α̌|2 ≤ c15r
−1

∫
Y̌
|α̌|2

provide r ≥ c15.
The above estimates finds a constant c16 such that∫

ρ≥9ε
|α̌|2 ≤ c16r

−1

∫
Y̌
|α̌|2(5.16)

provided r ≥ c16.

Refined estimate on r. When ρ ≤ 10ε, the function 1
∆(mf ′ − kg′) is identi-

cally equal to γ̌k,m = k +m. By (5.1) and (5.16),∫
ρ≤9ε

(r − γ̌k,m)2|α̌|2 ≤ c1

∫
Y̌
|α̌|2 ≤ c1(1 +

c16r
−1

1− c16r−1
)

∫
ρ≤9ε
|α̌|2

Therefore, there exists a constant c17 such that

|r − γ̌k,m| ≤ c17(5.17)

provided r ≥ c17.

Zeroth order approximation of α̌. When ρ ≤ 10ε, the operator D2 is

Lk,m = 2∂z +
γ̌k,m

2
z̄

where z = ρeiφ. If we regard Lk,m as an operator on C, the theory of 2-
dimensional harmonic oscillator applies. If γ̌k,m > 0, Lk,m has the following
properties. C∞(C) splits according to the frequency with respect to the S1-
action by −i∂φ = z∂z − z̄∂z̄. For any l ∈ Z, Lk,m maps the frequency l
subspace to the frequency l + 1 subspace, and we only care about Lk,m on
the frequency k subspace.

When k < 0, the kernel of Lk,m is trivial. It has a right inverse operator
Gk,m which maps the frequency k + 1 subspace of C∞cpt(C) to the frequency
k subspace of C∞(C). Gk,m satisfies∫

C
|Gk,mη|2 ≤

1

γ̌k,m

∫
C
|η|2

for any η ∈ C∞cpt(C) with frequency k + 1.
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When k ≥ 0, Lk,m has a 1-dimensional kernel spanned by

ξ̌k,m = (
1

k
)
1
2 (
γ̌k,m

2
)
k+1
2
zk√
π

exp(−
γ̌k,m

4
|z|2) .(5.18)

It has a right inverse operator Gk,m satisfying∫
C
|Gk,mη|2 ≤

1

γ̌k,m

∫
C
|η|2 , and

∫
C
〈Gk,mη, ξ̌k,m〉 = 0

for any η ∈ C∞cpt(C) with frequency k + 1.
Let χB be the cut-off function depending only on ρ = |z|, with χB(ρ) = 1

when ρ ≤ 9ε and χB(ρ) = 0 when ρ ≥ 10ε. By (5.16) and (5.2), there exists
a constant c18 such that∫

Y̌
|Lk,m(χBα̌)|2 ≤ c18

∫
Y̌
|α̌|2(5.19)

provided r ≥ c18.
If k < 0, we apply Gk,m on (5.19) to find a constant c19 so that∫

Y̌
|χBα̌|2 =

∫
C×S1

|χBα̌|2 ≤ c19r
−1

∫
Y̌
|α̌|2 .

This contradicts (5.16). Thus, k can only be nonnegative. If k ≥ 0, we
apply Gk,m on (5.19) to obtain a similar zeroth order approximation as that
in case 1. By the same token, we end with a contradiction to proposition 3.3.

Case 2 with m < 0. Similar estimates imply that α̌ peaks on the region
where ρ ≥ 2−9ε. When ρ ≥ 2−10ε, let w = (2−ρ)eiφ. The Dirac operator
is 

r − 2

2
α̌+

i

2
(∂φα̌− ∂tα̌) +

(
2∂wβ̌ +

i

2
w̄(∂φβ̌ − ∂tβ̌) +

w̄

2
β̌
)
,(

− 2∂w̄α̌+
i

2
w(∂φα̌− ∂tα̌)

)
− r + 1

2
β̌ − i

2
(∂φβ̌ − ∂tβ̌) .

With the same argument, there can be at most one zero crossing happening
near γ̌k,m = k −m. This completes the proof of proposition 5.3. �

5.2. Second order approximation of eigensections. We need a further
understanding of eigensections in this model. In particular, we need to know
where the zero crossing happens up to an error of O(r−1). It will be achieved
by the second order approximation of eigensections with small eigenvalues.

There are two ingredients. The first ingredient is that the true Dirac
operator Ďr can have at most one small eigenvalue on Sk,m. The second
ingredient is an iteration scheme to construct an approximation by the lin-
earized operator. The following two lemmata constitute the first ingredient.
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Lemma 5.4. There exists a constant c > 1 which has the following signif-
icance. Suppose that ψ̌ be a eigensection of Ďr for some r ≥ c, and the
magnitude of the corresponding eigenvalue is less than

√
r
2 . Then∫

Y̌
|β̌|2 + r−1

∫
Y̌
|∇rβ̌|2 ≤ cr−1

∫
Y̌
|α̌|2 .

Proof. The same as proof of proposition 3.1. �

Lemma 5.5. There exists a constant c > 10 such that the following holds.
For any r ≥ c, the Dirac operator Ďr on Sk,m has at most one eigenvalue λ

whose magnitude is less than
√

r
2 . If k is negative or k = m = 0, there is

no such eigenvalue. Moreover, if there does exist such eigenvalue, then

|λ− (
r

2
−
γ̌k,m

2
)| ≤ c .

Proof. The proof is parallel to the proof of proposition 5.3. We explain it
briefly.

Suppose that ψ ∈ Sk,m is an eigensection whose eigenvalue has magnitude

less than
√

r
2 . By lemma 5.4, (5.1) and (5.2) would be replaced by∫

Y̌

∣∣λ− (
r

2
+
kg′ −mf ′

2∆
)α̌
∣∣2 ≤ c1

∫
Y̌
|α̌|2 ,∫

Y̌

∣∣eiφ(∂ρα̌−
kg −mf

∆
α̌)
∣∣2 ≤ c1

∫
Y̌
|α̌|2 .

Based on these two estimates, the bound in (5.3) becomes c2
√
r. The esti-

mates (5.6), (5.7), (5.8) and (5.9) remain the same. They imply that

• the refined estimate on r: |λ − ( r2 −
γ̌k,m

2 )| ≤ c3 for some constant
c3;
• the same zeroth order approximation of α̌.

If Ďr has two such eigensections, their orthogonality with lemma 5.4
implies that the inner product between their first components is small. It
contradicts to the zeroth order approximation of their first components. �

Suppose that Ďr on Sk,m has an eigenvalue λ0 with |λ0| ≤ 1. Similar to
(5.11) and (5.17), there exists a constant c4 such that

|r − γ̌k,m| ≤ c4(5.20)

provided r ≥ c4. Because of (5.20), r and γ̌k,m are of the same order. It

follows from lemma 5.5 that if λ is an eigenvalue of Ďr on Sk,m other than
λ0, then

|λ− λ0| ≥
√
r

8
.(5.21)
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We are going to approximate the eigensection of λ0 to the second order.
Again, we separate it into two cases according to whether

|m| < (
1

32ε2
− 1)k or |m| ≥ (

1

32ε2
− 1)k .

Case 1. When |m| < ( 1
32ε2
− 1)k, let

α̌ = α̌k,m(ρ)ei(kφ+mt)∆−
1
2 (2π)−1 ,

β̌ = β̌k,m(ρ)ei((k+1)φ+mt)∆−
1
2 (2π)−1 .

(5.22)

The Dirac operator on α̌k,m and β̌k,m is


(
r

2
+
kg′ −mf ′

2∆
)α̌k,m + (−β̌′k,m −

kg −mf
∆

β̌k,m −
∆′

2∆
β̌k,m) ,

(α̌′k,m −
kg −mf

∆
α̌k,m −

∆′

2∆
α̌k,m)− (

r

2
+ 1 +

kg′ −mf ′

2∆
+
f ′′g′ − f ′g′′

8∆
)β̌k,m .

(5.23)

For simplicity, change the variable by x = ρ − ρ̌k,m. The Taylor series
expansion of the eigensection equation at x = 0 is of the following form

λα̌k,m = (
r

2
−
γ̌k,m

2
+ r1x

2 + r3x
3 + Rα

1 )α̌k,m

+ (− d

dx
+ γ̌k,mx+ c1 + r2x

2 + Rβ
1 )β̌k,m ,

λβ̌k,m = (
d

dx
+ γ̌k,mx+ c1 + r2x

2 + c2x+ r4x
3 + Rα

2 )α̌k,m

− (
r

2
−
γ̌k,m

2
+ c3 + r1x

2 + Rβ
2 )β̌k,m .

(5.24)

By Taylor’s theorem, there exists a constant c5 > 0 such that the coefficients
|cj | ≤ c5 and |rj | ≤ c5r; the remainder terms |Rα

j | ≤ c5(x2 + rx4) and

|Rβ
j | ≤ c5(|x| + r|x|3) for |x| ≤ ε. These coefficients and the remainder

terms depend on k and m. Similar to 5.4), the assumption on the existence
of small eigenvalue implies that k and |m| are less than some multiple of r.

Equation (5.24) can be used to construct higher order approximation of
the eigensection by the following procedure. Rewrite the equation as

(− d

dx
+ γ̌k,mx)β̌k,m = F1(α̌k,m, β̌k,m) + (λ− r

2
)α̌k,m ,

(
d

dx
+ γ̌k,mx)α̌k,m = F2(α̌k,m, β̌k,m) + (λ+

r

2
)β̌k,m .

Start with α̌k,m = (
γ̌k,m
π )

1
4 exp(− γ̌k,m

2 x2), β̌k,m = 0, and λ = 0. The next
order term of α̌k,m is determined by the second equation. The next order

term of λ is determined by the condition that F1(α̌k,m, β̌k,m)+(λ− r
2)α̌k,m is

L2-orthogonal to exp(− γ̌k,m
2 x2). The next order term of β̌k,m is determined

by the first equation.
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Following this procedure, we have the second order approximation:

α̌k,m =
(
1 + a1(x) + a2(x, r)

)
χ(εx)

( γ̌k,m
π

) 1
4 exp(−

γ̌k,m
2

x2) ,

β̌k,m =
(
b1(x) + b2(x)

)
χ(εx)

( γ̌k,m
π

) 1
4 exp(−

γ̌k,m
2

x2) ,

λ =
r

2
−
γ̌k,m

2
+

r1
2γ̌k,m

(5.25)

where

a1(x) = −c1x−
r2
3
x3 ,

a2(x, r) =
(c21 − c2

2
− r1

4γ̌k,m
(r − γ̌k,m +

r1
2γ̌k,m

+ c3)
)(
x2 − 1

2γ̌k,m

)
+
(c1r2

3
− r4

4
− r21

8γ̌k,m

)(
x4 − 3

4γ̌2
k,m

)
+

r22
18

(
x6 − 15

8γ̌3
k,m

)
,

b1(x) = − r1
2γ̌k,m

x ,

b2(x) =
(c1r1 − r3

2γ̌k,m
+

r1r2
4γ̌2

k,m

)(
x2 +

1

2γ̌k,m

)
+

r1r2
6γ̌k,m

x4 .

To estimate the error term, note that∫
R

∣∣xl exp(−
γ̌k,m

2
x2)
∣∣2 ≤ ((l + 3)!)(γ̌k,m)−(l+ 1

2
)

for any integer l ≥ 0. If we plug (5.25) into (5.24), the size of the error term
can be computed directly. Let ψ̌n,m be the section whose components are
given by (5.22) and (5.25), then there exists a constant c6 such that∫

Y̌

∣∣Ďrψ̌k,m − (
r

2
−
γ̌k,m

2
+

r1
2γ̌k,m

)ψ̌k,m
∣∣2 ≤ c6r

−2

∫
Y̌
|ψ̌k,m|2(5.26)

provided r ≥ c6. The properties of this second order approximation are
summarized in the following proposition.

Proposition 5.6. There exists a constant c which has the following signifi-
cance. For any r ≥ c and |m| < ( 1

32ε2
− 1)k, suppose that the Dirac operator

Ďr on Sk,m has an eigenvalue λ0 with |λ0| ≤ 1. Then the corresponding
eigensection is

ψ̌eig
k,m = q̌k,mψ̌k,m + ψ̌

(3)
k,m

with ψ̌k,m is given by (5.22) and (5.25), and∫
Y̌
|ψ̌eig
k,m|

2 = 1 ,

∫
Y̌
|ψ̌(3)
k,m|

2 ≤ cr−3 , and |q̌k,m − 1| ≤ cr−1 .

Moreover, ∣∣λ0 − (
r

2
−
γ̌k,m

2
+

r1
2γ̌k,m

)
∣∣ ≤ cr−1
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where r1 is the coefficient of the second order term in the Taylor series
expansion of 1

2∆(kg′ −mf ′) at ρ̌k,m.

Proof. Let prλ0 be the L2-orthogonal projection onto the eigenspace of λ0.

Write ψ̌k,m as prλ0(ψ̌k,m) + (ψ̌k,m − prλ0(ψ̌k,m)). By (5.26) and (5.21),∫
Y̌
|ψ̌k,m − prλ0(ψ̌k,m)|2 ≤ 8c6r

−3

∫
Y̌
|ψ̌k,m|2 .

From the expression (5.25), there exists a constant c7 such that∣∣1− ∫
Y̌
|ψ̌k,m|2

∣∣ ≤ c7r
−1 .

After normalizing the L2-norm of ψ̌k,m + (prλ0(ψ̌k,m)) − ψ̌k,m), we obtain

the desired expression of ψ̌eig
k,m. The estimate on λ follows from (5.26). �

There is a subtlety about the section ψ̌k,m given by (5.25): it depends on
r, particularly the a2(x, r) term. However, that term is small, and it implies
that the difference between eigensections at different r is small.

Corollary 5.7. There exists a constant c such that the following holds.
Suppose that Ďr1 and Ďr2 both have an eigenvalue whose magnitude is less
than or equal to 1 on Sk,m, and r1 ≥ c, r2 ≥ c and |m| < ( 1

32ε2
− 1)k. Let

ψ̌eig
k,m(r1) and ψ̌eig

k,m(r2) be the corresponding eigensections of unit L2-norm.

Then ∣∣ ∫
Y̌
〈η̌, ψ̌eig

k,m(r1)〉
∣∣ ≤ c(min{r1, r2})−

3
2
( ∫

Y̌
|η̌|2
) 1

2

for any η̌ with
∫

Σ〈η̌, ψ̌
eig
k,m(r2)〉 = 0.

Proof. By proposition 5.6, |r1 − r2| ≤ 8. From the expression (5.25),∫
Y̌

∣∣(ψ̌k,m(r1)− ψ̌k,m(r2))
∣∣2 ≤ c8(r2 − r1)2

∫
R
x4(γ̌k,m)

1
2 exp(−γ̌k,mx2)

≤ c9(min{r1, r2})−4

for some constant c8 and c9. Since the terms a1(x) and b1(x) in (5.25) do
not depend on r, there exists a constant c10 such that∣∣∣1 + (

c21
2γ̌k,m

+
c1r2

2γ̌2
k,m

+
5r22

24γ̌3
k,m

+
r21

8γ̌3
k,m

)−
∫
Y̌
|ψ̌k,m(rj)|2

∣∣∣ ≤ c10r
−2
j

for j = 1, 2. Using this improved estimate in the proof of proposition 5.6,
we find that ∣∣q̌k,m(r1)− q̌k,m(r2)

∣∣ ≤ c11(min{r1, r2})−2

for some constant c11. The difference between these eigensections is

ψ̌eig
k,m(r1)− ψ̌eig

k,m(r2) =
(
q̌k,m(r1)− q̌k,m(r2)

)
ψ̌k,m(r1) + ψ̌

(3)
k,m(r1)

+ q̌k,m(r1)
(
ψ̌k,m(r1)− ψ̌k,m(r2)

)
− ψ̌(3)

k,m(r2).
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Take the inner product of η̌ with the above expression, and integrate over
Y̌ . With proposition 5.6 and some simple manipulations, it completes the
proof of the corollary. �

Throughout the discussion for proposition 5.6, r is fixed. We can forget
the assumption of proposition 5.6, and look at (5.25) independently. The
inequality (5.26) still holds as long as r and γk,m differ by O(1). In other
words, we can rephrase it as the existence of small eigenvalues.

Lemma 5.8. There exist a constant c which has the following significance.
For any k, m and r with |m| < ( 1

32ε2
−1)k, γ̌k,m ≥ c and |r−γ̌k,m+ r1

γ̌k,m
| ≤ 1,

the section ψ̌k,m defined by (5.22) and (5.25) satisfies∫
Y̌

∣∣Ďrψ̌k,m − (
r

2
−
γ̌k,m

2
+

r1
2γ̌k,m

)ψ̌k,m
∣∣2 ≤ cr−2

∫
Y̌
|ψ̌k,m|2∣∣1− ∫ |ψ̌k,m|2∣∣ ≤ cr−1

with the same r1 as that in proposition 5.6. Therefore, there exists an eigen-
value λ of Ďr on Sk,m with∣∣λ− (

r

2
−
γ̌k,m

2
+

r1
2γ̌k,m

)
∣∣ ≤ cr−1 .

Proof. We only need to check that the coefficients and remainder terms of
equation (5.24) remains the same order. According to the equation of γ̌k,m in

definition 5.1, k ≤ c12γ̌k,m for some constant c12, and |m| < ( 1
32ε2
−1)c12γ̌k,m.

Hence, the bound on the coefficients and remainder terms of equation (5.24)
remains the same order. By considering the Rayleigh quotient of Ďr − ( r2 −
γ̌k,m

2 + r1
2γ̌k,m

) on Sk,m, we conclude the existence of such an eigenvalue λ. �

Case 2. When |m| ≥ ( 1
32ε2
− 1)k, the linearized equation can be solved

completely. Let us further assume that m > 0. The discussion for m < 0 is
completely parallel, and will be omitted.

The functions ξ̌k,m defined by (5.18) are the almost eigensections. They
are exponentially small when ρ ≥ 9ε.

Lemma 5.9. There exist a constant c such that the following holds. For
any integers k and m with m ≥ ( 1

32ε2
− 1)k ≥ 0, the function ξ̌k,m defined

by (5.18) satisfies

|ξ̌k,m|2 ≤ c exp(−
γ̌k,m
c
|z|2)

for any z with |z| ≥ 9ε.

Proof. Remember that γ̌k,m is k+m when m ≥ ( 1
32ε2
−1)k ≥ 0. Within this

proof, we simply denote it by γ, and we are going to think γ as a variable
33



with γ ≥ k
32ε2

. From the expression

4π2|ξ̌k,m|2 =
1

k!
(
γ

2
)k+1|z|2k exp(−γ

2
|z|2),

|ξ̌k,m|2 is monotone increasing in k, for any fixed γ ≥ k
32ε2

and |z| ≥ 9ε.
Thus,

4π2|ξ̌k,m|2

≤ 1

Γ(32ε2γ + 1)
(
γ

2
)32ε2γ+1|z|64ε2γ exp(−γ

2
|z|2)

=

(
1

Γ(32ε2γ + 1)
(
γ

2
)32ε2γ+1|z|64ε2γ exp

(
− (

1

2
− 1

c
)γ|z|2

))
exp(−γ

c
|z|2)

where Γ(s) =
∫∞

0 xs−1e−xdx is the usual gamma function. If c is suffi-
ciently large, Stirling’s formula implies that the whole expression in front of
exp(−γ

c |z|
2) is uniformly bounded for all γ > 0 and |z| ≥ 9ε. �

Recall that χB is the cut-off function depending only on ρ = |z|, with
χB(ρ) = 1 when ρ ≤ 9ε and χB(ρ) = 0 when ρ ≥ 10ε. Let ψ̌k,m be the
section whose first component is

α̌k,m = χB ξ̌k,me
imt ,(5.27)

and whose second component is zero. By lemma 5.9 and (4.2), there exists
a constant c13 such that∫

Y̌

∣∣Ďrψ̌k,m − (
r

2
−
γ̌k,m

2
− 1)ψ̌k,m

∣∣2 ≤ c13 exp(− r

c13
) .(5.28)

With (5.21) and (5.20), we conclude that:

Proposition 5.10. There exists a constant c which has the following sig-
nificance. For any r ≥ c and m ≥ ( 1

32ε2
− 1)k ≥ 0, suppose that the Dirac

operator Ďr on Sk,m has an eigenvalue λ0 with |λ0| ≤ 1. Then the corre-
sponding eigensection is

ψ̌eig
k,m = q̌k,mψ̌k,m + ψ̌

(3)
k,m

with ψ̌k,m given by (5.27), and∫
Y̌
|ψ̌eig
k,m|

2 = 1 ,

∫
Y̌
|ψ̌(3)
k,m|

2 ≤ c exp(−r
c

) , and |q̌k,m − 1| ≤ c exp(−r
c

) .

Moreover, ∣∣∣λ0 − (
r

2
−
γ̌k,m

2
)
∣∣∣ ≤ c exp(−r

c
) .

In this case, |m| ≥ ( 1
32ε2
− 1)k, the section ψ̌k,m does not depend on r,

but ψ̌eig
k,m does depend on r. However, the dependence is small. Similar to

corollary 5.7, we have:
34



Corollary 5.11. There exists a constant c such that the following holds.
Suppose that Ďr1 and Ďr2 both have an eigenvalue whose magnitude is less
than or equal to 1 on Sk,m, and r1 ≥ c, r2 ≥ c and m ≥ ( 1

32ε2
− 1)k ≥ 0. Let

ψ̌eig
k,m(r1) and ψ̌eig

k,m(r2) be the corresponding eigensections of unit L2-norm.

Then ∣∣ ∫
Y̌
〈η̌, ψ̌eig

k,m(r1)〉
∣∣ ≤ c exp(−min{r1, r2}

c
)
( ∫

Y̌
|η̌|2
) 1

2

for any η̌ with
∫

Σ〈η̌, ψ̌
eig
k,m(r2)〉 = 0.

In this case, the sections ψ̌k,m also guarantees the existence of small eigen-
values.

Lemma 5.12. There exist a constant c which has the following significance:
For any k, m and r with m ≥ ( 1

32ε2
− 1)k ≥ 0, γ̌k,m ≥ c and |r − γ̌k,m| ≤ 1,

the section ψ̌k,m defined by (5.27) satisfies∫
Y̌

∣∣Drψ̌k,m − (
r

2
−
γ̌k,m

2
)ψ̌k,m

∣∣2 ≤ c exp(−r
c

)

∫
Y̌
|ψ̌k,m|2

and
∣∣1− ∫Y̌ |ψ̌k,m|2∣∣ ≤ c exp(− r

c ). Therefore, there exists an eigenvalue λ of

Ďr on Sk,m with ∣∣λ− (
r

2
−
γ̌k,m

2
)
∣∣ ≤ c exp(−r

c
) .

Since the coefficient r1 in lemma 5.8 is equal to 0 for m ≥ ( 1
32ε2
−1)k ≥ 0,

we can also formally put the − r1
2γ̌k,m

term in proposition 5.6 and lemma 5.12.

5.3. Estimating the spectral flow function. We now prove theorem 2.2
for this model case.

Theorem 5.13. For the associated contact form (4.5) of the tubular neigh-
borhood of the binding, there exists a constant c such that∣∣šfa(r)− r2

4

∫ 2

0
∆dρ

∣∣ ≤ cr
for all r ≥ c. The function ∆ is defined by (4.6).

Proof. Proposition 5.3 implies the following upper bound of the spectral flow
function

šfa(r) ≤ #
{

integers k ≥ 0 and m, with γ̌k,m ≤ r + c1

}
+ c1

= #
{

integers k ≥ 1 and m, with γ̌k,m ≤ r + c1

}
+ 2r + 3c1

for some constant c1. Thus, it suffices to count the total number of the
lattice points (k,m) with γ̌k,m ≤ r + c1.

Consider the reparameterized polar coordinate (s, ρ) on the right half-

plane: k = s
(
f2(ρ) + g2(ρ)

)− 1
2 f(ρ), m = s

(
f2(ρ) + g2(ρ)

)− 1
2 g(ρ). Let

γ̌(s, ρ) = 2s
(
f2(ρ) + g2(ρ)

)− 1
2 .
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Then γ̌(s, ρ) is equal to γ̌k,m at any lattice points (k,m). From the expression
of γ̌(s, ρ), it is not hard to see that there exists a constant c2 > 0 such that
the total number of lattice points with γ̌k,m ≤ r is less than the area of
where γ̌ ≤ r + c2. The area can be evaluated directly∫ 2

0

∫ √f2+g2
2

(r+c2)

0

∆

f2 + g2
sdsdρ =

r2 + 2c2r + c2
2

4

∫ 2

0
∆dρ .

This proves the assertion on the upper bound of the spectral flow function.
Lemma 5.8 and lemma 5.12 finds a constant c3 > 0 such that Ďr on

Sk,m has a zero eigenvalue within [γ̌k,m − c3, γ̌k,m + c3], provided γ̌k,m ≥ c3.
Therefore,

šfa(r) ≥ #{integers k ≥ 0 and m, with c3 ≤ γ̌k,m ≤ r + c3} .
The same area computation gives the desired lower bound on the spectral
flow function. �

Theorem 5.13 can be used to find a sequence of numbers such that there
are not too many zero crossings near these numbers. Here is the precise
statement:

Lemma 5.14. For any δ3 > 0, there exist a constant c and a sequence of
numbers {sn}n∈N determined by the associated contact forms and with the
following significance:

(i) the total number of zero crossings of Ďr and D̃r happening between

sn − δ3
sn−1

and sn + δ3
sn−1

is less than c for all n ∈ N;

(ii) for each n ∈ N, |sn − γn − 1
V | ≤

1
4V where γn = 2n

V .

Proof. For n ≤ 8(δ3 + 1)V 2, take sn to be γn + 1
V . For n > 8(δ3 + 1)V 2, we

are going to define sn inductively. By theorem 5.13, there exists a constant
c1 > 0 such that the total number of zero crossings happening within the
interval

In = [γn +
3

4V
, γn +

5

4V
]

is less than c1n ≤ c1V sn−1. Divide In into sub-intervals whose lengths
are 2δ3

sn−1
. It follows that the total number of sub-intervals is greater than

sn−1

8δ3V
. There must be a sub-interval which contains less than 8c1δ3V

2 zero
crossings. Let sn be the midpoint of that sub-interval. By the construction,
{sn}n∈N has the desired properties. �

5.4. Higher order approximation on certain regions. This section is
a remark on the approximation eigensections. On the region where 1− 5ε ≤
ρ ≤ 1 + 15ε of Y̌ , the function f = V and g = 2− ρ, and the Dirac operator
on Sk,m is already linear on this region, see (5.23).

If k
V (1 − 11ε) ≤ m ≤ k

V , ρ̌k,m lies between 1 and 1 + 11ε, and γ̌k,m is

equal to 2k
V . All the higher order terms in (5.24) are equal to zero, and the

correction terms in (5.25) are also equal to zero. Meanwhile, the almost
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solution (5.25) only supports within the interval [1− ε, 1 + 12ε]. Therefore,
these almost solutions solve the Dirac equation up to an exponentially small
error term. We have similar statements as proposition 5.10 and lemma 5.12.

Lemma 5.15. There exists a constant c which has the following significance:
For any r ≥ c and k

V (1 − 11ε) ≤ m ≤ k
V , suppose that the Dirac operator

Ďr on Sk,m has an eigenvalue λ0 with |λ0| ≤ 1, then∣∣∣λ0 − (
r

2
−
γ̌k,m

2
)
∣∣∣ ≤ c exp(−r

c
) .

On the other hand, if γ̌k,m ≥ c, |r − γ̌k,m| < 1, and k and m satisfy the

same constraint, the Dirac operator Ďr on Sk,m does have an eigenvalue λ0

satisfying the above estimate.

Similarly, for the associated contact form of the Dehn-twist region, the
Dirac operator is already linear on the region where −35ε ≤ ρ ≤ −10ε or
10ε ≤ ρ ≤ 35ε.

Lemma 5.16. There exists a constant c with the following significance. For
and r ≥ c and

2(v−31ε)
V+2(v−31ε)σ(20ε)k ≤ m ≤

2(v−20ε)
V+2(v−20ε)σ(20ε)k or

2(v+20ε)
V+2(v+20ε)σ(−20ε)k ≤ m ≤

2(v+31ε)
V+2(v+31ε)σ(−20ε)k ,

suppose that the Dirac operator D̃r on Sk,m has an eigenvalue λ0 with |λ0| ≤
1, then ∣∣∣λ0 − (

r

2
−
γ̃k,m

2
)
∣∣∣ ≤ c exp(−r

c
).

On the other hand, if γ̃k,m ≥ c, |r − γ̃k,m| < 1, and k and m satisfy the

same constraint, the Dirac operator D̃r on Sk,m does have an eigenvalue λ0

satisfying the above estimate.

Note that for k and m in the first range, γ̃k,m = 2(k+mσ(20ε))
V . For k and

m in the second range, γ̃k,m = 2(k+mσ(−20ε))
V .

5.5. Contact forms with two S1-symmetry. The method in this section
works for the contact forms that are invariant under two global S1-actions.
For instance, one can use the same method to prove theorem 2.2 for the
overtwisted contact form in [T1], or some contact forms on T 3. There are
two main differences:

(i) the frequency k might be negative;
(ii) there might be more than one zero crossing on each Sk,m. But the

number is decided by f(ρ) and g(ρ), and the zero modes peak at
different region.

With this understood, the condition (2.8) is a shortcut for dealing the

Dehn-twist region. It ensures the positivity of f̃ . If f̃ is not always positive,
we can still extend (the untwisting of) a to a contact form of the type (4.5)
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on S1 × S2. The frequency k can be negative, and it requires more work to
discuss it.

Here is a remark from the viewpoint of contact topology. With the ter-
minology of Giroux correspondence [G], our associated contact form is sup-

ported by an annulus with the identity map, and thus Stein fillable. If f̃ is
not always positive, the extension ends up with an overtwisted contact form
on S1 × S2.

6. Lower bound of the spectral flow

We are going to prove a stronger statement which implies the lower bound
in theorem 2.2.

Definition 6.1. Let us introduce the following notions:

(i) for the associated contact form of the tubular neighborhood of the
binding, let Ǐ(r′, r) be the total number of zero crossings of Ďr

happening within the interval (r′, r] and on Sk,m with m ≥ k
V ;

(ii) for the associated contact form of the Dehn-twist region, let Ĩ(r′, r)

be the total number of zero crossings of D̃r happening within the
interval (r′, r] and on Sk,m with

2(v − 20ε)

V − 2(v − 20ε)σ(20ε)
k ≤ m ≤ 2(v + 20ε)

V − 2(v + 20ε)σ(−20ε)
k ;

(iii) for any n ∈ N, let IΣ(n) be the dimension of ker ∂̄n.

If we fix r′ = 0, these functions obey the following estimates:

Lemma 6.2. There exists a constant c > 0 which has the following signifi-
cance: ∣∣∣Ǐ(0, r)− r2

4

∫ 1

0
∆dρ

∣∣∣ ≤ cr ,∣∣∣Ĩ(0, r)− r2

4

∫ 20ε

−20ε
∆̃dρ

∣∣∣ ≤ cr ,
∣∣∣ [V

2
r]∑

n=1

IΣ(n)− V r2

8π

∫
Σ

dµΣ

∣∣∣ ≤ cr
for all r ≥ c. The functions ∆ and ∆̃ are defined by (4.6).

Proof. The proof for the first two inequalities is similar to that of theorem
5.13. We briefly explain it for Ǐ(0, r), and use the same notation as that in
the proof of theorem 5.13. There exists a constant c1 such that Ǐ(0, r) is
less than

Area
(
{ρ ≤ 1 and γ̌(s, ρ) ≤ r + c1}

)
+ c1r

+ Area
(
{ k
V
≤ m ≤ k

V
+ 1 and γ̌(s, ρ) ≤ r + c1}

)
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for all r ≥ c1. The first term is given by the integral of ∆. It is not hard to
see that the third term is less than c2r for some constant c2.

The third inequality on IΣ(n) follows directly from the index formula (4.9)
and lemma 4.2. �

Here comes the main theorem of this section.

Theorem 6.3. There exist a constant c and a sequence of numbers {sn}n∈N
which have the following significance:

(i) for all n ≥ 2,

sfa(sn)− sfa(sn−1) ≥ IΣ(n) + Ǐ(sn−1, sn) + Ĩ(sn−1, sn)− c ;

(ii) for each n ∈ N, |sn − γn − 1
V | ≤

1
4V , where γn = 2n

V as in (4.15).

It is clear that the lower bound of the spectral flow function claimed in
theorem 2.2 follows from theorem 6.3 and lemma 6.2.

We will prove theorem 6.3 by constructing almost eigensections. The fol-
lowing lemma measures the difference between true eigenvalues and almost
eigenvalues. It is an issue of linear algebra, but we state it for a Dirac
operator.

Lemma 6.4. Let D be a Dirac operator on the bundle S. If there exist
a constant δ4, a finite number of smooth sections {ψl}Ll=1 of S, and real

numbers {µl}Ll=1 with the properties:

(i) {ψl}Ll=1 is an orthonormal set with respect to the L2-inner product;

(ii)
∫
|Dψl − µlψl|2 ≤ δ4 for all l;

(iii)
∫
〈Dψl, ψl′〉 = 0 for all l 6= l′;

(iv)
∑

1≤l,l′≤L
and l 6=l′

|
∫
〈Dψl,Dψl′〉| ≤ δ4.

Then, there exist L eigenvalues (counting multiplicity) {λl}Ll=1 of D such

that |λl − µl| ≤
√

2δ4 for all l.

Proof. Clearly the lemma is true for L = 1. Suppose the lemma holds for
L− 1, we are going to show that it is true for L. Without loss of generality,
we may assume that {µl}Ll=1 is non-decreasing in l.

For each l ∈ {1, 2, · · · , L}, remove ψl and µl, and apply the lemma. If
there are L eigenvalues (counting multiplicity), we are done. If there are

only (L− 1) eigenvalues, {λl}L−1
l=1 , they must satisfy

|λl − µl| ≤
√

2δ4 and |λl − µl+1| ≤
√

2δ4

for all l ∈ {1, 2, · · · , L− 1}. The triangle inequalities implies that

|µl − µl+1| ≤ 2
√

2δ4

for all l ∈ {1, 2, · · · , L− 1}.
Suppose that {el}L−1

l=1 are the eigensections corresponding to {λl}L−1
l=1 .

There exist complex numbers {cl}Ll=1 such that
∑L

l=1 |cl|2 = 1, and
∑L

l=1 clψl
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is orthogonal to el for all l ∈ {1, 2, · · · , L− 1}. For any real number ν, the

operator D − ν on
∑L

l=1 clψl satisfies the estimate:∫ ∣∣(D − ν)(

L∑
l=1

clψl)
∣∣2 ≤ L∑

l=1

|cl|2
∫ ∣∣(D − ν)ψl

∣∣2 +
∑

1≤l,l′≤L
and l 6=l′

∫ ∣∣〈Dψl,Dψl′〉∣∣

≤
L∑
l=1

|cl|2(
√
δ4 + |ν − µl|)2 + δ4

≤ (
√

2δ4 + max
l
|ν − µl|)2 .

Consider ν = µ1+µL
2 , the above inequality produces another eigenvalue λL

with

µ1 −
√

2δ4 ≤ λL ≤ µL +
√

2δ4 ,

and the eigensection associated to λL is orthogonal to {el}L−1
l=1 . Therefore,

there exist some l ∈ {1, 2, · · · , L} such that |λL − µl| ≤
√

2δ4. After re-
numbering the indices of {λl}Ll=1, these L eigenvalues satisfy the assertion
of the lemma. �

The following proposition is the prototype of theorem 6.3.

Proposition 6.5. There exist a constant c > 0 such that the following holds.
For any integer n ≥ c and any δ−5 , δ

+
5 ∈ [ 1

2V ,
3

2V ], let γn = 2n
V as in (4.15),

then

sfa(γn + (δ+
5 +

c

γn
))− sfa(γn − (δ−5 +

c

γn
))

≥ IΣ(n) + Ǐ(γn − δ−5 , γn + δ+
5 ) + Ĩ(γn − δ−5 , γn + δ+

5 )

Proof. The proof contains three steps.

Step 1. This step constructs almost eigensections of Dγn from those three
terms on the right hand side.

From the page. By proposition 4.5, for any n ≥ c2, there exists a L2-
orthonormal set of sections {ψn,l} where l ∈ {1, 2, · · · , IΣ(n)}, with∫

Y
|Dγnψn,l|2 ≤ c2 exp(−γn

c2
) ,(6.1)∫

Y 〈Dγnψn,l, ψn,l′〉 = 0 and |
∫
Y 〈Dγnψn,l, Dγnψn,l′〉| ≤ c2 exp(−γn

c2
) for any

l 6= l′.
From the tubular neighborhood of the binding. If Ďr has a zero crossing

at γ ∈ (γn − δ−5 , γn + δ+
5 ] on Sk,m with m ≥ k

V , proposition 5.6 and 5.10 for
r = γ imply that there exists a constant c3 such that∣∣γ

2
−
γ̌k,m

2
+

r1
2γ̌k,m

∣∣ ≤ c3γ
−1 ≤ 2c3γ

−1
n
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provided n ≥ c3. Then apply lemma 5.8 and lemma 5.12 for r = γn to find
a constant c4 and a section ψ̌k,m such that∫

Y̌

∣∣Ďγnψ̌k,m − (
γn
2
−
γ̌k,m

2
+

r1
2γ̌k,m

)ψ̌k,m
∣∣2 ≤ c4γ

−2
n

∫
Y̌
|ψ̌k,m|2

and
∣∣1− ∫Y̌ |ψ̌k,m|2∣∣ ≤ c4γ

−1
n . Using the triangle inequality, we have∫

Y

∣∣Dγnψ̌k,m − (
γn
2
− γ

2
)ψ̌k,m

∣∣2 ≤ c5γ
−2
n

∫
Y
|ψ̌k,m|2(6.2)

for some constant c5. The section ψ̌k,m can be regarded as being defined on
Y .

From the Dehn-twist region. The same construction as the tubular neigh-
borhood of the binding produces sections ψ̃k,m. After undoing the untwisting

(4.3) on ψ̃k,m, they can be regarded as sections on Y , and also obey (6.2).

Step 2. In order to apply lemma 6.4 on Dγn and the sections constructed in
step 1, we need to check that they meet the conditions of lemma 6.4.

Condition (i). The orthogonality is clear between any two sections con-
structed from the same region, and between one section from Y̌ and another
section from Ỹ .

For a section ψn,l from the page and another section ψ̌k,m from Y̌ , their

L2-inner product can be nonzero only when k = n. For the section ψ̌n,m,
m is required to be greater than or equal to n

V . It is complementary to
the APS boundary condition for ψn,l, see (4.11) and (4.16). Therefore,∫
Y 〈ψn,l, ψ̌k,m〉 = 0.

For a section from the page and another section from Ỹ , the argument is
basically the same. At a first glance, the condition in definition 6.1 (ii) does
not seem to match with the boundary conditions (4.13) and (4.14). However,
the untwisting operator (4.3) shifts the frequency. A direct computation
shows that these conditions are complementary to each other.

Condition (ii). By (6.1), the almost eigenvalues of {ψn,l} are all equal to

0. By (6.2), the almost eigenvalues are equal to 1
2(γn−γ) for ψ̌k,m and ψ̃k,m,

and γ is where the zero crossing happens of Ďr or D̃r on Sk,m. The error
term δ4 is c6γ

−2
n for some constant c6.

Condition (iii). For any two sections from the page, it is given by propo-
sition 4.5. The arguments for other situations are the same as that for
requirement (i).

Condition (iv). The L2-inner product can only be nonzero between two
sections from Σ. With the help of proposition 4.5, the summation is less
than 2IΣ(n)c2 exp(−γn

c2
) ≤ c6γ

−2
n .

The L2-norm of some sections are not equal to 1, but almost. It can be
easily fixed by normalizing these almost eigensections. The constant c6 is
replaced by c6(1 + c′6γ

−1
n ), which is still uniformly bounded.
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Step 3. With these almost eigensections, lemma 6.4 gives the following eigen-
values for Dγn :

• there are IΣ(n) eigenvalues whose magnitude is less than
√

2c6γ
−1
n ;

• if Ǐ(γn − δ−5 , γn + δ+
5 ) or Ĩ(γn − δ−5 , γn + δ+

5 ) gets a spectral flow
count at γ, there is an eigenvalue λ associating to it, with∣∣λ− γn − γ

2

∣∣ ≤ √2c6γ
−1
n .;

• all the above eigenvalues are different.

Note that the magnitude of these eigenvalues are less than δ+
5 + δ−5 ≤ 3

C

provided n ≥ 10c5V
2. Let c7 be the constant given by corollary 3.2 for

δ1 = 12
V , then

sfa(γn + (δ+
5 +

√
2c6 + c7

γn
))− sfa(γn − (δ−5 +

√
2c6 + c7

γn
))

≥ IΣ(n) + Ǐ(γn − δ−5 , γn + δ+
5 ) + Ĩ(γn − δ−5 , γn + δ+

5 ) .

This completes the proof of proposition 6.5. �

We now prove the main theorem of this section.

Proof of thoerem 6.3. Let c8 be the constant given by proposition 6.5. Lemma
5.14 with δ3 = c8 gives a constant c9 and a sequence {sn}n∈N such that
|sn − γn − 1

V | ≤
1

4V and

Ǐ(sn −
c8

sn−1
, sn +

c8

sn−1
) ≤ c9 ,

Ĩ(sn −
c8

sn−1
, sn +

c8

sn−1
) ≤ c9

(6.3)

for all n ∈ N. If n ≥ 10c8V
2, δ−5 = γn − sn−1 − c8

γn
and δ+

5 = sn − γn − c8
γn

meet the requirement of proposition 6.5. Hence,

sfa(sn)− sfa(sn−1)

≥ IΣ(n) + Ǐ(sn−1 +
c8

γn
, sn −

c8

γn
) + Ĩ(sn−1 +

c8

γn
, sn −

c8

γn
)

≥ IΣ(n) + Ǐ(sn−1, sn) + Ĩ(sn−1, sn)− 4c9

provided n ≥ 10c8V
2. The last inequality follows from (6.3) and γn >

sn−1 > sn−2. This completes the proof of theorem 6.3. �

7. The Dirac operator of trivial monodromy

In order to prove the upper bound on the spectral flow function, we need
a further understanding of the Dirac operator on Σ × S1. With the help
of the S1-action, the Dirac operator reduces to Cauchy–Riemann operators
(4.8), which we denote by Dr,n. This section follows the same notations as
that in section 4.4.
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We first establish two estimates on (α̂n, β̂n) ∈ C∞(C ⊕K−1
Σ ) in terms of

Dr,n(α̂n, β̂n). Roughly speaking, the estimates imply that if Dr,n(α̂n, β̂n) is
small, then r is close to γn = 2n/V , and α̌n almost solves ∂̄n.

We first consider the case when |r − γn| ≥ r
1
2 .

Lemma 7.1. There exists a constant c with the following property. For any

r ≥ c and integer n with |r − γn| ≥ r
1
2 ,∫

Σ
|α̂n|2 + |β̂n|2 ≤ cr−1

∫
Σ
|Dr,n(α̂n, β̂n)|2

for any α̂n and β̂n satisfying the APS boundary condition for ∂̄n and ∂̄∗n,
respectively. γn is defined by (4.15).

Proof. With the APS boundary condition, ∂̄n and ∂̄∗n are adjoint operators.
Performing integration by parts, we have∫

Σ
|Dr,n(α̂n, β̂n)|2 =

∫
Σ

(
r − γn

2
)2|α̂n|2 + |∂̄∗nβ̂n|2 − 〈̂̄∂∗nβ̂n, α̂n〉

+ |∂̄nα̂n|2 + (
r − γn − 2

2
)2|β̂n|2 − 〈∂̄nα̂n, β̂n〉 .

(7.1)

With the Cauchy–Schwarz inequality, it completes the proof of this lemma.
�

We then consider the case when |r − γn| ≤ r
1
2 .

Proposition 7.2. There exists a constant c such that the following holds.

For any r ≥ c and integer n with |r − γn| ≤ r
1
2 , suppose that α̂n and β̂n

vanish near ∂Σ. Then∫
Σ

∣∣α̂n − p̂rn(α̂n)
∣∣2 +

∣∣β̂n∣∣2 ≤ cr−1

∫
Σ

∣∣Dr,n(α̂n, β̂n)
∣∣2

where p̂rn is the L2-orthogonal projection onto the kernel of ∂̄n. Moreover,
if r 6= γn, ∫

Σ

∣∣p̂rn(α̂n)
∣∣2 ≤ 4(r − γn)−2

∫
Σ

∣∣(pr1 ◦ Dr,n)(α̂n, β̂n)
∣∣2

where pr1 is the projection onto the first component.

Proof. The condition |r − γn| ≤ r
1
2 implies that n ≥ V

4 r, provided r ≥ 4.
According to lemma 4.2, there exists a constant c1 > 0 such that∫

Σ
|β̂n|2 ≤ c1r

−1

∫
Σ
|∂̄∗nβ̂n|2

for any r ≥ c1. According to [APS1, p.51 and p.56], ∂̄n∂̄
∗
n and ∂̄∗n∂̄n have

the same non-zero eigenvalues. Hence,∫
Σ
|α̂n − p̂rn(α̂n)|2 ≤ c1r

−1

∫
Σ

∣∣∂̄n(α̂n − p̂rn(α̂n))
∣∣2

= c1r
−1

∫
Σ
|∂̄nα̂n|2 .

(7.2)

43



It follows from (7.1) and the above two inequalities that∫
Σ
|Dr,n(α̂n, β̂n)|2 ≥

∫
Σ

(
r − γn

2
)2|α̂n|2 +

r

c1
|β̂n|2 − 2|β̂n|2

+
r

2c1
|α̂n − p̂rn(α̂n)|2 + (

r − γn − 2

2
)2|β̂n|2 .

This proves the first assertion of this lemma.
For the second assertion, note that

Dr,n
(
p̂rn(α̂n), 0

)
=
(r − γn

2
p̂rn(α̂n), 0

)
,

Dr,n
(
α̂n − p̂rn(α̂n), β̂n

)
=
(r − γn

2

(
α̂n − p̂rn(α̂n)

)
+ ∂̄∗nβ̌n, · · ·

)
.

Therefore, Dr,n preserves the L2-orthogonality between
(
p̂rn(α̂n), 0

)
and(

α̂n − p̂rn(α̂n), β̂n
)
. The desired estimate on p̂rn(α̂n) follows. �

In next section, we will study the zero modes on Y through Σ × S1, Y̌
and Ỹ . The cut-off function causes some overlaps of these models. To tackle
this issue, we need to study ker ∂̄n carefully.

As discussed in section 4.4 and (4.16), any solution of ∂̄n on Σ−11ε nat-
urally extends to a solution on Σ, and still satisfies the corresponding APS
boundary condition. Let ker0 ∂̄n be the subspace of ker ∂̄n which are ex-
tended from Σ−11ε. Consider the following sections which peak on Σ\Σ−11ε.

Adjacent to the tubular neighborhood of the binding. For any integers n > 0
and m with n

V (1− 11ε) ≤ m < n
V , let

ζ̌n,m = χ
(
ε(ρ− 2 +

V m

n
)
)( 2n

V π3

) 1
4 exp

(
− n

V
(ρ− 2 +

V m

n
)2
)
eimt .(7.3)

Adjacent to the Dehn-twist region. For any integers n > 0 and m with
2n
V (v + 31ε) ≥ m > 2n

V (v + 20ε) or 2n
V (v − 31ε) ≤ m < 2n

V (v − 20ε), let

ζ̃n,m = χ
(
ε(ρ− v +

V m

2n
)
)( n

2V π3

) 1
4 exp

(
− 2n

V
(ρ− v +

V m

2n
)2
)
eimt .(7.4)

Lemma 7.3. There exists a constant c > 0 with the following significance.
For any n ≥ c, the kernel of ∂̄n has the orthonormal basis

{orthornomal basis of ker0 ∂̄n} ⊕ {p̌n,mζ̌n,m + ζ̌rem
n,m} ⊕ {p̃n,mζ̃n,m + ζ̃rem

n,m}

with respect to the L2-inner product on Σ. The range of m for the second
summand is { nV (1− 11ε) ≤ m < n

V }; the range of m for the third summand

is {2n
V (v + 31ε) ≥ m > 2n

V (v + 20ε)} and {2n
V (v − 31ε) ≤ m < 2n

V (v − 20ε)}.
The elements in the decomposition have the following features:

(i) p̌n,m is a constant between 1
2 and 2, and

∫
Σ |ζ̌

rem
n,m|2 ≤ c exp(−n

c );

(ii) p̃n,m is a constant between 1
2 and 2, and

∫
Σ |ζ̃

rem
n,m|2 ≤ c exp(−n

c );

(iii) for any αn ∈ ker0 ∂̄n,
∫

Σ\Σ−2ε
|αn|2 ≤ c exp(−n

c )
∫

Σ |αn|
2.
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Proof. Consider the orthogonal set:

{orthonormal basis of ker0 ∂̄n} ⊕ {ζ̌n,m} ⊕ {ζ̃n,m} .(7.5)

By the APS index theorem [APS1], the total number of (7.5) is equal to the
dimension of ker ∂̄n: The first summand form a basis for ker ∂̄n on Σ−11ε

with the corresponding boundary condition. Thus, the total number of the
first summand can be computed by the APS index formula (4.9) and lemma
4.2. Similar to (4.16), the last two summands (without the cut-off function)
form a basis for ker ∂̄n on Σ\Σ−11ε. The total number can also be computed
by the APS index formula. If we sum up the index formulae, the boundary
contribution from ∂Σ−11ε cancels with each other, and it turns out to be the
index formula of ker ∂̄n on Σ.

The elements in the last two summand have L2-norm between 1√
3

and 1.

They are not annihilated by ∂̄n. We modify them by the following procedure.
Start with an orthonormal basis of ker0 ∂̄n, and take any ζ̌n,m. A direct

computation shows that there exists a constant c2 such that∫
Σ
|∂̄nζ̌n,m|2 ≤ c2 exp(− n

c2
) .

Let p̌rn(ζ̌n,m) be the L2-orthogonal projection of ζ̌n,m onto ker ∂̄n. By (7.2),
there exists a constant c3 such that∫

Σ

∣∣(ζ̌n,m − p̌rn(ζ̌n,m))
∣∣2 ≤ c3 exp(− n

c3
) .

If we apply the Gram–Schmidt process on

p̌rn(ζ̌n,m) = ζ̌n,m + (p̌rn(ζ̌n,m)− ζ̌n,m)

with respect to the orthonormal basis of ker0 ∂̄n, the output would be p̌n,mζ̌n,m+

ζ̌rem
n,m satisfying property (i).

We can keep doing this projection and Gram–Schmidt process. Since
the total number of steps is less than n, the error term is always less than
c4 exp(− n

c4
) for some constant c4. It produces an orthonormal basis for

ker ∂̄n with property (i) and (ii).
The proof of property (iii) is the same as that for proposition 4.5 �

8. Upper bound of the spectral flow

What follows is the main theorem of this section. With lemma 6.2, it
implies the upper bound of the spectral flow function asserted by theorem
2.2.

Theorem 8.1. There exist a constant c and a sequence of numbers {sn}n∈N
which have the following significance:

(i) for all n ≥ 2,

sfa(sn)− sfa(sn−1) ≤ IΣ(n) + Ǐ(sn−1, sn) + Ĩ(sn−1, sn) + c ;

(ii) for each n ∈ N, |sn − γn − 1
V | ≤

1
4V , where γn is defined by (4.15).
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The strategy is to project true zero modes onto the vector space spanned
by certain almost eigensections. The following lemma is the technical tool
to do the counting after the projection. It is implied by the Welch bound
([W]). We include its proof for completeness.

Lemma 8.2. For any δ6 > 0, there exists a constant c with the following
significance. For any integer Lo > 2δ6, suppose that {ul}Ll=1 is a set of unit

vectors in CLo such that their inner product satisfying∣∣〈ul, ul′〉∣∣ < δ6

Lo
for all l 6= l′ .

Then L ≤ Lo + c.

Proof. We may assume L > Lo. Let U be the L × Lo matrix whose l-th
column is the vector ul. Consider the matrix H = U∗U . The matrix H is
Hermitian, and its kernel has dimension no less than L− Lo. Suppose that
the eigenvalues of H are {λ1, · · · , λLo , 0, · · · , 0}, then λ1 + · · · + λLo = L.
By the Cauchy–Schwarz inequality,

L2 = (λ1 + · · ·+ λLo)
2

≤ Lo(λ2
1 + · · ·+ λ2

Lo) = Lo trace(H∗H)

= Lo
(
L+

∑
l 6=l′

∣∣〈ul, ul′〉∣∣2)
≤ Lo(L+ L(L− 1)

δ2
6

L2
o

) .

It follows that L ≤ Lo + c. �

The remainder of this section is devoted to the proof of theorem 8.1.

Proof of theorem 8.1. This proof contains ten steps. Before getting into the
details, we briefly outline the strategy. Write ψ as

ψ|binding + ψ|Dehn + ψ|Σ×S1 .

First, regard these sections as being defined on the associated S1 × S2 or
Σ × S1, and project them onto the space spanned by small eigensections
of the model manifolds. Next, multiply the projections by suitable cut-off
functions, and regard them as sections on the original 3-manifold Y . By
doing the cut and paste carefully, their inner product is still small after the
procedure. It allows us to invoke lemma 8.2 to obtain the upper bound on
the spectral flow.

Step 1. In this step, we construct the sequence {sn}n∈N. Let c1 be the
constant given by corollary 3.2 for the associated contact forms with δ1 = 1.
It follows that for any r ≥ c1, if Ďr or D̃r has an eigenvalue λ0 with |λ0| ≤
r−1 on Sk,m, there is a zero crossing on Sk,m happening somewhere in the
interval

[r − c1 + 2

r
, r +

c1 + 2

r
] .
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Proposition 5.3 says that it is the only zero crossing on Sk,m for r ≥ c1.
By lemma 5.14 with δ3 = c1 + 2, there exists a sequence {sn}n∈N and a

constant c2 > 0 such that

(i) the total number of zero crossings of Ďr and D̃r happening between
sn − c1+2

sn−1
and sn + c1+2

sn−1
is less than c2 for any n ∈ N;

(ii) for each n ∈ N, |sn − γn − 1
V | ≤

1
4V where γn = 2n

V .

Step 2. In this step, we introduce the index sets of the vector space of
almost eigensections. For each n ∈ N, consider the following condition on k
and m

min
r∈[sn−1,sn]

min
λ∈SpecĎr
on Sk,m

|λ| ≤ 1

sn
.(8.1)

In other words, the condition means that for some r ∈ [sn−1, sn], Ďr|Sk,m
has an eigenvalue within [− 1

sn
, 1
sn

]. We define the following index sets:

(i) Ěon is the set of the (k,m) ∈ Z2 satisfying m ≥ k
V and condition

(8.1);

(ii) Ěn is the set of the (k,m) ∈ Z2 satisfying m ≥ k
V (1 − 11ε) and

condition (8.1);

(iii) Ẽon is the set of the (k,m) ∈ Z2 satisfying

2(v − 20ε)

V − 2(v − 20ε)σ(20ε)
k ≤ m ≤ 2(v + 20ε)

V − 2(v + 20ε)σ(−20ε)
k

and condition (8.1) for D̃r;

(iv) Ẽn is the set of the (k,m) ∈ Z2 satisfying

2(v − 31ε)

V − 2(v − 31ε)σ(20ε)
k ≤ m ≤ 2(v + 31ε)

V − 2(v + 31ε)σ(−20ε)
k

and condition (8.1) for D̃r.

From the construction in step 1,

Ǐ(sn−1, sn) ≤ #Ěon ≤ Ǐ(sn−1, sn) + 2c2 ,

Ĩ(sn−1, sn) ≤ #Ẽon ≤ Ĩ(sn−1, sn) + 2c2

(8.2)

for all n ≥ c′2. See definition 6.1 for Ǐ and Ĩ. According to lemma 6.2,

Ǐ(sn−1, sn) ≤ c3sn and Ĩ(sn−1, sn) ≤ c3sn .(8.3)

With these estimates, theorem 8.1 is equivalent to the following claim:
there exists a constant c4 such that

sfa(sn)− sfa(sn−1) ≤ IΣ(n) + #Ěon + #Ẽon + c4(8.4)

for any n ≥ c4. The proof of this claim occupies step 3 to step 10.
47



The differences between the index sets Ěn\Ěon and Ẽn\Ẽon can be com-
pletely characterized by lemma 5.15 and lemma 5.16: there exists a constant
c5 > 0 such that

Ěn\Ěon =
{

(k,m)
∣∣k = n, and

n

V
(1− 11ε) ≤ m <

n

V

}
, and

Ẽn\Ẽon =
{

(k,m)
∣∣k +mh(20ε) = n,

2n

V
(v − 31ε) ≤ m <

2n

V
(v − 20ε)

}
∪
{

(k,m)
∣∣k +mh(−20ε) = n,

2n

V
(v + 20ε) < m ≤ 2n

V
(v + 31ε)

}

(8.5)

for any n ≥ c5.

Step 3. In this step, six cut-off functions are defined. Let χ̌o and χ̌ be
the cut-off functions which are supported only on the tubular neighborhood
of the binding, and which depend only on ρ in terms of the coordinate in
subsection 4.1, with

χ̌o(ρ) =

{
1 when ρ ≤ 1 + 4ε

0 when ρ ≥ 1 + 6ε
, χ̌(ρ) =

{
1 when ρ ≤ 1 + 8ε

0 when ρ ≥ 1 + 10ε
.

Note that χ̌ ◦ χ̌o = χ̌o.
Let χ̃o and χ̃ be the cut-off functions which are supported only on the

Dehn-twist region, and depend only on ρ in terms of the coordinate in sub-
section 4.2, with

χ̃o(ρ) =

{
1 when |ρ| ≤ 24ε

0 when |ρ| ≥ 26ε
, χ̃(ρ) =

{
1 when |ρ| ≤ 28ε

0 when |ρ| ≥ 30ε
.

Note that χ̃ ◦ χ̃o = χ̃o.
Let χ̂o be 1−χ̌o−χ̃o. In terms of the terminology introduced by definition

4.3, χ̂o = 1 on Σ−6ε×S1, and χ̂o = 0 on Y \(Σ−4ε×S1). Let χ̂ be the similar
cut-off function depending only on ρ near ∂Σ× S1, with

χ̂ =

{
1 on Σ−2ε × S1

0 on Y \(Σ× S1)
.

Also, χ̂ ◦ χ̂o = χ̂o.

Step 4. For any zero mode ψ of Dr, we study χ̌ψ and χ̃ψ in terms of the
eigensections on Y̌ and Ỹ .

With the results in section 5.2, there exists a constant c6 with the fol-
lowing property. Suppose that n ≥ c6 and (k,m) ∈ Ěn. Then for each
r ∈ (sn−1, sn], Ďr has a unique eigenvalue λ0 on Sk,m with |λ0| < 1. To be
more precise, uniqueness follows from proposition 5.6 and 5.10. Existence
follows from lemma 5.8 and 5.12.

With this understood, let p̌rr be the L2-orthogonal projection onto the
eigenspaces of small eigenvalues arising from Ěn. Similarly, let p̃rr be the
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L2-orthogonal projection onto the eigenspaces of small eigenvalues arising
from Ẽn.

Lemma 8.3. There exists a constant c such that the following holds. For
any n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of Dr with unit
L2-norm. Regard χ̌ψ as being defined on Y̌ , and let ψ̌err = χ̌ψ − p̌rr(χ̌ψ).
Then ∫

Y̌
|ψ̌err|2 ≤ cr−1 and

∫
Y̌
〈ψ̌err, η̌〉 = 0

for any η̌ in the image of p̌rr. The assertion also holds for χ̌oψ, and the

untwisting (4.3) of χ̃ψ and χ̃oψ on Ỹ with the projection p̃rr.

Proof of lemma 8.3. The orthogonality between ψ̌err and η̌ follows directly
from the construction.

With the spectral decomposition given by Ďr, let

• ψ̌err
L be the L2-orthogonal projection of ψ̌err onto the subspace spanned

by the eigensections whose eigenvalue λ satisfies |λ| ≥
√

r
2 ;

• ψ̌err
M be the L2-orthogonal projection of ψ̌err onto the subspace spanned

by the eigensections whose eigenvalue λ satisfies 1
10V ≤ |λ| <

√
r
2 ,

and does not arise from Ěn;

• ψ̌err
S be the L2-orthogonal projection of ψ̌err onto the subspace spanned

by the eigensections whose eigenvalue λ satisfies 1
sn
≤ |λ| < 1

10V ,

and does not arise from Ěn.

It follows that χ̌ψ = p̌rr(χ̌ψ) + ψ̌err
L + ψ̌err

M + ψ̌err
S . It is an orthogonal decom-

position with respect to the L2-inner product, and Ďr preserves the orthog-
onality. We are going to estimate the size of the three error-components.
Note that

Ďr(χ̌ψ) = χ̌′cl(dρ)ψ .(8.6)

The function χ̌′ is supported only on the region where 1 + 8ε ≤ ρ ≤ 1 + 10ε,
and the Clifford action of dρ switches the two components of ψ, see (4.1).

The component with large eigenvalue. The estimate on ψ̌err
L is easy to come

by. By (8.6), there exists a constant c8 such that∫
Y̌
|ψ̌err

L |2 ≤ 2r−1

∫
Y̌
|Ďr(ψ̌

err
L )|2 ≤ 2r−1

∫
Y̌
|Ďr(χ̌ψ)|2 ≤ c8r

−1 .

The component with medium eigenvalue. By lemma 5.5, all the eigenvalues λ

with |λ| <
√

r
2 correspond to different Sk,m’s. Let ψ̌eig

k,m be the corresponding
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eigensection with
∫
Y̌ |ψ̌

eig
k,m|

2 = 1. By (8.6), there exists a constant c9 so that∣∣ ∫
Y̌
〈χ̌ψ, ψ̌eig

k,m〉
∣∣2

=
1

λ2

∣∣ ∫
Y̌
〈(χ̌)′cl(dρ)ψ, ψ̌eig

k,m〉
∣∣2

≤ 200V 2
( ∫

Y̌
|(χ̌)′βk,m|2

∫
Y̌
|α̌eig
k,m|

2 +

∫
Y̌
|(χ̌)′αk,m|2

∫
Y̌
|β̌eig
k,m|

2
)

≤ c9

( ∫
Y̌
|(χ̌)′βk,m|2 + r−1

∫
Y̌
|(χ̌)′αk,m|2

)
where

(
(χ̌)′αk,m, (χ̌)′βk,m

)
is the Sk,m-component of (χ̌)′ψ. The first in-

equality follows from the fact that cl(dρ) switches the components. The

second inequality follows from lemma 5.4 on ψ̌eig
k,m.

After summing up the above inequality over all (k,m) involving in ψ̌err
M ,

we have ∫
Y̌
|ψ̌err

M |2 ≤ c9

( ∫
Y̌
|(χ̌)′β|2 + r−1

∫
Y̌
|(χ̌)′α|2

)
.

With proposition 3.1, we obtain the estimate on ψ̌err
M .

The component with small eigenvalue. By the same token, all the eigenval-
ues λ with |λ| < 1

10V correspond to different Sk,m. Proposition 5.6 and
proposition 5.10 give the approximation of the corresponding eigensections

ψ̌eig
k,m = q̌k,mψ̌k,m + ψ̌

(3)
k,m .

If m > k
V or m < k

V (1− 11ε), the support of ψ̌k,m and (χ̌)′ are disjoint. By
(8.6), there exists a constant c8 such that∣∣ ∫

Y̌
〈χ̌ψ, ψ̌eig

k,m〉
∣∣2 =

1

λ2

∣∣ ∫
Y̌
〈(χ̌)′cl(dρ)ψ, ψ̌

(3)
k,m〉

∣∣2
≤ c10s

2
nr
−3

∫
Y̌
|(χ̌)′ψk,m|2 < 10c10r

−1

∫
Y̌
|(χ̌)′ψk,m|2

for all r ≥ c10.
If k

V (1 − 11ε) ≤ m ≤ k
V , lemma 5.15 with the condition that |λ| < 1

10V
implies that k = n. However, lemma 5.15 also implies that such (k,m) be-
longs to Ě. Therefore, these (k,m) do not involve in ψ̌err

S .

By summing up the above inequality over the (k,m) involving in ψ̌err
S , we

obtain the estimate on ψ̌err
S .

It is clear that the assertion also holds for χ̌oψ. The discussion for χ̃ψ
and χ̃oψ are parallel to the above argument, and is omitted. �

From now on, we will implicitly apply the untwisting (4.3) when working

with χ̃ψ on Ỹ . On the other hand, when we regard some section on Ỹ as
being defined on Y , we will implicitly undo the untwisting.
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Step 5. For any zero mode ψ of Dr, consider p̂rn(χ̂ψ) where p̂rn is the
composition of the following three projection

χ̂ψ 7−→ χ̂α 7−→ χ̂αne
inφ(2πV )−

1
2 7−→ p̂rn(χ̂αn)einφ(2πV )−

1
2 .

The first map is the projection onto the first component of ψ. The second
map is the projection onto the frequency n component with respect to the

S1-action in eiφ, and (2πV )−
1
2 is simply a normalizing constant. The last

map is the L2-orthogonal projection onto the kernel of ∂̄n as discussed in sec-
tion 7. We use the same notation for the last projection and the composition
of the three projections.

Lemma 8.4. There exists a constant c such that the following holds. For
any n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of Dr with unit

L2-norm. Regard χ̂ψ as defined on Σ × S1, and let ψ̂err = χ̂ψ − p̂rn(χ̂ψ).
Then ∫

Σ×S1

|ψ̂err|2 ≤ cr−1 , and

∫
Σ×S1

〈ψ̂err, η̂〉 = 0

for any η̂ in the image of p̂rn. The assertion also holds for χ̂oψ.

Proof of lemma 8.4. The orthogonality between ψ̂err and η̂ follows directly
from the construction.

To estimate the size of ψ̂err, consider the Fourier expansion of χ̂ψ:

χ̂α =
∑
n∈Z

χ̂αne
inφ(2πV )−

1
2 and χ̂β =

∑
n∈Z

χ̂βne
i(n+1)φ(2πV )−

1
2

where αn are functions on Σ, and βn are sections of K−1
Σ over Σ. It follows

that∫
Σ×S1

|χ̂α|2 =
∑
n∈Z

∫
Σ
|χ̂αn|2 and

∫
Σ×S1

|χ̂β|2 =
∑
n∈Z

∫
Σ
|χ̂βn|2 .

LetDr,n be the operator (4.8) with n replaced by n. SinceDr(χ̂ψ) = cl(dχ̂)ψ,
Dr,n(χ̂αn, χ̂βn) is supported only on Σ\Σ−6ε, and

Dr,n(χ̂αn, χ̂βn) =
(
− (χ̂)′βn, (χ̂)′αn

)
.(8.7)

The main task is to estimate χ̂αn. The argument is separated into three
cases according to the value of n. Remember that γn = 2n

V .

Case 1: |γn− r| ≥ r
1
2 . With lemma 7.1 and (8.7), there exists a constant c9

such that ∫
Σ
|χ̂αn|2 + |χ̂βn|2 ≤ c11r

−1
( ∫

Σ\Σ−6ε

|αn|2 + |βn|2
)

for all r ≥ c11.
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Case 2: the (ker ∂̄n)
⊥-component of χ̂αn when |γn − r| < r

1
2 . With the first

inequality of proposition 7.2 and (8.7), there exists a constant c12 such that∫
Σ
|χ̂αn − p̂rn(χ̂αn)|2 + |χ̂βn|2 ≤ c12r

−1
( ∫

Σ\Σ−6ε

|αn|2 + |βn|2
)

for all r ≥ c12.

Case 3: the ker ∂̄n-component of χ̂αn when n 6= n and |γn−r| < r
1
2 . For any

n 6= n, |r − γn| is no less than 1
10V . By the second inequality of proposition

7.2 and (8.7), there exists a constant c13 such that∫
Σ
|p̂rn(χ̂αn)|2 ≤ c13

∫
Σ\Σ−6ε

|βn|2

for all r ≥ c13 and n 6= n.

After summing up the estimates of these three cases, we have∫
Σ×S1

|ψ̂err|2 ≤
∫

(Σ\Σ−6ε)×S1

(
(c11 + c12)r−1|ψ|2 + c13|β|2

)
.

With proposition 3.1, it completes the proof of lemma 8.4. The proof for
χ̂oψ is the same. �

Step 6. In this step, we project the zero modes onto a vector space spanned
by certain almost eigensections. The projection will depend on r. In other
words, the zero modes are not projected onto the same vector space.

Proposition 8.5. There exists a constant c which has the following signif-
icance. For any n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of
Dr with unit L2-norm. Let

Πr(ψ) = χ̂p̂rn(χ̂oψ) + χ̌p̌rr(χ̌
oψ) + χ̃p̃rr(χ̃

oψ) ,

then

(i)
∫
Y |Πr(ψ)|2 ≥ 1− cs−1

n ;

(ii) if there are two such zero modes ψ1 and ψ2 at r1 and r2 with sn−1 <
r1 < r2 ≤ sn, then∣∣ ∫

Y
〈Πr1(ψ1),Πr2(ψ2)〉

∣∣ ≤ cs−1
n ;

(iii) if there are two zero modes ψ1 and ψ2 at the same r ∈ (sn−1, sn],
and

∫
Y 〈ψ1, ψ2〉 = 0, then∣∣ ∫

Y
〈Πr1(ψ1),Πr2(ψ2)〉

∣∣ ≤ cs−1
n .

Proof of proposition 8.5. We start with assertion (ii). Suppose that there
are two such zero modes {ψj}j=1,2. We apply lemma 8.4 on χ̂oψj , and lemma
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8.3 on χ̌oψj and χ̃oψj . After multiplying them by the cut-off functions with
larger support, we have

χ̂oψj = χ̂χ̂oψj = χ̂p̂rn(χ̂oψj) + χ̂ψ̂erro
j ,

χ̌oψj = χ̌χ̌oψj = χ̌p̌rr(χ̌
oψj) + χ̌ψ̌erro

j ,

χ̃oψj = χ̃χ̃oψj = χ̃p̃rr(χ̃
oψj) + χ̃ψ̃erro

j .

All terms can be regarded as being defined on Y .
We also apply lemma 8.4 on χ̂ψj , and lemma 8.3 on χ̌ψj and χ̃ψj . We have

χ̂ψj = p̂rn(χ̂ψj) + ψ̂err
j , χ̌ψj = p̌rr(χ̌ψj) + ψ̌err

j and χ̃ψj = p̃rr(χ̃ψj) + ψ̃err
j ,

without the cut-off function on the error-term. Not all these terms can be
regarded as being defined on Y .

The inner product between Πr1(ψ1) and Πr2(ψ2) is equal to∫
Y
〈ψ1 − χ̂ψ̂erro

1 − χ̌ψ̌erro
1 − χ̂ψ̂erro

1 , ψ2 − χ̂ψ̂erro
2 − χ̌ψ̌erro

2 − χ̂ψ̂erro
2 〉 .

We would like to show that the magnitude of all these sixteen pairings is less
than c14s

−1
n for some constant c14. There are four types of these pairings.

Type 1:
∫
Y 〈ψ1, ψ2〉. The estimate on this term is given by proposition 3.3.

Type 2: the pairings between ψj and the error term on Σ × S1. By lemma
8.4, ∫

Y
〈ψ1, χ̂ψ̂

erro
2 〉 =

∫
Σ×S1

〈χ̂ψ1, ψ̂
erro
2 〉 =

∫
Σ×S1

〈p̂rn(χ̂ψ1) + ψ̂err
1 , ψ̂erro

2 〉

=

∫
Σ×S1

〈ψ̂err
1 , ψ̂erro

2 〉 .

We conclude that
∣∣ ∫
Y 〈ψ1, χ̂ψ̂

erro
2 〉

∣∣ ≤ c15(r1r2)−
1
2 ≤ 2c15s

−1
n for some con-

stant c15.

Type 3: the pairings between ψj and the error term on Y̌ or Ỹ . Similarly,∫
Y
〈ψ1, χ̌ψ̌

erro
2 〉 =

∫
Y̌
〈p̌rr1(χ̌ψ1), ψ̌erro

2 〉+ 〈ψ̌err
1 , ψ̌erro

2 〉 .

Lemma 8.3 implies that the second term
∣∣ ∫
Y̌ 〈ψ̌

err
1 , ψ̌erro

2 〉
∣∣ ≤ 2c16s

−1
n for some

constant c16. Unlike type 2, the first pairing might not be zero. However,
corollary 5.7 and corollary 5.11 imply that there exists a constant c17 such
that ∣∣ ∫

Y̌
〈p̌rr1(χ̌ψ1), ψ̌erro

2 〉
∣∣ ≤ c17s

− 3
2

n (#Ěn)
( ∫

Y̌
|ψ̌erro

2 |2
) 1

2 .

By (8.2) and (8.3), Ěn is less than some multiple of sn, and ψ̌erro
2 is estimated

by lemma 8.3. Hence, there exists a constant c18 such that∣∣ ∫
Y̌
〈p̌rr1(χ̌ψ1), ψ̌erro

2 〉
∣∣ ≤ c18s

−1
n .
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Type 4: the pairings between two error terms. Lemma 8.3, lemma 8.4 and
the Cauchy–Schwarz inequality implies that these pairings are of O(s−1

n ).

The proof for assertion (i) and (iii) is the same up to a minor modification
for type 1. This completes the proof of proposition 8.5. �

Step 7. This step is a digression on the r-dependence of the eigensection
approximation constructed in section 5.2. We start with Y̌ . Suppose that
Ďr on Sk,m has an eigenvalue λ0 with |λ0| ≤ 1, then proposition 5.6 and
proposition 5.10 apply.

Case 1. When |m| < ( 1
32ε2
− 1)k, the main term ψ̌k,m in proposition 5.6

consists of the zeroth, first and second order terms, see (5.25). Let ψ̌
(0)
k,m

be the section which consists of only the zeroth and first order term of
ψ̌k,m. Namely, throw away the a2(x, r) and b2(x) terms in (5.25). The key

feature of these sections ψ̌
(0)
k,m is that they are independent of r. Let ψ̌

(2)
k,m

be ψ̌k,m − q̌k,mψ̌
(0)
k,m. Namely, ψ̌

(2)
k,m is the sum of the second order term in

q̌k,mψ̌k,m and ψ̌
(3)
k,m. Under the assumption of proposition 5.6, it is easy to

see that there exists a constant c19 such that∫
Y̌
|ψ̌(2)
k,m|

2 ≤ c19r
−2 .

The coefficients q̌k,m in proposition 5.6 also depends on r, but they are only

scalars. Note that ψ̌
(0)
k,m can be regarded as a section on Y .

According to the discussion in section 5.4, when k
V (1 − 11ε) ≤ m ≤ k

V ,

the first and second order term are zero, and ψ̌ok,m = ψ̌k,m and
∫
Y̌ |ψ̌

(2)
k,m|

2 ≤
c20 exp(− r

c20
). Moreover, for k = n, the first component of ψ̌

(0)
k,m is the same

as ζ̌n,me
inφ(2πV )−

1
2 given by (7.3), and second component of ψ̌

(0)
k,m is zero.

Case 2. When |m| ≥ ( 1
32ε2
− 1)k, the main term ψ̌k,m in proposition 5.10

is already independent of r. To unify the notation, let ψ̌
(0)
k,m = ψ̌k,m and

ψ̌
(2)
k,m = ψ̌

(3)
k,m.

On Ỹ . The discussion on the r-dependence is the same as that for Y̌ . We
just state the result on the special regions discussed in section 5.4. When{

k +mh(20ε) = n and 2n
V (v − 31ε) ≤ m ≤ 2n

V (v − 20ε) , or

k +mh(−20ε) = n and 2n
V (v + 20ε) ≤ m ≤ 2n

V (v + 31ε) ,

the first component of ψ̃
(0)
k,m is the same as the untwisting of ζ̃n,me

inφ(2πV )−
1
2

given by (7.4), and second component of ψ̃
(0)
k,m is zero. The remainder term

satisfies
∫
Ỹ |ψ̃

(2)
k,m|

2 ≤ c20 exp(− r
c20

).
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Step 8. In this step, we throw away the r-dependent part of χ̌prr(χ̌
oψ) and

χ̃prr(χ̃
oψ). In other words, the projection is modified to be r-independent.

Lemma 8.6. There exists a constant c with the following property. For any
n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of Dr with unit
L2-norm. Then there exists a section ψ̌rem such that

(i) the support of ψ̌rem is contained in the support of χ̌. Thus, ψ̌rem

can be regarded as a section either on Y or Y̌ ;

(ii)
∫
Y |ψ̌

rem|2 ≤ cs−2
n ;

(iii) χ̌prr(χ̌
oψ)− ψ̌rem belongs to the vector space spanned by{

ψ̌
(0)
k,m

∣∣(k,m) ∈ Ěon
}
⊕
{
ψ̌

(0)
k,m

∣∣k = n, and
n

V
(1− 7ε) ≤ m <

n

V

}
.

Proof of lemma 8.6. For each (k,m) ∈ Ěn, Ďr has a unique eigenvalue λ0

on Sk,m with |λ0| ≤ 1. Let ψ̌eig
k,m be the corresponding eigensection given by

proposition 5.6 and proposition 5.10. If we apply the projection operator
p̌rr introduced in step 4, we have

p̌rr(χ̌
oψ) =

∑
(k,m)∈Ěn

čk,mψ̌
eig
k,m

where čk,m =
∫
Y̌ 〈χ̌

oψ, ψ̌eig
k,m〉.

Remember that Ěn\Ěon is characterized by (8.5). Let ψ̌rem be the sum of
the following terms:

• χ̌čk,mψ̌
(2)
k,m for (k,m) ∈ Ěon;

• χ̌čk,mψ̌
(2)
k,m for (k,m) ∈ Ěn\Ěon and m ≥ n

V (1− 7ε);

• χ̌čk,mψ̌eig
k,m for (k,m) ∈ Ěn\Ěon and m < n

V (1− 7ε).

We now estimate their L2-norm.

• For the terms of the first and second kind, step 7 gives a constant
c21 such that∫

Y̌
|χ̌čk,mψ̌

(2)
k,m|

2 ≤ c21r
−2

∫
Y̌
|(χ̌oψ)k,m|2

where (χ̌oψ)k,m is the Sk,m-component of χ̌oψ.
• For the terms of the third kind,∫

Y̌
|χ̌čk,mψ̌eig

k,m|
2 ≤ |̌ck,m|2 =

∣∣ ∫
Y̌
〈χ̌oψ, ψ̌eig

k,m〉
∣∣2

=
∣∣ ∫

Y̌
〈(χ̌oψ)k,m, q̌k,mψ̌

(0)
k,m + ψ̌

(2)
k,m〉

∣∣2
≤ c20 exp(− r

c20
)

∫
Y̌
|(χ̌oψ)k,m|2 .

For the last inequality, note that the support of χ̌o and ψ̌k,m are

disjoint, and the L2-norm of ψ̌
(2)
k,m is exponentially small by step 7.
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After summing up the above inequalities, we obtain the assertion (ii) of the
lemma. Assertion (i) follows from the construction of ψ̌rem.

For the last assertion, it is clear that χ̌prr(χ̌
oψ) − ψ̌rem belongs to the

vector space spanned by those elements in assertion (iii), multiplied by χ̌.
However, the support of χ̌prr(χ̌

oψ)− ψ̌rem is contained in the support of χ̌.
Since χ̌ is equal to 1 on the support of those elements in assertion (iii), it
completes the proof of lemma 8.6. �

The argument for the Dehn-twist region is the same. We just state the
result.

Lemma 8.7. There exists a constant c with the following significance. For
any n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of Dr with unit

L2-norm. Then there exists a section ψ̃rem such that

(i) the support of ψ̃rem is contained in the support of χ̃; hence, up to

the untwisting (4.3), ψ̃rem can be regarded as defined either on Y or

Ỹ ;

(ii)
∫
Ỹ |ψ̃

rem|2 ≤ cs−2
n ;

(iii) χ̃prr(χ̃
oψ)− ψ̃rem belongs to the vector space spanned by{

ψ̃
(0)
k,m

∣∣(k,m) ∈ Ẽon
}

⊕
{
ψ̃

(0)
k,m

∣∣k +mh(20ε) = n, and 2n
V (v − 27ε) ≤ m < 2n

V (v − 20ε)
}

⊕
{
ψ̃

(0)
k,m

∣∣k +mh(20ε) = n, and 2n
V (v + 20ε) < m ≤ 2n

V (v + 27ε)
}
.

Step 9. In this step, we apply lemma 7.3 to study χ̂prn(χ̂oψ).

Lemma 8.8. There exists a constant c such that the following holds. For
any n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of Dr with unit

L2-norm. Then there exists a section ψ̂rem such that

(i) the support of ψ̂rem is contained in the support of χ̂;

(ii)
∫
Y |ψ̂

rem|2 ≤ cs−2
n ;

(iii) the second component of χ̂prn(χ̂oψ)− ψ̂rem is zero. The first com-

ponent of χ̂prn(χ̂oψ)− ψ̂rem belongs to the vector space spanned by{
χ̂einφ · ker0 ∂̄n

}
⊕
{
ζ̌n,me

inφ
∣∣ n
C (1− 11ε) ≤ m ≤ n

C (1− 3ε)
}

⊕
{
ζ̃n,me

inφ
∣∣2n
V (v + 23ε) ≤ m ≤ 2n

V (v + 31ε), or

2n
V (v − 31ε) ≤ m ≤ 2n

V (v − 23ε)
}
.

Proof of lemma 8.8. According to the decomposition given by lemma 7.3,
the first component of prn(χ̂oψ) can be expressed as

ζ0 +
∑

čn,m(p̌n,mζ̌n,m + ζ̌rem
n,m) +

∑
c̃n,m(p̃n,mζ̃n,m + ζ̃rem

n,m)

where ζ0 ∈ ker0 ∂̄n. Let ψ̂rem be the sum of the following terms:
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• χ̂čn,m(p̌n,mζ̌n,m + ζ̌rem
n,m) for n

V (1− 3ε) < m < n
V ;

• χ̂čn,mζ̌rem
n,m for n

V (1− 11ε) ≤ m ≤ n
V (1− 3ε);

• χ̂c̃n,m(p̃n,mζ̃n,m+ ζ̃rem
n,m) for 2n

V (v+20ε) < m < 2n
V (v+23ε) or 2n

V (v−
23ε) < m < 2n

V (v − 20ε);

• χ̂čn,mζ̃rem
n,m for 2n

V (v+ 23ε) ≤ m ≤ 2n
V (v+ 31ε) or 2n

V (v− 31ε) ≤ m ≤
2n
V (v − 23ε).

For the terms of the first and third kind, lemma 7.3 gives a constant c22 such
that their L2-norm is less than c22 exp(− n

c22
). For the terms of the second

and fourth kind, the supports of ζ̌n,m and ζ̃n,m are disjoint from the support
of χ̂o. A similar argument as in the proof of lemma 8.6 shows that their
L2-norm is less than c22 exp(− n

c22
). With the triangle inequality,∫

Y
|ψ̂rem|2 ≤

(110ε

V
n c22 exp(− n

c22
)
)2 ≤ c23s

−2
n

for some constant c23. This proves assertion (i) and (ii) of the lemma.

For the last assertion, it is clear that χ̂prn(χ̂oψ) − ψ̂rem belongs to the
vector space spanned by those elements in assertion (iii), multiplied by χ̂.

However, for those ζ̌n,m and ζ̃n,m in the last two summand of (iii), χ̂ is equal
to 1 on their supports. This completes the proof of lemma 8.8. �

Step 10. In this step, we combine all the results to prove the claim (8.4).

Proposition 8.9. There exists a constant c with the following significance.
For any n ≥ c and r ∈ (sn−1, sn], suppose that ψ is a zero mode of Dr of
unit L2-norm. With proposition 8.5 and lemma 8.6, 8.7 and 8.8, let

Π(ψ) = Πr(ψ)− ψ̂rem − ψ̌rem − ψ̃rem ,

then

(i)
∫
Y |Π(ψ)|2 ≥ 1− cs−1

n ;

(ii) Π(ψ) belongs to a vector space whose dimension is

IΣ(n) + #Ěon + #Ẽon ;

(iii) if there are two such zero modes ψ1 and ψ2 at r1 and r2 with sn−1 <
r1 < r2 ≤ sn, then∣∣ ∫

Y
〈Π(ψ1),Π(ψ2)〉

∣∣ ≤ cs−1
n ;

(iv) if there are two such zero modes ψ1 and ψ2 both at r ∈ (sn−1, sn],
and

∫
Y 〈ψ1, ψ2〉 = 0, then∣∣ ∫

Y
〈Π(ψ1),Π(ψ2)〉

∣∣ ≤ cs−1
n .
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Proof of proposition 8.9. Assertion (i), (iii) and (iv) follows from proposition
8.5 and lemma 8.6, 8.7 and 8.8.

With the observation in step 7, Π(ψ) belongs to the vector space spanned
by {

χ̂einφ · ker0 ∂̄n

}
⊕
{
ζ̌n,me

inφ
∣∣ n
V (1− 11ε) ≤ m < n

V

}
⊕
{
ζ̃n,me

inφ
∣∣2n
V (v + 20ε) < m ≤ 2n

V (v + 1 + 31ε), or

2n
V (v − 31ε) ≤ m < 2n

V (v − 20ε)
}

⊕
{
ψ̌

(0)
k,m

∣∣(k,m) ∈ Ěon
}
⊕
{
ψ̃

(0)
k,m

∣∣(k,m) ∈ Ẽon
}
.

(8.8)

To be more precise, the first three summands consist of sections whose first
component is given by those elements and the second component is zero.
By dimension counting, the dimension of the subspace spanned by the first
three summands is IΣ(n). This completes the proof of proposition 8.9. �

According to lemma 4.2, (4.9), (8.2) and (8.3), there exists a constant c25

such that

IΣ(n) + #Ěon + #Ẽon ≤ c25sn

for all n ≥ c25.
Let Ln be the index set

{
1, 2, · · · , sfa(sn)− sfa(sn−1)

}
. We may assume

that there are only positive zero crossings. For each zero crossing happening
between (sn−1, sn], choose a zero eigensection with unit L2-norm. If there
are more than one zero crossings happening at some r ∈ (sn−1, sn], choose
L2-orthonormal zero eigensections. Let {ψl}l∈Ln be the set of these zero
modes.

According to proposition 8.9, there exists a constant c26 such that

(i)
∫
Y |Π(ψl)|2 ≥ 1− c26s

−1
n ;

(ii)
∣∣ ∫
Y 〈Π(ψl),Π(ψl′)〉

∣∣ ≤ c26s
−1
n for any l 6= l′;

(iii) Π(ψl) belongs to a vector space (8.8), whose dimension is

IΣ(n) + #Ěon + #Ẽon ≤ c25sn

for all n ≥ c26. After normalizing the L2-norm of Π(ψl), lemma 8.2 applies.
This proves claim (8.4), and completes the proof of theorem 8.1. �
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