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Abstract. We study the uniqueness of minimal submanifolds and the stability of the mean

curvature flow in several well-known model spaces of manifolds of special holonomy. These in-

clude the Stenzel metric on the cotangent bundle of spheres, the Calabi metric on the cotangent

bundle of complex projective spaces, and the Bryant-Salamon metrics on vector bundles over

certain Einstein manifolds. In particular, we show that the zero sections, as calibrated sub-

manifolds with respect to their respective ambient metrics, are unique among compact minimal

submanifolds and are dynamically stable under the mean curvature flow. The proof relies on

intricate interconnections of the Ricci flatness of the ambient space and the extrinsic geometry

of the calibrated submanifolds.

1. Introduction

Calibrated submanifolds [9] in manifolds of special holonomy are not just minimal subman-

ifolds, they actually minimize the volume functional in their homology classes. Of particular

interests are special Lagrangians in Calabi–Yau, associatives and coassociatives in G2, and

Cayley submanifolds in Spin(7). These geometric objects attracted a lot of attentions in recent

years. On the one hand, they are natural generalizations of algebraic subvarieties in algebraic

manifolds and thus are of immense geometric interest. On the other hand, they appear in

various proposals of string theory such as Mirror Symmetry and the M-theory. The most suc-

cessful construction of metrics of special holonomy is the Calabi–Yau case, where the celebrated

theorem of Yau [29] shows the homological condition guarantees the existence of the metric.

All other constructions are based on deformation theory, symmetry reductions or gluing con-

structions [11] (see also a recent flow approach for G2 construction in [2, 17]). The scenario

of the construction of calibrated submanifolds is similar [10, 15]. For special Lagrangians in

Calabi–Yau’s, we refer to the work of Schoen–Wolfson [19] and Joyce [14,12,13].

Among all explicitly constructed manifolds of special honolomy, the most well-known ones

seem to be the Stenzel metric [22] on the cotangent bundles of spheres (or the Eguchi–Hanson
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metric in dimension 4) and the Calabi metric [3] on the cotangent bundles of complex projective

spaces. Similar constructions of Bryant–Salamon [1] produce G2 and Spin(7) metrics. All of

them are based on bundle constructions and the zero sections are calibrated submanifolds. In

the article, we study the uniqueness and the dynamical stability of the zero sections of these

manifolds. To be more specific, we consider the following manifolds of special honolomy in this

article.

Assumption 1.1. Throughout this article, M is a Riemannian manifold of special holonomy

that belongs to one of the followings:

(i) the total space of the cotangent bundle of Sn with the Stenzel metric1 with n > 1;

(ii) the total space of the cotangent bundle of CPn with the Calabi metric;

(iii) the total space of S(S3), Λ2
−(S4), Λ2

−(CP2), or S−(S4) with the Ricci flat metric con-

structed by Bryant–Salamon.

In section 2, 3 and 4, we review the geometry of these metrics in details. In all these examples,

M is the total space of a vector bundle over a base manifold B. We identify B with the zero

section of the bundle, which is also considered to be an embedded submanifold of M . In each

case, there exists a smooth differential form Ω with the following properties:

• Ω has comass one, i.e. at any p ∈ M , Ω(L) ≤ 1 for any (oriented) subspace L ⊂ TpM

with dimension = dimB. Indeed, Ω is locally the wedge product of orthonormal 1-

forms.

• The form Ω characterizes B by the condition that Ω(TpB) = 1 for all p ∈ B where TpB

is the (oriented) tangent space of B as a submanifold of M at a point p ∈ B.

The precise definition of Ω in each case can be found in (6.5), (6.11) and (6.19), respectively. Let

d( · ) denote the distance function to the zero section B with respect to the Riemmanian metric

on M . For a compact embedded submanifold Σ of M with dim Σ = dimB, Σ is considered to

be C0 close to the zero section if d(p) is close to 0 for all p ∈ Σ, and Σ is considered to be C1

close to the zero section if Ω(TpΣ) is close to 1 for all p ∈ Σ.

Our first result regards the uniqueness property of the zero sections.

Theorem 1.2. In each case considered in Assumption 1.1, the zero section is the unique com-

pact minimal immersed submanifold of the given dimension.

The mean curvature flow is the parabolic PDE system that deforms a submanifold by its

mean curvature vector field, and is formally the negative gradient flow of the volume functional.

A calibrated submanifold represents a local minimum of the volume functional. It is therefore

natural to investigate the stability of a calibrated submanifold along the mean curvature flow,

1When n = 1, the metric is not only Ricci flat, but flat. We have to exclude this flat case.
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which is a nonlinear degenerate PDE system. The nonlinear stability of PDE systems such as

the Einstein equation or the Ricci flow is under intense study. Our next result concerns the

nonlinear C1 stability of the zero sections.

Theorem 1.3. In each case considered in Assumption 1.1, there exists an ε > 0 which depends

only on the geometry of M such that if Σ is a compact embedded submanifold of M and

sup
p∈Σ

(d(p) + 1− Ω(TpΣ)) < ε , (1.1)

then the mean curvature flow of Σ exists for all time and converges to the zero section smoothly.

Note that (1− Ω(TpΣ)) is always non-negative since Ω has comass one.

Remark 1.4. The Ricci flat metric on each manifold M considered in Assumption 1.1 is

constructed under some symmetry ansatz. From the constructions, one sees that the metric

turns out to be uniquely determined by the volume of the zero section B. That is to say, ε

depends on the volume of the zero section (and also n in case (i) and (ii)).

Theorem 1.2 is proved in section 5. The main point is to prove the convexity of the distance

square to the zero section. It is also the key for the C0 convergence in Theorem 1.3, and plays

an important role for the C1 convergence.

Such a long-time existence and convergence theorem under effective C1 bound for higher

codimensional mean curvature flows has been established for manifolds of reduced holonomy,

namely manifolds that are locally Riemannian products, see for examples [21, 23, 24, 25, 27].

Theorem 1.3, to the best our knowledge, appears to be the first one for manifolds of special

holonomy.

Sections 6 and 7 are devoted to the proof of Theorem 1.3. In section 6, we establish estimates

on the covariant derivatives of Ω, which is needed for proving the C1 convergence. In section 7,

we put everything together to prove the stability of the zero section under the mean curvature

flow.

Remark 1.5. A stability theorem of the mean curvature flow of compact smooth submanifolds

can be derived from Simon’s general stability theorem for gradient flows [20, Theorem 2] under

the assumption that (1) the initial data is close enough to a stable minimal submanifold in the

W l+2,2 Sobolev norm for large enough l (which implies at least C2 smallness) and (2) the ambient

metric is analytic. Theorem 1.3 is a C1 stability theorem in which the regularity requirement is

lower and the dependence of the smallness constant is explicit.2 The proof does not rely on the

analyticity of the ambient metric either. The theorem can be turned into a Lipschitz stability

2The authors learned from Felix Schulze that it is possible to derive a C1 stability theorem from White’s

regularity theorem, the uniqueness of mean curvature flows, and a limiting argument. However, it seems that

the C1 bound exists by an argument of contradiction and cannot be made explicit.
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theorem (by approximating the initial Lipschitz submanifold by a family of C1 submanifolds,

see for example [28]), which seems to be the optimal result for the mean curvature flow.

1.1. Notations and conventions.

1.1.1. Riemann curvature tensor. In this paper, for a Riemannian manifold with metric 〈 , 〉
and Levi-Civita connection ∇, our convention for the Riemann curvature tensor is

R(X,Y, Z,W ) = 〈∇Z∇WY −∇W∇ZY −∇[Z,W ]Y ,X〉 . (1.2)

Let {ei} be a local orthonormal frame. Denote the dual coframe by {ωi}, and their connection

1-forms by ωji . The convention here is

∇ei = ωji ⊗ ej and ∇ωj = −ωji ⊗ ω
i . (1.3)

Throughout this paper, we adopt the Einstein summation convention that repeated indexes are

summed. Since the frame is orthonormal, ωji = −ωij . It follows from (1.3) that

dωj = −ωji ∧ ω
i . (1.4)

Its curvature form is

Rj
i = dωji − ω

k
i ∧ ω

j
k . (1.5)

It is equivalent to the Riemann curvature tensor by the following relation:

Rj
i (X,Y ) = R(ej , ei, X, Y ) (1.6)

for any two tangent vectors X and Y .

1.1.2. Bundle projection. Let π : M → B be a vector bundle projection and Ψ be a (locally-

defined) smooth differential form on B. The following abuse of notation is performed throughout

this paper: the pull-back of Ψ, π∗Ψ on M , is still denoted by Ψ.

Acknowledgement. The first author would like to thank Prof. S.-T. Yau for bringing the

rigidity question into his attention, and for his generosity in sharing his ideas. The authors

would like to thank Mao-Pei Tsui and Felix Schulze for helpful discussions and interests in this

work.

2. Geometry of the Stenzel metric

2.1. The Stenzel metric on T ∗Sn. Consider the n-dimensional sphere Sn with the standard

metric for n > 1. Let {ωµ}nµ=1 be a local orthonormal coframe, and ωµν be their connection

1-forms which satisfy (1.4). As a space form with curvature equal to 1, its curvature form is

Rµ
ν = dωµν − ωγν ∧ ωµγ = ωµ ∧ ων . (2.1)
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Let {yµ} be the coordinate for the fibers of T ∗Sn induced by {ωµ}. The standard metric on

Sn induces the following metric on T ∗Sn.
n∑
µ=1

(
(ωµ)2 + (dyµ − yν ωνµ)2

)
, (2.2)

where the abuse of notation 1.1.2 is adopted.

2.1.1. Spherical coordinate for the fibers. There are two naturally defined 1-forms outside the

zero section:

1

r
yµ ω

µ and
1

r
yµ dyµ =

1

r
yµ (dyµ − yν ωνµ)

where r = (
∑

µ(yµ)2)
1
2 . The first one is the tautological 1-form rescaled by 1/r; the second one

is the exterior derivative of r. With respect to (2.2), they are unit-normed and orthogonal to

each other.

It is more convenient to consider the metric (2.2) by another coframe, which is an extension

of the above two 1-forms. To start, extend the vector 1
r (y1, · · · , yn) to an orthonormal frame

for Rn. This can be done on any simply-connected open subset of Rn\{0}. To be more precise,

choose a smooth map Tµν from a simply-connected open subset of Rn\{0} to O(n) such that

T 1
ν (y) =

1

r
yν for ν = 1, 2, . . . , n and y ∈ Domain(Tµν ) ⊂ Rn\{0}.

For example, the standard spherical coordinate system on Rn\{0} will do. When n = 3 with

y1 = r sin θ sinφ, y2 = r sin θ cosφ, y3 = r cos θ, one can take T 2
µ = 1

r
∂yµ
∂θ and T 3

µ = 1
r sin θ

∂yµ
∂φ ,

µ = 1, 2, 3.

The metric (2.2) has the following orthonormal coframe

σµ = Tµν ω
ν ,

σn+µ = (T−1)νµ (dyν − yγ ωγν) = Tµν (dyν − yγ ωγν)
(2.3)

for µ ∈ {1, . . . , n}.

2.1.2. The Stenzel metric. With this coframe (2.3), the Stenzel metric takes the form(
c(r)σ1

)2
+

n∑
j=2

(
a(r)σj

)2
+
(
c(r)σn+1

)2
+

n∑
j=2

(
b(r)

r
σn+j

)2

. (2.4)

The coefficient functions are defined by

a2 =
1

4
h′(r) coth r ,

b2 =
1

4
h′(r) tanh r ,

c2 =
1

4
h′′(r)

(2.5)
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where h′(r) is the solution of the ODE

d

dr

(
h′(r)

)n
= 2n+1n (sinh(2r))n−1 with h′(0) = 0 . (2.6)

Here, prime ( )′ denotes the derivative with respect to r. The function h is the Kähler potential

in the paper of Stenzel [22, section 7]. We remark that the metric here differs from that in

[7, section 2] by a factor of 2n−1/n in (2.6). The normalization here is chosen such that the

restriction of metric (2.4) to the zero section is the metric of the round sphere of radius 1 and

dimension n, and hence the volume of the zero section is 2π
n
2 /Γ(n/2).

2.1.3. Connection and Ricci flat equation. Take the orthonormal coframe:

ω1 = c(r)σ1 , ωj = a(r)σj , ωn+1 = c(r)σn+1 = c(r) dr , ωn+j =
b(r)

r
σn+j (2.7)

for j ∈ {2, . . . , n}. The indices i, j, k, . . . will be assumed to belong to {2, . . . , n}.
It is useful to introduce the new radial function ρ by ρ =

∫ r
0 c(u)du. Since dρ = c(r)σn+1

and ρ = 0 at the zero section, in view of (2.4), ρ is the geodesic distance to the zero section

with respect to the Stenzel metric. Denoting by dot ˙( ) the derivative with respect to ρ, we

have

ḟ =
1

c(r)
f ′ .

The connection 1-forms ωµν of (2.7) can be found by a direct computation:

ω1
n+1 =

ċ

c
ω1 ,

ωjn+i = Cδji ω
1 ,

ωjn+1 =
ȧ

a
ωj ,

ωn+j
1 = Aωj ,

ωn+j
n+1 =

ḃ

b
ωn+j ,

ω1
j = B ωn+j

(2.8)

where

A =
a2 − b2 − c2

2abc
, B =

b2 − a2 − c2

2abc
, C =

c2 − a2 − b2

2abc
. (2.9)

The rest of the components ωji and ωn+j
n+i satisfy

ωji = ωn+j
n+i = T jµ ω

µ
ν T

i
ν − (dT jµ)T iµ . (2.10)

In [7, section 2], Cvetič et al. derived the Stenzel metric in a different way. As a result of

their derivations, a, b, c satisfy the following differential system:

ȧ

a
+A = 0 ,

ḃ

b
+B = 0 ,

ċ

c
+ (n− 1)C = 0 . (2.11)

One can also check these directly by (2.5), (2.6) and (2.9). In fact, Cvetič et al. solved the

system (2.11) and reconstructed the Stenzel metric in the above form (2.4). The expressions

of the Kähler form and the holomorphic volume form are quite simple in terms of the coframe

(2.7). The Kähler form is
∑n

µ=1 ω
µ∧ωn+µ, and the holomorphic volume form is (ω1 +iωn+1)∧

(ω2+iωn+2)∧· · · (ωn+iω2n). With the above relations, one can check that these two differential
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forms are parallel. With this understanding, the complex structure I in terms of the dual

frame {ē1, . . . , ē2n} of (2.7) sends ēµ to ēn+µ and sends ēn+µ to −ēµ for any µ ∈ {1, . . . , n}.

2.2. Coefficient functions and curvature. The geometry of the Stenzel metric is encoded

in the functions A, B and C. In this subsection, we summarize the properties that will be used

later. Note that (2.6) implies that h′ > 0 and h′′ > 0 when r > 0. By (2.5) and (2.11),

A = − 1√
h′′

(
h′′

h′
− 2

sinh(2r)

)
,

B = − 1√
h′′

(
h′′

h′
+

2

sinh(2r)

)
,

C = − 1

n− 1

1√
h′′
h′′′

h′′
.

(2.12)

Instead of r, we state the estimates in terms of ρ =
∫ r

0 c(u)du.

Lemma 2.1. The functions A, B and C are negative when ρ > 0. Moreover, there exists

a constant K > 1 which depends only on n such that |A|/ρ, |C|/ρ and |B|ρ are all bounded

between 1/K and K for any point p with 0 < ρ(p) < 1.

Proof. It follows from (2.6) that

h′′

h′
=

(
sinh(2r)

)n−1

n
∫ r

0

(
sinh(2u)

)n−1
du

,

1

n− 1

h′′′

h′′
=

2n cosh(2r)
(∫ r

0

(
sinh(2u)

)n−1
du
)
−
(

sinh(2r)
)n

n sinh(2r)
(∫ r

0

(
sinh(2u)

)n−1
du
) .

(2.13)

To prove that C < 0, we estimate

2n cosh(2r)

(∫ r

0

(
sinh(2u)

)n−1
du

)
> 2n

∫ r

0
cosh(2u)

(
sinh(2u)

)n−1
du =

(
sinh(2r)

)n
for any r > 0. It follows from (2.13) that C is negative. For A < 0,

h′′

h′
− 2

sinh(2r)
=

(
sinh(2r)

)n − 2n
∫ r

0

(
sinh(2u)

)n−1
du

n sinh(2r)
∫ r

0

(
sinh(2u)

)n−1
du

=
2n
∫ r

0

(
sinh(2u)

)n−1(
cosh(2u)− 1

)
du

n sinh(2r)
∫ r

0

(
sinh(2u)

)n−1
du

> 0

for any r > 0. It follows that A < 0. Since B ≤ A, B is also negative.
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The second assertion is a direct consequence of the power series expansion at r = 0. It follows

from (2.6) that the Taylor series expansion of h′(r) near r = 0 is

h′ = 4r

(
1 +

2(n− 1)

3(n+ 2)
r2 +O(r3)

)
.

It then follows that ρ = r + O(r2), A = − n
n+2r + O(r2), C = − 2

n+2r + O(r2) and B =

−r−1 +O(1). This finishes the proof of the lemma. �

We remark that (2.11) and the negativity of A, B and C imply that a, b and c are increasing

functions. Other quantities we will encounter are the derivatives of A, B and C with respect

to ρ. It turns out that they are degree two polynomials in A, B and C.

Lemma 2.2. The functions Ȧ, Ḃ and Ċ obey:

Ȧ = −nBC +A(A+B + C) ,

Ḃ = −nAC +B(A+B + C) ,

Ċ = −2AB + (n− 1)C(A+B + C) .

Proof. The equation (2.9) can be rewritten as

B + C = − a
bc

, C +A = − b

ac
, A+B = − c

ab
. (2.14)

By using (2.11),

Ḃ + Ċ = (B + C) (−A+B + (n− 1)C) ,

Ċ + Ȧ = (C +A) (−B +A+ (n− 1)C) ,

Ȧ+ Ḃ = (A+B) (−(n− 1)C +A+B) .

The lemma follows from these formulae. �

2.2.1. The Riemann curvature tensor. In [7, section 2], Cvetič et al. also computed the compo-

nents of the Riemann curvature tensor of the metric (2.4).

Note that (2.14) implies that

(A+B)(A+ C) =
1

a2
, (B +A)(B + C) =

1

b2
, (C +A)(C +B) =

1

c2
.
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By applying (2.8), (2.11), (2.14) and Lemma 2.2 to [7, (2.14)], we find that the components of

the Riemann curvature tensor are all degree two polynomials in A, B and C:

R(ē1, ēj , ē1, ēj) = AB +BC − nCA ,

R(ē1, ēn+j , ē1, ēn+j) = AB + CA− nBC ,

1

n− 1
R(ē1, ēn+1, ē1, ēn+1) = R(ē1, ēn+1, ēn+j , ēj)

= (n− 1)(CA+BC)− 2AB ,

R(ēi, ēn+k, ēj , ēn+l) = −AB(δijδkl + δilδjk) + (BC +AC)δikδjl ,

R(ēi, ēk, ēj , ēl) = (AB +BC + CA)(δijδkl − δilδjk)

and other inequivalent components vanish. Here, ē1, . . . , ē2n is the dual frame of (2.7). By

equivalence we mean that the curvature is a quadrilinear map R satisfying the condition

R(X,Y, Z,W ) = −R(X,Y,W,Z) = R(Z,W,X, Y ) = R(X,Y, IZ, IW ) . (2.15)

The following property of the Riemann curvature tensor will help simplify the calculation

in the Stenzel metric case: R(ēµ, ēn+ν , ēn+δ, ēn+ε) = 0 = R(ēn+µ, ēν , ēδ, ēε) for any µ, ν, δ, ε ∈
{1, . . . , n}. It will be used for the estimate (7.6) in the proof of Theorem 1.3.

3. Geometry of the Calabi metric

The Eguchi–Hanson metric has another higher dimensional generalization. There exists a

hyper-Kähler metric on the cotangent bundle of the complex projective space, T ∗CPn. The

metric is thus Ricci flat. It was constructed by Calabi in [3, section 5] by solving the Kähler

potential under an ansatz. Since we are going to study the Riemannian geometric properties

of the metric, it is more convenient to describe the metric in terms of a moving frame.

3.1. The Calabi metric on T ∗CPn. Consider the n-dimensional complex projective space

CPn with the Fubini–Study metric. Let {θµ} be a local unitary coframe of type (1, 0). That is

to say, the Fubini–Study metric is

n∑
µ=1

|θµ|2 .

Denote by θµν the corresponding connection 1-forms. They are determined uniquely by the

relations:

dθµ = −θµν ∧ θν and θνµ + θµν = 0 . (3.1)

The curvature of the Fubini–Study metric is

Θµ
ν = dθµν − θγν ∧ θµγ = θµ ∧ θν + δµν θ

γ ∧ θγ .
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The curvature formula implies that its sectional curvature lies between 1 and 4, and is equal to

4 if and only if the 2-plane is complex. The detailed discussion of the Fubini–Study metric in

terms of the moving frame can be found in [5, section 8].

Let {zµ} be the complex coordinate for the fibers of (T ∗CPn)(1,0). Then, the Fubini–Study

metric induces the following metric on T ∗CPn.

n∑
µ=1

(
|θµ|2 + |dzµ − zν θνµ|2

)
. (3.2)

The complex structure of CPn induces a complex structure on T ∗CPn, with respect to which

θµ and dzµ − zµ θνµ are (1, 0)-forms.

Remark 3.1. We briefly explain the convention of the correspondence between real and com-

plex moving frames. Write θµ as ω2µ−1 + iω2µ. Then, {ω2µ−1}nµ=1 ∪ {ω2µ}nµ=1 constitutes an

orthonormal coframe. Let {e2µ−1}nµ=1 ∪ {e2µ}nµ=1 be the dual orthonormal frame. They satisfy

J(e2µ−1) = e2µ, where J is the complex structure as an endomorphism on the (real) tangent

bundle. Denote by ωBA the connection 1-forms, where 1 ≤ A,B ≤ 2n. Namely, ∇eA = ωBA ⊗ eB.

Since J is parallel, ω2µ
2ν = ω2µ−1

2ν−1 and ω2µ−1
2ν = −ω2µ

2ν−1. The Hermitian connection θµν is equal

to

ω2µ−1
2ν−1 + iω2µ

2ν−1 = ω2µ
2ν − iω2µ−1

2ν . (3.3)

For the total space of the cotangent bundle, write zµ as xµ−i yµ. Under the (real) isomorphism

(T ∗CP)(1,0) ∼= T ∗CPn (real cotangent bundle)

zµ θ
µ ↔ Re(zµ θ

µ) = xµ ω
2µ−1 + yµ ω

2µ ,

the metric (3.2) is equal to

n∑
µ=1

(
(ω2µ−1)2 + (ω2µ)2 + (dxµ − xν ω2ν−1

2µ−1 − yν ω
2ν
2µ−1)2 + (dyµ − xν ω2ν−1

2µ − yν ω2ν
2µ)2

)
.

3.1.1. Spherical coordinate for the fibers. Let r =
√∑

µ |zµ|2 be the distance to the zero section

with respect to the metric (3.2). Again, the exterior derivative of r and the tautological 1-form

are two naturally defined 1-forms on T ∗CPn. In terms of the complex coordinate, they read

Re

(
1

r
z̄µ (dzµ − zν θνµ)

)
and Re (zµ θ

µ) ,

respectively. Their images under the complex structure give another two 1-forms, which are

the imaginary parts of the above two (1, 0)-forms multiplied by −1.

With this understood, consider the following complex version of the spherical change of

gauge. It means an extension of 1
r (z1, · · · , zn) to a unitary frame for Cn, which can be done on
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any simply connected open subset of Cn\{0}. More precisely, choose a smooth map Tµν from a

simply connected open subset of Cn\{0} to U(n) such that

T 1
µ(z) =

1

r
zµ for µ = 1, 2, . . . , n and z ∈ Domain(T νµ ) ⊂ Cn\{0}.

It follows that the following 1-forms also constitute a unitary coframe of type (1, 0) for (3.2)

σµ = Tµν θ
ν ,

σn+µ = (T−1)νµ (dzν − zγ θγν ) = Tµν (dzν − zγ θγν )
(3.4)

where µ ∈ {1, . . . , n}.

3.1.2. The Calabi metric. In terms of this coframe, the Calabi metric is of the following form∣∣c(r)σ1
∣∣2 +

n∑
j=2

∣∣b(r)σj∣∣2 + (h(r) dr)2 +

(
f(r)

r
Imσn+1

)2

+

n∑
j=2

∣∣∣∣a(r)

r
σn+j

∣∣∣∣2 , (3.5)

where

a = sinh(r) ,

b = cosh(r) ,

c = h =
√

cosh(2r) ,

f =
1

2

sinh(2r)√
cosh(2r)

.
(3.6)

In [8], Dancer and Swann found an easy way to construct the hyper-Kähler metric. They

wrote down the ansatz for the three hyper-Kähler forms, and imposed the d-closed condition.

One of the Kähler forms is

hf

r
dr ∧ Imσn+1 +

i

2
c2 σ1 ∧ σ1 +

i

2
b2

n∑
j=2

σj ∧ σj +
i

2

a2

r2

n∑
j=2

σn+j ∧ σn+j , (3.7)

and the other two are the imaginary and real parts of

hcdr ∧ σ1 +
ifc

r
(Imσn+1) ∧ σ1 − ab

r

n∑
j=2

σj ∧ σn+j . (3.8)

If (3.7) and (3.8) are annihilated by the exterior derivative, the coefficient functions must obey

da2

dr
= 2hf =

db2

dr
,

dc2

dr
= 4hf , a2 + b2 = c2 ,

d(ab)

dr
= hc ,

d(fc)

dr
= hc , and ab = fc .

(3.9)

It is a straightforward computation to check that (3.6) does solve (3.9). One can consult

[6, section 4] for the discussion on solving (3.9).

For the connection and curvature computation in the following subsubsections, it is more

transparent to simplify the expressions by using the hyper-Kähler equation (3.9) than by plug-

ging in the explicit solution (3.6). Note that (3.9) implies that b2 − a2 is a constant, which is 1

for the explicit solution (3.6).
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3.1.3. Connection 1-forms. To compute the connection 1-forms of the metric, it is easier to

choose a complex structure and take a unitary frame. With respect to the complex structure

corresponding to the Kähler form (3.7), we have the unitary coframe:

ξ1 = c σ1 , ξj = b σj , ξn+1 = hdr +
if

r
Imσn+1 , ξn+j =

a

r
σn+j (3.10)

for j ∈ {2, . . . , n}. Denote by ξµν the Hermitian connection 1-forms. They can be found by the

structure equation (3.1):

ξ1
1 = i

(
2f

c2
− 1

f

)
Im ξn+1 = −ξn+1

n+1 ,

ξ1
n+1 =

2f

c2
ξ1 , ξjn+k = 0 ,

ξjn+1 =
f

b2
ξj = ξ1

n+j ,

ξn+j
n+1 =

f

a2
ξn+j = −ξ1

j .

(3.11)

The hyper-Kähler equation (3.9) is used to simplify the above expressions. The components ξkj
and ξn+k

n+j are related to the connection of the Fubini–Study metric as follows:

ξkj = −ξn+j
n+k = T kµ θ

µ
ν T

j
ν − (dT kµ )T jµ + i

f

b2
δkj Im ξn+1 . (3.12)

3.1.4. Riemann curvature tensor. In terms of the unitary coframe (3.10), the curvatures are as

follows:

R1
1 =

2

c6

(
ξ1 ∧ ξ1 − ξn+1 ∧ ξn+1

)
+

1

c4

(
ξj ∧ ξj − ξn+j ∧ ξn+j

)
= −Rn+1

n+1 ,

Rj
1 =

1

c4

(
ξj ∧ ξ1 − ξn+1 ∧ ξn+j

)
= −Rn+1

n+j ,

Rn+j
1 = − 1

c4

(
ξn+j ∧ ξ1 + ξn+1 ∧ ξj

)
= Rn+1

j ,

Rn+1
1 = − 2

c6
ξn+1 ∧ ξ1 ,

Rn+k
j = − 1

c2

(
ξn+j ∧ ξk + ξn+k ∧ ξj

)
,

Rk
j =

1

c2

(
ξk ∧ ξj − ξn+j ∧ ξn+k

)
+ δkj

(
1

c4

(
ξ1 ∧ ξ1 − ξn+1 ∧ ξn+1

)
+

1

c2

(
ξi ∧ ξi − ξn+i ∧ ξn+i

))
= −Rn+j

n+k .

The equality between different curvature components is a consequence of the hyper-Kähler

geometry.

4. Geometry of the Bryant–Salamon metrics

In [1], Bryant and Salamon constructed complete manifolds with special holonomy. They

constructed three examples with holonomy G2, and one example with holonomy Spin(7), each

of which is the total space of a vector bundle.
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4.1. Bryant–Salamon manifolds. This subsection is a brief review on the construction of

Bryant and Salamon. We first review the general framework of the metric construction on a

vector bundle, and then specialize in their examples.

4.1.1. Bundle construction. Let (Bn, g) be a Riemannian manifold, and E
π→ B be a rank m

vector bundle. Suppose that E carries a bundle metric and a metric connection. Then, these

data naturally induce a Riemannian metric on the total space E. The construction goes as

follows. With the connection, the tangent space of E decomposes into vertical and horizontal

subspaces. These two subspaces are defined to be orthogonal to each other. The metric on the

vertical subspace is given by the original bundle metric; the metric on the horizontal subspace

is the pull-back of the metric g.

This metric can be seen explicitly in terms of the moving frame. Take a local orthonormal

coframe {ωj}nj=1 on an open subset U ⊂ B, and a local orthonormal basis of sections {sν}mν=1

that trivializes E|U . Denote by ∇A a metric connection for E. Let Aµν be the the connection

1-forms of ∇A with respect to sν , namely, ∇Asν =
∑m

µ=1A
µ
ν sµ. Thus, [Aµν ] is an o(m)-valued

1-form on U . Let {yµ}mµ=1 be the coordinate for the fibers of E|U induced by {sµ}mµ=1. The

Riemannian metric gb on E induced by the bundle metric is

gb =

n∑
j=1

(ωj)2 +

m∑
µ=1

(
dyµ +Aµν y

ν
)2
. (4.1)

Comparing (4.1) with (2.2) and (3.2), the connection matrices in section 2 and 3 are defined

with respect to the Levi-Civita connection on the tangent bundle, so the induced connection

matrices on the cotangent bundle are the negative transposes in (2.2) and (3.2), while the

connection matrices here are on an arbitrary vector bundle.

In our discussion on the bundle construction, the indices i, j, k are assumed to belong to

{1, 2, . . . , n = dimB}, and the indices µ, ν, γ, σ are assumed to belong to {1, 2, . . . ,m = rankE}.
Here is a relation that will be used later. The exterior derivative of dyµ + Aµν yν can be

written as Fµν yν −Aµν ∧ (dyν +Aνγ y
γ), where

Fµν = dAµν +Aµγ ∧Aγν =
1

2
Fµν ij ω

i ∧ ωj (4.2)

is the curvature of ∇A.

4.1.2. Rescaling the metric. Let s =
∑

µ(yµ)2 be the distance square to the zero section with

respect to the Riemannian metric gb in (4.1). For any two smooth, positive functions α(s), β(s)

defined for s ≥ 0,

gα,β =
∑
j

(
αωj

)2
+
∑
µ

(
β (dyµ +Aµν y

ν)
)2

(4.3)
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also defines a Riemannian metric on E. Let

ωj = αωj and ωn+µ = β (dyµ +Aµν y
ν) . (4.4)

It follows that

ds =
2

β
yµ ωn+µ . (4.5)

Note that {ωj}j=1···n ∪ {ωn+µ}µ=1···m form an orthonormal coframe of the metric (4.3). Their

exterior derivatives read

dωj = −ωji ∧ ω
i − 2α′

αβ
yµ ωj ∧ ωn+µ ,

dωn+µ = β Fµν y
ν −Aµν ∧ ωn+ν − 2β′

β2
yν ωn+µ ∧ ωn+ν

(4.6)

where ωji is the connection 1-form of the Levi-Civita connection of (B, g). By a direct compu-

tation, we find that the connection 1-forms of the Levi-Civita connection of (E, gα,β) are

ωji = ωji +
β

2α2
Fµν ij y

ν ωn+µ , (4.7)

ωn+µ
i =

β

2α2
Fµν ij y

ν ωj − 2α′

αβ
yµ ωi , (4.8)

ωn+µ
n+ν = Aµν +

2β′

β2
(yν ωn+µ − yµ ωn+ν) . (4.9)

The mixed component ωn+µ
i is different from the other two components; it involves only the

curvature but not the connection. That is to say, ωn+µ
i is a tensor:

ωi ⊗ ωn+µ
i ⊗ sµ = β F (· , ·)(yµ sµ)− 2αα′

β
g(· , ·)(yµ sµ) : H×H → V

where H ∼= π∗TB is the horizontal subspace, and V ≡ π∗E is the vertical subspace over the

total space of E.

4.1.3. Examples of Bryant and Salamon. For the examples of Bryant and Salamon, the base

manifold B is either a sphere or a complex projective space. The metric g is the standard

metric. The vector bundle E is constructed from the tangent bundle or the spinor bundle,

and the metric connection is induced from the Levi-Civita connection. In what follows, κ is the

sectional curvature of the round metric when the base is the sphere, and is half the holomorphic

sectional curvature of the Fubini-Study metric when the base is CP2.

The first example [1, p.840] is the spinor bundle over the 3-sphere, S(S3). The G2 metric has

α(s) = (3κ)
1
2 (1 + s)

1
3 and β(s) = 2(1 + s)−

1
6 . (4.10)
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The next two examples [1, p.844] are the bundle of anti-self-dual 2-forms over the 4-sphere

and the 2-dimensional complex projective space, Λ2
−(S4) and Λ2

−(CP2). They have

α(s) = (2κ)
1
2 (1 + s)

1
4 and β(s) = (1 + s)−

1
4 . (4.11)

The last example [1, p.847] is the spinor bundle of negative chirality over the 4-sphere,

S−(S4). The Spin(7) metric has

α(s) = (5κ)
1
2 (1 + s)

3
10 and β(s) = 2(1 + s)−

1
5 . (4.12)

We will refer S(S3), Λ2
−(S4), Λ2

−(CP2) and S−(S4) with the Ricci flat metric as the Bryant–

Salamon manifolds.

The above coefficient functions are derived from the special holonomy equation, which is a

first order elliptic system. According to their paper, the special holonomy equation reduces to

the following equation:

α′ = κ1
β2

α
and β′ = −κ2

β3

α2
(4.13)

for some positive constants κ1 and κ2. For S(S3), κ1 = κ/4 and κ2 = κ/8. For Λ2
−(S4) and

Λ2
−(CP2), κ1 = κ2 = κ/2. For S−(S4), κ1 = 3κ/8 and κ2 = κ/4.

One can easily construct some functional equations from (4.13). Here are two relations that

will be used later:(
α2

β2

)′
= 2(κ1 + κ2) ⇒ α2

β2
=

(
α(0)

β(0)

)2

+ 2(κ1 + κ2)s ; (4.14)(
β

α2

)′
= −(2κ1 + κ2)

β3

α4
. (4.15)

5. The uniqueness of the zero section

The following lemma is about the rigidity of a compact minimal submanifold. The authors

believe it must be known to experts in the field. Due to the lack of a precise reference, the

proof is included for completeness.

Lemma 5.1. Let (M, g) be a Riemannian manifold. Suppose that ψ is a smooth function on M

whose Hessian is non-negative definite. Then, any compact, minimal submanifold of M must

be contained in the set where HessM ψ degenerates. In addition, ψ takes constant value on the

submanifold if it is connected.

Proof. Let Σ ⊂ M be a compact submanifold, and p be a point in Σ. Choose an orthonormal

frame {ej} for TΣ on some neighborhood of p in Σ. Consider the trace of the Hessian of ψ on
15



TΣ:

0 ≤ trΣ Hessψ =
∑
j

Hessψ(ej , ej) =
∑
j

(
ej(ej(ψ))− (∇ejej)(ψ)

)
= ∆Σψ −H(ψ)

where ∇ is the covariant derivative of (M, g), ∆Σ is the Laplace–Beltrami operator of the

induced metric on Σ, and H =
∑

j(∇ejej)⊥ is the mean curvature vector of Σ. When Σ is

minimal, it implies that ∆Σψ ≥ 0. The lemma follows from the compactness of Σ and the

maximum principle. �

5.1. The Stenzel metric case. In this subsection, we apply Lemma 5.1 to show that the zero

section is the only compact, special Lagrangian submanifold in T ∗Sn.

Theorem 5.2. When n > 1, any compact, minimal submanifold in T ∗Sn with the Stenzel

metric must belong to the zero section.

Proof. Consider the smooth function ψ = ρ2, which is the square of the distance to the zero

section (with respect to the Stenzel metric). Due to Lemma 5.1, it suffices to show that the

Hessian of ψ is positive definite outside the zero section. Since Hess(ρ) = ∇dρ and dρ = ωn+1,

we compute

Hess(ψ) = 2ωn+1 ⊗ ωn+1 + 2ρ∇ωn+1 .

By (2.8) and (2.11), we obtain

Hess(ψ) = 2ωn+1 ⊗ ωn+1 − 2ρ(n− 1)C ω1 ⊗ ω1 − 2ρA

n∑
j=2

ωj ⊗ ωj − 2ρB

n∑
j=2

ωn+j ⊗ ωn+j .

(5.1)

According to Lemma 2.1, Hess(ψ) is positive definite when r > 0 (equivalently, when ρ > 0).

This finishes the proof of the theorem. �

5.2. The Calabi metric case. In this subsection, we prove that the zero section is the only

compact, minimal submanifold in T ∗CPn.

Theorem 5.3. Any compact, minimal submanifold in T ∗CPn with the Calabi metric must

belong to the zero section.

Proof. The function ρ =
∫ r

0

√
cosh(2u)du is the distance function to the zero section with

respect to the Calabi metric and dρ = Re ξn+1 by (3.6) and (3.10). Consider the smooth

function ψ = ρ2 and compute as in the last theorem,

Hess(ψ) = 2 (Re ξn+1)⊗ (Re ξn+1) + 2ρ Re(∇ξn+1) .
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By (3.11),

Re(∇ξn+1) =
2f

c2
|ξ1|2 +

f

b2

n∑
j=2

|ξj |2 + (
1

f
− 2f

c2
) (Im ξn+1)⊗ (Im ξn+1) +

f

a2

n∑
j=2

|ξn+j |2 .

According (3.6), it is not hard to see that Hess(ψ) is positive definite when r > 0, and the

theorem follows from Lemma 5.1. �

5.3. The Bryant–Salamon metric case. In this subsection, we examine the uniqueness of

the zero section as a minimal submanifold.

Lemma 5.4. Let (Bn, g) be a Riemannian manifold. Let E → B be a rank m vector bundle

with a bundle metric and a metric connection. Denote by s the square of the distance to the zero

section with respect to the metric gb (4.1) on E. For any two smooth positive functions α(s)

and β(s), endow E the Riemannian metric gα,β defined by (4.3). Then, the Hessian of s with

respect to gα,β is positive definite outside the zero section if and only if α′ > 0 and β > 2s|β′|
for s > 0.

Proof. Suppose that ψ is a smooth function on E depending only on s =
∑

µ(yµ)2. Its exterior

derivative is

dψ = ψ′ ds = 2ψ′yµ dyµ =
2ψ′

β
yµ ωn+µ . (5.2)

Let {ēj}nj=1 ∪ {ēn+µ}mµ=1 be the frame dual to the coframe (4.4). Since ēj(ψ) ≡ 0, the Hessian

of ψ along (ēi, ēj) is

Hess(ψ)(ēi, ēj) = ēi(ēj(ψ))− (∇ēi ēj)(ψ)

=
4α′ψ′

αβ2
s δji +

ψ′

α2
yµ yν Fµν ij

=
4α′ψ′

αβ2
s δji (5.3)

where the last equality uses the fact that [Fµν ] is skew-symmetric in µ and ν. It is not hard to

see that the Hessian of ψ along (ēn+µ, ēj) vanishes. Along (ēn+µ, ēn+ν),

Hess(ψ)(ēn+µ, ēn+ν) = ēn+µ(ēn+ν(ψ))− (∇ēn+µ ēn+ν)(ψ)

=

(
2ψ′

β2
δνµ + yµ yν

2

β

(
2ψ′

β

)′)
−
(
yµ yν

4β′ψ′

β3
− 4β′ψ′

β3
s δνµ

)
=

(
2

β2
+

4β′

β3
s

)
ψ′ δνµ +

(
4ψ′

β2

)′
yµ yν . (5.4)

Substituting ψ = s, the lemma follows from (5.3), (5.4) and the fact that the eigenvalues of the

matrix [yµ yν ] are s and 0, where 0 has geometric multiplicity m− 1. �

Applying this lemma to the Bryant–Salamon manifolds leads to the following theorem.
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Theorem 5.5. Any compact minimal submanifold of the Bryant–Salamon manifolds must be

contained in the zero section.

Proof. This follows directly from (4.13), (4.14) and Lemma 5.4. Moreover, by (4.14), we have

Hess(ψ) ≥ 4κ1
β

α3
s

n∑
i=1

ωi ⊗ ωi +
2

α2

((
α(0)

β(0)

)2

+ 2κ1s

)
m∑
µ=1

ωn+µ ⊗ ωn+µ . (5.5)

This Hessian estimate will be needed later. �

6. Further estimates needed for the stability theorem

In this section, we begin preparations for the proof of Theorem 1.3. Each manifold in

Assumption 1.1 is the total space of a vector bundle π : E → B. The base B naturally sits

inside E as the zero section. In each case, we introduce a differential form Ω with the properties

explained in section 1, and calculate the covariant derivatives of Ω. The calculations will be

applied to derive C1 estimate of the mean curvature flow.

6.1. Estimates from linear-algebraic decomposition. Each metric in Assumption 1.1 ad-

mits a local orthonormal coframe {ωj}nj=1 ∪ {ωn+µ}mµ=1 such that
⋂n
j=1 kerωj = π∗E. As in

section 4.1.1, The subbundle π∗E ⊂ TE will be called the vertical subspace, and will be de-

noted by V. The orthogonal subbundle H ⊂ TE is given by
⋂m
µ=1 kerωn+µ, and is isomorphic

to π∗TB. This bundle H will be referred as the horizontal subspace.

In terms of the frame, the n-form Ω is ω1 ∧ ω2 ∧ · · · ∧ ωn. Let p ∈ E, and suppose that

L ⊂ TpE is an oriented n-dimensional subspace with Ω(L) > 0. Then, L can be regarded as

the graph of a linear map from Hp to Vp. By the singular value decomposition, there exist

orthonormal bases {uj}nj=1 for Hp, {vµ}mµ=1 for Vp, and angles θj ∈ [0, π) such that

{ej = cos θj uj + sin θj vj}nj=1 and {en+µ = − sin θµ uµ + cos θµ vµ}mµ=1 (6.1)

constitute orthonormal bases for L and L⊥, respectively. For j > m, vj is set to be the zero

vector, and θj is set to be zero. For µ > n, uµ is set to be the zero vector, and θµ is set to be

zero.

Note that neither the frame {ej}∪{en+µ} nor {uj}∪{vµ} is necessarily dual to {ωj}∪{ωn+µ}.
In any event, [ωj(ui)]i,j is an n× n (special) orthogonal matrix, and [ωn+µ(vν)]ν,µ is a m×m
orthogonal matrix. Denote by

s = max
j
| sin θj | . (6.2)

The following estimates are straightforward to come by:

n∑
i=1

∣∣∣(ωj ⊗ ωk)(ei, ei)∣∣∣ ≤ n , n∑
i=1

∣∣(ωn+µ ⊗ ωj)(ei, ei)
∣∣ ≤ ns (6.3)
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and ∣∣(ω1 ∧ · · · ∧ ωn)(en+µ, e1, · · · , êi, · · · , en)
∣∣ ≤ s ,∣∣(ω1 ∧ · · · ∧ ωn)(en+µ, en+ν , e1, · · · , êi, · · · , êj · · · , en)

∣∣ ≤ s2 ,∣∣∣(ωn+µ ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(e1, · · · , en)
∣∣∣ ≤ ns ,∣∣∣(ωn+µ ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(en+ν , e1, · · · , êj · · · , en)

∣∣∣ ≤ 1 ,∣∣∣(ωn+µ ∧ ωn+ν ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn)(e1, · · · , en)
∣∣∣ ≤ n(n− 1)s2

(6.4)

for any i, j, k ∈ {1, . . . , n} and µ, ν ∈ {1, . . . ,m}. To illustrate, we briefly explain the derivation

of the first and third inequalities in (6.4). By (6.1), (ω1 ∧ · · · ∧ ωn)(en+µ, e1, · · · , êi, · · · , en)

vanishes unless µ = i, and∣∣(ω1 ∧ · · · ∧ ωn)(e1, · · · , ei−1, en+i, ei+1, · · · , en)
∣∣

=
∣∣(ω1 ∧ · · · ∧ ωn)(cos θ1u1, · · · , cos θi−1ui−1,− sin θiui, cos θi+1ui+1, · · · , cos θnun)

∣∣ ≤ s .

For the third one,∣∣∣(ωn+µ ∧ ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(e1, · · · , en)
∣∣∣

≤
n∑
k=1

∣∣ωn+µ(ek)
∣∣ ∣∣∣(ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)(e1, · · · , êk, · · · , en)

∣∣∣ ≤ ns .
Suppose that Σ ⊂ E is an oriented, n-dimensional submanifold with Ω(TpΣ) > 0. Applying

the above construction to TpΣ gives a continuous function s on Σ. With this understanding,

the remainder of this section is devoted to estimating

∇ejΩ and (trTpΣ∇2Ω)(TpΣ) =
n∑
j=1

(∇2
ej ,ejΩ)(e1, · · · , en)

in terms of s and the distance to the zero section. These estimates will be used in the proof of

Theorem 1.3.

6.2. The Stenzel metric case. Consider the Stenzel metric on T ∗Sn, and let

Ω = ω1 ∧ ω2 ∧ · · · ∧ ωn , (6.5)

where ω1 and ωj , j = 2, · · · , n are defined in (2.7). The n-form Ω is not parallel. In order to

establish the estimates on ∇Ω and ∇2Ω, it is convenient to introduce the following notations:

Φ = ω2 ∧ · · · ∧ ωn ,

Φj = ι(ej)Φ = (−1)j ω2 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn ,

Φjk = ι(ek)ι(ej)Φ =

(−1)j+k ω2 ∧ · · · ∧ ω̂k ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn if k < j ,

(−1)j+k+1 ω2 ∧ · · · ∧ ω̂j ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn if k > j

(6.6)

19



for any j, k ∈ {2, . . . , n}.
By (2.8), (2.10) and (2.11), the covariant derivatives of the coframe 1-forms are as follows.

∇ω1 = −B ωn+j ⊗ ωj + (n− 1)C ω1 ⊗ ωn+1 +Aωj ⊗ ωn+j ,

∇ωj = −ωjk ⊗ ω
k +B ωn+j ⊗ ω1 +Aωj ⊗ ωn+1 − C ω1 ⊗ ωn+j ,

∇ωn+1 = −(n− 1)C ω1 ⊗ ω1 −Aωj ⊗ ωj −B ωn+j ⊗ ωn+j ,

∇ωn+j = −Aωj ⊗ ω1 + C ω1 ⊗ ωj +B ωn+j ⊗ ωn+1 − ωjk ⊗ ω
n+k .

(6.7)

We compute the covariant derivative of Φ and Φj .

∇Φ = (∇ωj) ∧ Φj

= (B ωn+j)⊗ (ω1 ∧ Φj)− (C ω1)⊗ (ωn+j ∧ Φj) + (Aωj)⊗ (ωn+1 ∧ Φj) , (6.8)

∇Φj = (∇ωk) ∧ Φjk

= (B ωn+k)⊗ (ω1 ∧ Φjk) + (Aωk)⊗ (ωn+1 ∧ Φjk)

− (C ω1)⊗ (ωn+k ∧ Φjk) + ωkj ⊗ Φk .
(6.9)

Putting (6.7) and (6.8) together gives the covariant derivative of Ω.

∇Ω = (n− 1)(C ω1)⊗ (ωn+1 ∧ Φ) + (Aωj)⊗ (ωn+j ∧ Φ)

− (C ω1)⊗ (ω1 ∧ ωn+j ∧ Φj) + (Aωj)⊗ (ω1 ∧ ωn+1 ∧ Φj) .
(6.10)

We also compute the second covariant derivative of Ω by computing the covariant derivative

of the four terms on the right hand side of (6.10). By (6.7), (6.8) and (6.9):

∇2Ω = (n− 1) I + II + III + IV

where

I = ∇
(
(C ω1)⊗ (ωn+1 ∧ Φ)

)
= −(n− 1)(C2 ω1 ⊗ ω1)⊗ Ω− (BC ωn+j ⊗ ω1)⊗ (ωn+j ∧ Φ + ω1 ∧ ωn+1 ∧ Φj)

+
(
Ċ ωn+1 ⊗ ω1 −BC ωn+j ⊗ ωj + (n− 1)C2 ω1 ⊗ ωn+1 +AC ωj ⊗ ωn+j

)
⊗ (ωn+1 ∧ Φ)

− (C2 ω1 ⊗ ω1)⊗ (ωn+1 ∧ ωn+j ∧ Φj) ,

II = ∇
(
(Aωj)⊗ (ωn+j ∧ Φ)

)
= −(A2 ωj ⊗ ωj)⊗ Ω + (AB ωn+j ⊗ ωj)⊗ (ωn+1 ∧ Φ) + (AB ωn+k ⊗ ωj)⊗ (ωn+j ∧ ω1 ∧ Φk)

+
(
Ȧ ωn+1 ⊗ ωj +A2 ωj ⊗ ωn+1 +AB ωn+j ⊗ ω1 −AC ω1 ⊗ ωn+j

)
⊗ (ωn+j ∧ Φ)

− (AC ω1 ⊗ ωj)⊗ (ωn+j ∧ ωn+k ∧ Φk) + (A2 ωk ⊗ ωj)⊗ (ωn+j ∧ ωn+1 ∧ Φk) ,
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III = −∇
(
(C ω1)⊗ (ω1 ∧ ωn+j ∧ Φj)

)
= −(C2 ω1 ⊗ ω1)⊗ Ω− (C2 ω1 ⊗ ω1)⊗

(
(n− 1)ωn+1 ∧ ωn+j ∧ Φj − ω1 ∧ ωn+j ∧ ωn+k ∧ Φjk

)
−
(
Ċ ωn+1 ⊗ ω1 −BC ωn+j ⊗ ωj + (n− 1)C2 ω1 ⊗ ωn+1 +AC ωj ⊗ ωn+j

)
⊗ (ω1 ∧ ωn+k ∧ Φk)

− (AC ωk ⊗ ω1)⊗ (ωn+k ∧ ωn+j ∧ Φj + ω1 ∧ ωn+j ∧ ωn+1 ∧ Φjk)

− (BC ωn+j ⊗ ω1)⊗ (ωn+j ∧ Φ + ω1 ∧ ωn+1 ∧ Φj) ,

IV = ∇
(
(Aωj)⊗ (ω1 ∧ ωn+1 ∧ Φj)

)
= −(A2 ωj ⊗ ωj)⊗ Ω + (A2 ωk ⊗ ωj)⊗ (ωn+k ∧ ωn+1 ∧ Φj)

+
(
Ȧ ωn+1 ⊗ ωj +A2 ωj ⊗ ωn+1 +AB ωn+j ⊗ ω1 −AC ω1 ⊗ ωn+j

)
⊗ (ω1 ∧ ωn+1 ∧ Φj)

+ (AB ωn+j ⊗ ωj)⊗ (ωn+1 ∧ Φ)− (AB ωn+k ⊗ ωj)⊗ (ω1 ∧ ωn+k ∧ Φj)

− (AC ω1 ⊗ ωj)⊗ (ω1 ∧ ωn+1 ∧ ωn+k ∧ Φjk) .

By examining the coefficient functions carefully, we conclude the following lemma. Recall

that the ρ coordinate is the distance to the zero section.

Lemma 6.1. Consider M = T ∗Sn with the Stenzel metric (2.4), and consider the n-form

Ω = ω1 ∧ · · · ∧ ωn. There exists a constant K > 0 depending only on n with the following

property. Suppose that Σ is a compact, oriented n-dimensional submanifold of M such that

ρ(p) < 1 and Ω(TpΣ) > 0 for any p ∈ Σ. Then,

|∇XΩ| (p) < Kρ(p) |X| for any X ∈ TpM , and

−K
(
ρ2(p) + s2(p)

)
< (trTpΣ∇2Ω)(TpΣ) < K s2(p)− 1

K
ρ2(p) .

Here, |∇XΩ| means the metric norm of ∇XΩ as a section of (ΛnT ∗M)|Σ with respect to the

metric induced by the Stenzel metric.

Proof. In (6.10), the coefficient functions consist of multiples of A and C, which are of order ρ

by the second assertion of Lemma 2.1.

There are three types of terms in the formula of ∇2Ω.

(i) The first type is in the direction of Ω. The first term of each of I, II, III, IV is of this

type and their sum is−(n2 − 2n+ 2)C2 ω1 ⊗ ω1 − 2A2
n∑
j=2

ωj ⊗ ωj
⊗ Ω .

The two-tensor in the bracket is clearly semi-negative definite, and is of order ρ2 by

Lemma 2.1.
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(ii) The second one is the linear combination of

η = (ωn+i ⊗ ωj)⊗ (ωn+k ∧ ω1 ∧ · · · ∧ ω̂l ∧ · · · ∧ ωn) and (ωi ⊗ ωn+j)⊗ (same)

for i, j, k, l ∈ {1, , . . . , n}. By (6.3) and the third line of (6.4), |(trTpΣ η)(TpΣ)| ≤ n2s2.

On the other hand, the coefficient functions are constant multiples ofA2, AB,BC,AC,C2, Ȧ

or Ċ. They are at most of order 1 by Lemma 2.1 and 2.2.

(iii) The third one is the linear combination of

η = (ωp ⊗ ωq)⊗ (ωn+i ∧ ωn+j ∧ ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ω̂l ∧ · · · ∧ ωn)

for i, j, k, l, p, q ∈ {1, , . . . , n}. By (6.3) and the last line of (6.4), |(trTpΣ η)(TpΣ)| ≤
n3s2. In these terms, the coefficient functions are multiples of A2, AC and C2. They

are of order ρ2 by Lemma 2.1.

By the triangle inequality, the proof of this lemma is complete. �

6.3. The Calabi metric case. For the Calabi metric, we follow the notations introduced in

section 3 and consider the 2n-form

Ω = kn (ξ1 ∧ ξ2 ∧ · · · ξn) ∧ (ξ1 ∧ ξ2 ∧ · · · ∧ ξn) (6.11)

where kn = (−1)
n(n−1)

2 ( i
2)n. The 1-forms ξ1 and ξj are given by (3.10). The restriction of Ω to

the zero section coincides with the volume form of the zero section. Let uν be the complexified

tangent vector defined by ξµ(uν) = δµν and ξµ(uν) = 0. Similar to the case of the Stenzel metric,

let

Ξ = ξ2 ∧ · · · ∧ ξn ,

Ξj = ι(uj)Ξ = (−1)j ξ2 ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξn ,

Ξjk = ι(uk)ι(uj)Ξ =

(−1)j+k ξ2 ∧ · · · ∧ ξ̂k ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξn if k < j ,

(−1)j+k+1 ξ2 ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξ̂k ∧ · · · ∧ ξn if k > j

(6.12)

for any j, k ∈ {2, . . . , n}.
By (3.11) and (3.12), the covariant derivative of the unitary coframe reads:

∇ξ1 = −i(
2f

c2
− 1

f
) (Im ξn+1)⊗ ξ1 +

b

ac
ξn+j ⊗ ξj − 2f

c2
ξ1 ⊗ ξn+1 − a

bc
ξj ⊗ ξn+j ,

∇ξj = − b

ac
ξn+j ⊗ ξ1 − ξjk ⊗ ξ

k − f

b2
ξj ⊗ ξn+1 ,

∇ξn+1 =
2f

c2
ξ1 ⊗ ξ1 +

f

b2
ξj ⊗ ξj + i(

2f

c2
− 1

f
) (Im ξn+1)⊗ ξn+1 +

f

a2
ξn+j ⊗ ξn+j ,

∇ξn+j =
a

bc
ξj ⊗ ξ1 − f

a2
ξn+j ⊗ ξn+1 + ξkj ⊗ ξn+k .

(6.13)
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It follows that the covariant derivative of Ξ and Ξj are as follows:

∇Ξ = (∇ξj) ∧ Ξj

= − b

ac
ξn+j ⊗ (ξ1 ∧ Ξj)− ξjj ⊗ Ξ− f

b2
ξj ⊗ (ξn+1 ∧ Ξj) , (6.14)

∇Ξj = (∇ξk) ∧ Ξjk

= − b

ac
ξn+k ⊗ (ξ1 ∧ Ξjk)− ξkk ⊗ Ξj + ξkj ⊗ Ξk − f

b2
ξk ⊗ (ξn+1 ∧ Ξjk) . (6.15)

By combining (6.13) and (6.14), the covariant derivative of ξ1 ∧ Ξ = ξ1 ∧ ξ2 ∧ · · · ∧ ξn is

∇(ξ1 ∧ Ξ) = i(
1

f
− 2f

c2
) (Im ξn+1)⊗ (ξ1 ∧ Ξ)− 2f

c2
ξ1 ⊗ (ξn+1 ∧ Ξ)

− a

bc
ξj ⊗ (ξn+j ∧ Ξ)− ξjj ⊗ (ξ1 ∧ Ξ)− f

b2
ξj ⊗ (ξ1 ∧ ξn+1 ∧ Ξj) .

(6.16)

Since Ω is real,

∇Ω = kn
(
∇(ξ1 ∧ Ξ)

)
∧ ξ1 ∧ Ξ + (conjugate) ,

so

∇Ω = −kn
2f

c2
ξ1 ⊗

(
ξn+1 ∧ Ξ ∧ ξ1 ∧ Ξ

)
− kn

a

bc
ξj ⊗

(
ξn+j ∧ Ξ ∧ ξ1 ∧ Ξ

)
− kn

f

b2
ξj ⊗

(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξ1 ∧ Ξ

)
+ (their conjugates)

(6.17)

where we have also used the fact that ξkj is skew-Hermitian, which is why the second-last term

from the right hand side of (6.16) ends up canceling with its conjugate.

Note that by (3.9), the second coefficient, a/(bc), is equal to f/b2. The next step is to

calculate the second order derivative of Ω, which is a sum of the covariant derivative of the six

terms on the right hand side of (6.17). Due to (6.13), (6.14), (6.15), (6.16) and the relations

(3.9):

∇2Ω = −kn
(
(I + II + III) + (I + II + III)

)
(6.18)
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where

I = ∇
(

2f

c2
ξ1 ⊗

(
ξn+1 ∧ Ξ ∧ ξ1 ∧ Ξ

))
=

4f2

c4
(ξ1 ⊗ ξ1)⊗

(
ξ1 ∧ Ξ ∧ ξ1 ∧ Ξ + ξn+1 ∧ Ξ ∧ ξn+1 ∧ Ξ

)
+

((2f

c2

)′ 1
h

(Re ξn+1)⊗ ξ1 + i
2f

c2

(2f

c2
− 1

f

)
(Im ξn+1)⊗ ξ1 − 4f2

c4
ξ1 ⊗ ξn+1

+
2b2

c4
ξn+j ⊗ ξj − 2a2

c4
ξj ⊗ ξn+j

)
⊗
(
ξn+1 ∧ Ξ ∧ ξ1 ∧ Ξ

)
+

2b2

c4
(ξn+j ⊗ ξ1)⊗

(
ξn+j ∧ Ξ ∧ ξ1 ∧ Ξ

)
− 2a2

c4
(ξj ⊗ ξ1)⊗

(
ξn+1 ∧ Ξ ∧ ξn+j ∧ Ξ

)
+

2b2

c4
(ξn+j ⊗ ξ1)⊗

(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξ1 ∧ Ξ

)
− 2a2

c4
(ξj ⊗ ξ1)⊗

(
ξn+1 ∧ Ξ ∧ ξ1 ∧ ξn+1 ∧ Ξj

)
,

II = ∇
(
f

b2
ξj ⊗

(
ξn+j ∧ Ξ ∧ ξ1 ∧ Ξ

))
=
f2

b4
(ξj ⊗ ξj)⊗

(
ξ1 ∧ Ξ ∧ ξ1 ∧ Ξ

)
− 1

c2
(ξn+j ⊗ ξj)⊗

(
ξn+1 ∧ Ξ ∧ ξ1 ∧ Ξ

)
+

(( f
b2

)′ 1
h

(Re ξn+1)⊗ ξj + i
f

b2

(2f

c2
− 1

f

)
(Im ξn+1)⊗ ξj − 1

c2
ξn+j ⊗ ξ1

−f
2

b4
ξj ⊗ ξn+1

)
⊗
(
ξn+j ∧ Ξ ∧ ξ1 ∧ Ξ

)
− 2a2

c4
(ξ1 ⊗ ξj)⊗

(
ξn+j ∧ Ξ ∧ ξn+1 ∧ Ξ

)
− f2

b4
(ξk ⊗ ξj)⊗

(
ξn+j ∧ Ξ ∧ ξn+k ∧ Ξ

)
+

1

c2
(ξn+k ⊗ ξj)⊗

(
ξ1 ∧ ξn+j ∧ Ξk ∧ ξ1 ∧ Ξ

)
+
f2

b4
(ξk ⊗ ξj)⊗

(
ξn+1 ∧ ξn+j ∧ Ξk ∧ ξ1 ∧ Ξ

)
− f2

b4
(ξk ⊗ ξj)⊗

(
ξn+j ∧ Ξ ∧ ξ1 ∧ ξn+1 ∧ Ξk

)
,
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III = ∇
(
f

b2
ξj ⊗

(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξ1 ∧ Ξ

))
=
f2

b4
(ξj ⊗ ξj)⊗

(
ξ1 ∧ Ξ ∧ ξ1 ∧ Ξ

)
− 1

c2
(ξn+j ⊗ ξj)⊗

(
ξn+1 ∧ Ξ ∧ ξ1 ∧ Ξ

)
+

(( f
b2

)′ 1
h

(Re ξn+1)⊗ ξj + i
f

b2

(2f

c2
− 1

f

)
(Im ξn+1)⊗ ξj − 1

c2
ξn+j ⊗ ξ1

−f
2

b4
ξj ⊗ ξn+1

)
⊗
(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξ1 ∧ Ξ

)
+
f2

b4
(ξk ⊗ ξj)⊗

(
ξn+1 ∧ ξn+k ∧ Ξj ∧ ξ1 ∧ Ξ

)
+

1

c2
(ξn+k ⊗ ξj)⊗

(
ξ1 ∧ ξn+k ∧ Ξj ∧ ξ1 ∧ Ξ

)
− 2a2

c4
(ξ1 ⊗ ξj)⊗

(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξn+1 ∧ Ξ

)
− f2

b4
(ξk ⊗ ξj)⊗

(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξn+k ∧ Ξ

)
− f2

b4
(ξk ⊗ ξj)⊗

(
ξ1 ∧ ξn+1 ∧ Ξj ∧ ξ1 ∧ ξn+1 ∧ Ξk

)
.

Recall that the distance to the zero section with respect to the Calabi metric is ρ =∫ r
0

√
cosh(2u)du, and the asymptotic behavior of the coefficient functions near ρ = 0 can be

found easily from (3.6). By applying (6.3) and (6.4) on (6.17)and (6.18), a completely parallel

argument as that in the proof of Lemma 6.1 leads to the following lemma.

Lemma 6.2. Consider M = T ∗CPn with the Calabi metric (3.5), and consider the 2n-form Ω

defined by (6.11). There exists a constant K > 0 depending only on n which has the following

property. Suppose that Σ is a compact, oriented 2n-dimensional submanifold of M such that

ρ(p) < 1 and Ω(TpΣ) > 0 for any p ∈ Σ. Then,

|∇XΩ| < Kρ(p) |X| for any X ∈ TpM , and

−K
(
ρ2(p) + s2(p)

)
< (trTpΣ∇2Ω)(TpΣ) < K s2(p)− 1

K
ρ2(p) .

6.4. The Bryant–Salamon metric case. Consider the n-form

Ω = ω1 ∧ ω2 ∧ · · · ∧ ωn . (6.19)

The notations in this subsection follow those in section 4, and the 1-forms ωj are defined by

(4.4). Similar to the case of the Stenzel metric, it is convenient to introduce the following

shorthand notations:

Ωj = ι(ej)Ω = (−1)j+1ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn , (6.20)

Ωjk = ι(ek)ι(ej)Ω =

(−1)j+k ω1 ∧ · · · ∧ ω̂k ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn if k < j ,

(−1)j+k+1 ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ω̂k ∧ · · · ∧ ωn if k > j .
(6.21)
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The covariant derivative of Ω is

∇Ω = (∇ωj) ∧ Ωj = ωn+µ
j ⊗ (ωn+µ ∧ Ωj) . (6.22)

For ∇2Ω, one expects that the covariant derivative of the curvature, ∇AF ∈ C∞(B;T ∗B ⊗
(Λ2T ∗B ⊗ EndE)), will show up. The coefficient 1-form of ∇AF is

(∇AF )µν jk = dFµν jk +Aµγ F
γ
ν jk − F

µ
γ jk A

γ
ν − F

µ
ν ik ω

i
j − F

µ
ν ji ω

i
k . (6.23)

We are now ready to calculate the second order derivative of Ω. Since

∇ωn+µ = −ωn+µ
i ⊗ ωi − ωn+µ

n+ν ⊗ ωn+ν and (6.24)

∇Ωj = (∇ωk) ∧ Ωjk = ωkj ⊗ Ωk + ωn+ν
k ⊗ (ωn+ν ∧ Ωjk) , (6.25)

the covariant derivative of (6.22) is

∇2Ω = −(ωn+µ
i ⊗ ωn+µ

i )⊗ Ω + (ωn+ν
k ⊗ ωn+µ

j )⊗ (ωn+µ ∧ ωn+ν ∧ Ωjk)

+
(
∇ωn+µ

j + ωn+µ
n+ν ⊗ ωn+ν

j + ωjk ⊗ ω
n+µ
k

)
⊗ (ωn+µ ∧ Ωj) .

(6.26)

The first two coefficients on the right hand side of (6.26) can be substituted by (4.8). We

compute the coefficient in the second line of (6.26). By (4.8),

∇ωn+µ
j = ∇

(
β

2α2
Fµν jky

ν ωk
)
−∇

(
2α′

αβ
yµ ωj

)
.

With the help of (4.4), (4.7), (5.2) and (6.24), we have

∇
(

β

2α2
Fµν jky

ν ωk
)

=
2

β

(
β

2α2

)′
Fµν jky

νyγ ωn+γ ⊗ ωk +
1

2α2
Fµν jk ω

n+ν ⊗ ωk

+
β

2α2
Fµν jky

ν ωn+γ
k ⊗ ωn+γ − β2

4α2
(Fµν jky

ν)(F σγ iky
γ)ωn+σ ⊗ ωi

+
β

2α2
yν
(

dFµν jk − F
µ
γ jk A

γ
ν − F

µ
ν ji ω

i
k

)
⊗ ωk ,

(6.27)

and

−∇
(

2α′

αβ
yµ ωj

)
= − 2

β

(
2α′

αβ

)′
yµyν ωn+ν ⊗ ωj − 2α′

αβ2
ωn+µ ⊗ ωj

+
α′

α2
yµF γν kjy

ν ωn+γ ⊗ ωk − 2α′

αβ
yµ ωn+ν

j ⊗ ωn+ν

+
2α′

αβ
yγ Aµγ ⊗ ωj +

2α′

αβ
yµ ωjk ⊗ ω

k .

(6.28)

Due to (4.7) (4.8) and (4.9),

ωn+µ
n+ν ⊗ ωn+ν

j =
2β′

β2
(yν ωn+µ − yµ ωn+ν)⊗ ωn+ν

j

− 2α′

αβ
yν Aµν ⊗ ωj +

β

2α2
yν(Aµγ F

γ
ν jk)⊗ ω

k ,

(6.29)
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and

−ωkj ⊗ ω
n+µ
k = − β

2α2
F γν jky

ν ωn+γ ⊗ ωn+µ
k

+
2α′

αβ
yµ ωkj ⊗ ωk −

β2

2α2
yν(Fµν ik ω

i
j)⊗ ωk .

(6.30)

To summarize the above computations, note that

• the sum of the last terms of (6.27), (6.29) and (6.30) is a multiple of ∇AF by (6.23);

• the last term of (6.28) cancels with the second-last term of (6.30);

• the second-last term of (6.28) cancels with that of (6.29).

The above computation is for a general bundle construction. We now examine the expressions

for the Bryant-Salamon metric. It is more convenient to consider the function s =
∑

µ(yµ)2,

which is equivalent to the distance square to the zero section on any compact region.

Lemma 6.3. Consider the n-form Ω = ω1∧· · ·∧ωn on each of the Bryant–Salamon manifolds.

There exists a constant K > 0 which has the following property. Suppose that Σ is a compact,

oriented n-dimensional submanifold of M such that s(p) < 1 and Ω(TpΣ) > 0 for any p ∈ Σ.

Then,

|∇XΩ| < K
√
s(p) |X| for any X ∈ TpM , and

−K
(
s(p) + s2(p)

)
< (trTpΣ∇2Ω)(TpΣ) < K s2(p)− 1

K
s(p) .

Proof. The coefficient functions α and β have explicit expressions, (4.10), (4.11) and (4.12).

The only property needed here is that α, β and their derivatives are uniformly bounded when

s ∈ [0, 1]. The estimate on ∇XΩ follows directly from (4.8) and (6.22).

To estimate ∇2Ω, consider (6.26), (6.27), (6.28), (6.29) and (6.30):

• The first coefficient 2-tensor on the right hand side of (6.26) is non-positive definite,

and is of order s when s(p) < 1.

• The second term on the right hand side of (6.26) carries ωn+µ ∧ ωn+ν ∧ · · · .
• As explained in Appendix A.1, ∇AF ≡ 0. Thus, each term of the third coefficient

2-tensor on the right hand side of (6.26) carries at least one ωn+µ-codirection.

Then, the lemma follows from (6.3) and (6.4). �

7. The stability of zero sections

Suppose Σt is a mean curvature flow of n-dimensional compact submanifolds in an ambient

Riemannian manifold M and Ω is an n-form on M . For any point p ∈ Σt, let {e1, · · · , en} be an

orthonormal frame of TΣt near p and {en+1, · · · , en+m} be an orthonormal frame of the normal

bundle of Σt near p. In the following, the indexes i, j, k range from 1 to n, the indexes α, β, γ
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range from n + 1 to n + m, and repeated indexes are summed. Let hαij = 〈∇eiej , eα〉 denote

the coefficients of the second fundamental form of Σt. Here, ∇ is the Levi-Civita connection of

the ambient manifold M .

We first recall the following proposition from [27, Proposition 3.1]

Proposition 7.1. Along the mean curvature flow Σt in M , ∗Ω = Ω(e1, · · · , en) satisfies

d

dt
∗ Ω = ∆Σt ∗ Ω + ∗Ω(

∑
α,i,k

h2
αik)

− 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k + · · ·+ Ω1···(n−2)αβhα(n−1)khβnk]

− 2(∇ekΩ)(eα, · · · , en)hα1k − · · · − 2(∇ekΩ)(e1, · · · , eα)hαnk

−
∑
α,k

[Ωα2···nRαkk1 + · · ·+ Ω1···(n−1)αRαkkn]− (∇2
ek,ek

Ω)(e1, · · · , en)

(7.1)

where ∆Σt denotes the time-dependent Laplacian on Σt, Ωαβ3···n = Ω(eα, eβ, e3, · · · , en) etc.,

and Rαkk1 = R(eα, ek, ek, e1), etc. are the coefficients of the curvature operators of M .

When Ω is a parallel form in M , ∇Ω ≡ 0, this recovers an important formula in proving the

long time existence result of the graphical mean curvature flow in [26].

Remark 7.2. In [27], the frame {ek}nk=1 is a geodesic frame at some p ∈M , i.e. ∇Σ
ejei vanishes

at p. Thus, the last term of (7.1) is(
∇2
ek,ek

Ω
)

(e1, · · · , en) = −(∇ek∇ekΩ)(e1, · · · , en) + (∇HΩ)(e1, · · · , en)

at p ∈M . This is exactly the formula in [27, Proposition 3.1].

7.1. Proof of Theorem 1.3 for the Stenzel metric.

Proof. We deal with the Stenzel metric first. Let ε be the constant to be determined and Σ

be a compact submanifold of M that satisfies the assumption (1.1). Throughout the proof,

Ki, i = 0, 1, 2, · · · denotes a positive constant that depends only on the dimension n. Denote

by Σt the mean curvature flow in M with Σ as the initial data.

We first prove the C0 estimate. As in the proof of Theorem 5.2, let ψ be the distance square

to the zero section with respect to the Stenzel metric, or the square of the ρ coordinate. Its

evolution equation along the mean curvature flow Σt reads (see the proof of Theorem C in [25])

d

dt
ψ = ∆Σtψ − trΣt Hessψ , (7.2)

where trΣt Hessψ is the trace of the Hessian of ψ over Σt and is always non-negative by Theorem

5.2. By the maximum principle, the maximum of ψ on Σt is non-increasing, and thus Σt remains

close to the zero section along the flow.
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Next, we derive the C1 estimate which amounts to showing that ∗Ω = Ω(TpΣt) remains close

to one. We claim that there exists a small enough ε ∈ (0, 1
2) and a large enough K0 > 1, both

depending only on the dimension n, such that if the inequality ∗Ω − K0ψ > 1 − ε holds on

the initial data, then it remains true on Σt at any subsequent time as long as the flow exists

smoothly.

For the argument of contradiction, suppose ∗Ω−K0ψ > 1−ε holds initially, and ∗Ω−K0ψ =

1 − ε for the first time at T0. Our goal is to apply equation (7.1) and the estimates in section

6.2 to show that for certain ε and K0,

d

dt
(∗Ω−K0ψ) ≥ ∆Σt(∗Ω−K0ψ) +

1

2
(∗Ω−K0ψ)|A|2 . (7.3)

where |A|2 =
∑

α,i,k h
2
αik. Therefore, the minimum of ∗Ω−K0ψ is non-decreasing in the interval

[0, T0) and ∗Ω−K0ψ is indeed strictly greater than 1− ε at T0.

By (7.1) and (7.2), the evolution equation of ∗Ω−K0ψ is:

d

dt
(∗Ω−K0ψ)−∆Σt(∗Ω−K0ψ)

= ∗ Ω(
∑
α,i,k

h2
αik)− 2

∑
α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k + · · ·+ Ω1···(n−2)αβhα(n−1)khβnk]

− 2(∇ekΩ)(eα, · · · , en)hα1k − · · · − 2(∇ekΩ)(e1, · · · , eα)hαnk

−
∑
α,k

[Ωα2···nRαkk1 + · · ·+ Ω1···(n−1)αRαkkn]− (∇2
ek,ek

Ω)(e1, · · · , en) +K0 trΣt Hessψ .

(7.4)

We aim at using the first and last term on the right hand side of (7.4) to control the rest of

the terms. At any p ∈ Σt, TpΣ and (TpΣ)⊥ have the following orthonormal bases constructed

in section 6.1:

{ej = cos θjuj + sin θjvj} and {en+j = − sin θjuj + cos θjvj} ,

respectively. Recall that {uj , vj}j=1,···n, is an orthonormal basis for TpM such that ωi(vj) =

ωn+i(uj) = 0 for any i, j, and [ωi(uj)]i,j and [ωn+i(vj)]i,j are both n × n orthogonal matrices.

As in (6.2), set s to be maxj{| sin θj |}.
It follows from ∗Ω − K0ψ > 1 − ε that ψ = ρ2 < ε/K0 < 1. In what follows, the point

p is always assumed to be at distance less than 1 from the zero section. It also follows from

∗Ω −K0ψ > 1 − ε that ∗Ω = Ω(e1, · · · , en) =
∏n
j=1 cos θj > 1 − ε. Hence, cos θj > 1 − ε > 1

2

and sin2 θj < 2ε for any j ∈ {1, . . . , n}, and s < 2ε
1
2 .

We now analyze the terms on the right hand side of (7.4)
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(i) By (5.1) and Lemma 2.1, Hessψ ≥ 1
K1

∑n
j=1(ρ2 ωj⊗ωj+ωn+j⊗ωn+j) for some constant

K1 > 0. Since cos θj >
1
2 and

∑n
j=1 sin2 θj ≥ maxj{sin2 θj} = s2,

trΣt Hessψ ≥ 1

K1
(ρ2

n∑
j=1

cos2 θj +
n∑
j=1

sin2 θj) >
1

K1
(
1

4
ρ2 + s2) . (7.5)

(ii) With the second line of (6.4) and the Cauchy–Schwarz inequality, |Ωαβ3···nhα1khβ2k| is
bounded by s2|A|2. Thus,∣∣∣∣∣∣2

∑
α,β,k

(Ωαβ3···nhα1khβ2k + · · ·+ Ω1···(n−2)αβhα(n−1)khβnk)

∣∣∣∣∣∣ ≤ K2 s
2|A|2

for some constant K2 > 0.

(iii) Due to the first assertion of Lemma 6.1,

2 |(∇ekΩ)(eα, · · · , en)hα1k + · · ·+ (∇ekΩ)(e1, · · · , eα)hαnk| < K3ρ|A| ≤ K2
3ρ

2 +
1

4
|A|2

for some constant K3 > 0.

(iv) According to the curvature computation in section 2.2.1, the Riemann curvature tensor

of the Stenzel metric satisfies R(ui, vj , vk, vl) = 0 = R(vi, uj , uk, ul) for any i, j, k, l ∈
{1, . . . , n}. It follows that

|R(en+j , ek, ek, ei)| ≤ K4(| sin θj |+ | sin θk|+ | sin θi|) ≤ 3K4s (7.6)

for some constant K4 > 0. This together with the first line of (6.4) implies that∣∣∣∣∣∣
∑
α,k

(Ωα2···nRαkk1 + · · ·+ Ω1···(n−1)αRαkkn)

∣∣∣∣∣∣ ≤ 3n2K4 s
2 .

(v) By Lemma 6.1, there exists a constant K5 > 0 such that

−
n∑
k=1

(∇2
ek,ek

Ω)(e1, · · · , en) ≥ −K5s
2 .

It follows that the right hand side of (7.4) is greater than

∗Ω|A|2 +
K0

K1
(
1

4
ρ2 + s2)−K2s

2|A|2 −K2
3ρ

2 − 1

4
|A|2 − (3n2K4 +K5) s2 .

It is clear that by taking ε to be sufficiently small and K0 to be sufficiently large, the expression

is greater than 1
2 ∗ Ω|A|2 ≥ 1

2(∗Ω−K0ψ)|A|2. This proves the differential inequality (7.3).

Finally, we prove the C2 estimate, which amounts to bounding the norm of the second

fundamental form from above. The evolution equation for the norm of the second fundamental
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form for a mean curvature flow in a general Riemannian manifold is derived in [24, Proposition

7.1]. In particular, |A|2 =
∑

α,i,k h
2
αik satisfies the following equation along the flow:

d

dt
|A|2 = ∆Σt |A|2 − 2|∇ΣtA|2 + 2[(∇ekR)αijk + (∇ejR)αkik]hαij

− 4Rlijkhαlkhαij + 8Rαβjkhβikhαij − 4Rlkikhαljhαij + 2Rαkβkhβijhαij

+ 2
∑

α,γ,i,m

(
∑
k

hαikhγmk − hαmkhγik)2 + 2
∑
i,j,m,k

(
∑
α

hαijhαmk)
2 .

(7.7)

In particular, we have

d

dt
|A|2 ≤ ∆Σt |A|2 − 2|∇ΣtA|2 +K6|A|4 +K7|A|2 +K8|A|

≤ ∆Σt |A|2 − 2|∇ΣtA|2 +K6|A|4 + (K7 +
1

2
K8)|A|2 +

1

2
K8 ,

where K6,K7 and K8 are positive constant that only depend on the geometry of M . Combining

this with equation (7.4) and applying the method in [26, p.540–542] yield the boundedness of

the second fundamental form. The term K6|A|4 on the right hand side, which can potentially

lead to the finite time blow-up of |A|2, is countered by the term 1
2(∗Ω−K0ψ)|A|2 on the right

hand side of (7.3). Standard estimates for second order quasilinear parabolic system imply

all higher derivatives are bounded, and we can apply Simon’s convergence theorem [20] to

conclude the smooth convergence as t → ∞. In fact, in this case the smooth convergence can

be proved directly by considering the derivatives of the second fundamental form. It follows

from (7.5) and (7.2) that ψ|Σt converges exponentially to zero. Similarly, it follows from (7.3)

that (1− ∗Ω +K0ψ)|Σt converges to zero, and thus ∗Ω converges to 1.

�

7.2. Proof of Theorem 1.3 for the other cases. The proofs for the Calabi metric and the

Bryant–Salamon metric are almost the same as above. We just highlight where it needs to be

modified. For the Calabi metric, the function ψ is taken to be the distance square to the zero

section, (
∫ r

0

√
cosh(2u)du)2. For the Bryant–Salamon metric, the function ψ is taken to be

s =
∑

µ(yµ)2.

First of all, due to Theorem 5.3 and 5.5, the C0 estimate follows from the same argument.

Moreover, as can be seen in their proofs, there exists a constant K8 > 0 such that

Hess(ψ) >
1

K8
(ψ + s2)

provided ψ ≤ 1. This is item (i) in the proof of the C1 estimate. For the rest of the items,

• one simply has to replace Lemma 6.1 by Lemma 6.2 and 6.3, respectively;

• according to the curvature computation in section 3.1.4 and appendix A.2, their Rie-

mann curvatures also admit the property that R(H,V,V,V) = 0 = R(V,H,H,H).
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For C2 and all higher derivative estimates, the argument is completely the same.

Appendix A. The curvature of Bryant–Salamon manifolds

This appendix is a brief summary on the curvature properties of the Bryant–Salamon man-

ifolds. For these bundle manifolds, the isometry group of the base acts transitively, and the

action lifts to the total space of the vector bundle isometrically. Hence, it suffices to examine

the curvature at a particular fiber.

Fix a point p in the base, and let ωj be a geodesic frame at p. Thus, at p, the Levi-Civita

connection forms of the base metric vanish, ωji |p = 0. Since the bundle is either the spinor

bundle or the bundle of anti-self-dual 2-forms, {ωj} induces an orthonormal trivialization {sν}
of the bundle by representation theory. In other words, the bundle connection Aµν is a linear

combination of ωji , and also vanishes at p. It follows that (dωji )|p = Rj
i |p and (dAµν )|p = Fµν |p.

A.1. The bundle curvature of the connection. In order to use (4.7), (4.8) and (4.9) to

compute the curvature of (4.3) over the fiber at p, we also need to know the exterior derivative of

Fµν ij . They are locally defined functions on the base. Since the metric here is the round metric

or the Fubini-Study metric, these locally defined functions are actually locally constants. The

readers are directed to [1] for the detail of the curvature computation. We simply write down

the answer.

For S(S3),

F =
κ

2


0 −ω2 ∧ ω3 ω1 ∧ ω3 −ω1 ∧ ω2

ω2 ∧ ω3 0 ω1 ∧ ω2 ω1 ∧ ω3

−ω1 ∧ ω3 −ω1 ∧ ω2 0 ω2 ∧ ω3

ω1 ∧ ω2 −ω1 ∧ ω3 −ω2 ∧ ω3 0

 . (A.1)

It is understood as an endomorphism-valued 2-form with respect to the trivialization {sν}. The

components of the curvature can be read off from the matrix. For instance, F 2
4 13 = κ/2.

For Λ2
−(S4) and Λ2

−(CP2),

F = κ

 0 −ω1 ∧ ω4 + ω2 ∧ ω3 ω1 ∧ ω3 + ω2 ∧ ω4

ω1 ∧ ω4 − ω2 ∧ ω3 0 −ω1 ∧ ω2 + ω3 ∧ ω4

−ω1 ∧ ω3 − ω2 ∧ ω4 ω1 ∧ ω2 − ω3 ∧ ω4 0

 . (A.2)

For S−(S4),

F =
κ

2


0 ω1 ∧ ω2 − ω3 ∧ ω4 ω1 ∧ ω3 + ω2 ∧ ω4 ω1 ∧ ω4 − ω2 ∧ ω3

−ω1 ∧ ω2 + ω3 ∧ ω4 0 −ω1 ∧ ω4 + ω2 ∧ ω3 ω1 ∧ ω3 + ω2 ∧ ω4

−ω1 ∧ ω3 − ω2 ∧ ω4 ω1 ∧ ω4 − ω2 ∧ ω3 0 −ω1 ∧ ω2 + ω3 ∧ ω4

−ω1 ∧ ω4 + ω2 ∧ ω3 −ω1 ∧ ω3 − ω2 ∧ ω4 ω1 ∧ ω2 − ω3 ∧ ω4 0

 .

(A.3)
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By (6.23), it is clear that ∇AF vanishes at p. Since the argument applies to any p ∈ B,

∇AF ≡ 0.

A.2. The Riemann curvature tensor of the bundle metric. We are now ready to compute

the curvature of Bryant–Salamon metric (4.3) over the fiber at p. The notation |p is abused to

indicate the restriction to the fiber at p in the following calculations. The Levi-Civita connection

of (4.3) is discussed in section 4.

By (4.7), (4.6), (4.13) and (4.15),

(dωji )|p = Rj
i −

β2

4α4
yνF νµ ijF

µ
γ kly

γ ωk ∧ ωl +
1

2α2
Fµν ij ω

n+ν ∧ ωn+µ

− 2β2

α4
(κ1 + κ2)Fµν ijy

νyγ ωn+γ ∧ ωn+µ ,

(−ωki ∧ ω
j
k)|p =

β2

4α4
Fµν iky

ν ωn+µ ∧ F ηγ jky
γ ωn+η ,

(−ωn+µ
i ∧ ωjn+µ)|p =

4β2

α4
κ2

1s ω
i ∧ ωj − β2

4α4
yνF νµ ikF

µ
γ jly

γ ωk ∧ ωl .

Thus, by (1.6), we have

Rjikl =
1

α2
Rjikl −

4β2

α4
κ2

1s (δjkδil − δjlδik)

− β2

4α4
yν(2F νµ ijF

µ
γ kl + F νµ ikF

µ
γ jl − F

ν
µ ilF

µ
γ jk)y

γ ,

(A.4)

Rji(n+µ)(n+ν) = − 1

α2
Fµν ij +

2β2

α4
(κ1 + κ2)(yνFµγ ij − y

µF νγ ij)y
γ

+
β2

4α4
yγ(Fµγ ikF

ν
η jk − F νγ ikF

µ
η jk)y

η .

(A.5)

In the above expression, Rjikl = R(ej , ei, ek, el) is the Riemann curvature tensor of (B, g), where

{ej} is the dual frame of {ωj}.
For the curvature component Rn+µ

i ,

(dωn+µ
i )|p = − 2

α2
κ1 ω

n+µ ∧ ωi +
1

2α2
Fµν ij ω

n+ν ∧ ωj +
4β2

α4
κ1(κ1 + κ2)yµyγ ωn+γ ∧ ωi

− β2

α4
(κ1 + κ2)Fµγ ijy

γyν ωn+ν ∧ ωj ,

(−ωji ∧ ω
n+µ
j )|p =

β2

α4
κ1F

ν
γ ijy

γyµ ωn+ν ∧ ωj +
β2

4α4
F νγ iky

γFµη jky
η ωn+ν ∧ ωj ,

(−ωn+ν
i ∧ ωn+µ

n+ν )|p =
4β2

α4
κ1κ2s ω

n+µ ∧ ωi − 4β2

α4
κ1κ2y

µyν ωn+ν ∧ ωi +
β2

α4
κ2F

ν
γ ijy

γyµ ωn+ν ∧ ωj ,
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and then

R(n+µ)i(n+ν)j = −
(

2

α2
κ1 −

4β2

α4
κ1κ2s

)
δµνδij +

1

2α2
Fµν ij +

4β2

α4
κ2

1y
µyνδij

+
β2

α4
(κ1 + κ2)(yµF νγ ij − yνF

µ
γ ij)y

γ +
β2

4α4
yγF νγ ikF

µ
η jky

η .

(A.6)

For the curvature component Rn+µ
n+ν ,

(dωn+µ
n+ν )|p =

1

2α2
Fµν ij ω

i ∧ ωj +
β2

α4
κ2(yµF νγ ij − yνF

µ
γ ij)y

γ ωi ∧ ωj

+
4

α2
κ2 ω

n+µ ∧ ωn+ν − 8β2

α4
κ2(κ1 + κ2)yγ ωn+γ ∧ (yµ ωn+ν − yν ωn+µ) ,

(−ωin+ν ∧ ω
n+µ
i )|p =

β2

4α4
yγF νγ ikF

µ
η jky

η ωi ∧ ωj − κ1
β2

α4
(yνFµγ ij − y

µF νγ ij)y
γ ωi ∧ ωj ,

(−ωn+γ
n+ν ∧ ω

n+µ
n+γ )|p =

4β2

α4
κ2

2

(
s ωn+ν ∧ ωn+µ − yνyγ ωn+γ ∧ ωn+µ − yµyγ ωn+ν ∧ ωn+γ

)
,

and

R(n+µ)(n+ν)(n+γ)(n+η) =

(
4

α2
κ2 −

4β2

α4
κ2

2s

)
(δµγδνη − δµηδνγ)

+
4β2

α4
κ2(2κ1 + κ2)(yνyγδµη − yνyηδµγ + yµyηδνγ − yµyγδην) .

(A.7)
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