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Abstract. We prove regularity, global existence, and convergence of Lagrangian mean cur-

vature flows in the two-convex case (1.6). Such results were previously only known in the

convex case, of which the current work represents a significant improvement. The proof relies

on a newly discovered monotone quantity (2.6) that controls two-convexity. Through a uni-

tary transformation, same result for the mean curvature flow of area-decreasing Lagrangian

submanifolds (1.10) were established.

1. Introduction

Let M be a 2n dimensional Kähler manifold. Throughout this paper, the Riemannian metric

on M is assumed to be flat. The symplectic form ω on M is given by ω( · , · ) = ⟨J( · ), · ⟩ where
J is the (almost) complex structure and ⟨ · , · ⟩ is the Riemannian metric. We also assume that

there exist parallel bundle maps π1 : TM → TM and π2 : TM → TM such that the following

conditions are satisfied.

(i) Both π1 and π2 are orthogonal projections on each fiber.

(ii) π1 + π2 is the identity map on TM .

(iii) The kernels of π1 and π2 on each fiber are Lagrangian subspaces.

It follows that kerπ1 and kerπ2 are everywhere orthogonal, and J maps one to the other.

Moreover, Jπ1 = π2J and Jπ2 = π1J . A typical example is M = Cn (or any quotient of Cn

such as a complex torus) on which π1 is projection from Cn onto Rn and π2 is the projection

from Cn onto J(Rn) where J is the standard complex structure on Cn.

Given such a splitting structure on TM , one can define the following parallel 2-tensor S (see

[19]):

S(X,Y ) = ⟨Jπ1(X), π2(Y )⟩ (1.1)

for any X,Y ∈ TpM at any p ∈ M .
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Suppose Lp is a Lagrangian subspace of TpM , it is not hard to check that the restriction of

S to Lp is symmetric, i.e. S(X,Y ) = S(Y,X) if X,Y ∈ Lp. Moreover, if π1 : Lp → TpM is

injective, one can apply the singular value decomposition theorem to find an orthonormal basis

{ai} for π1(TpM) and real numbers {λi} such thatei =
1√

1 + λ2
i

(ai + λiJ(ai))


n

i=1

(1.2)

forms an orthonormal basis for Lp. Note that {J(ai)} constitutes an orthonormal basis for

π2(TpM). In terms of this basis,

Sij = S(ei, ej) =
λi

1 + λ2
i

δij . (1.3)

1.1. Two-Convex Lagrangians. For a Lagrangian submanifold F : L ↪→ M , we consider

several geometric conditions that are characterized by the projection map π1 and the tensor S

defined in (1.1).

Definition 1.1. A Lagrangian submanifold L ⊂ M is said to be graphical if π1 : TpL → TpM

is injective for any p ∈ L;

A typical example is when M = Cn and L is the graph of ∇u for a function u defined on Rn,

λ′
is in (1.2) are exactly the eigenvalues of D2u, the Hessian of u, see [22, Section 2].

The graphical condition can be characterized by the positivity of a geometric quantity in-

troduced in [26]. Fix an orientation for π1(TM). Under π∗
1, the volume form of π1(TM) gives

a parallel n-form on M , and denote it by Ω. It is clear that a Lagrangian submanifold L is

graphical if and only if ∗Ω is nowhere zero, where ∗Ω denotes the Hodge star of the restriction

of the n-form Ω to L. If so, orient the Lagrangian so that ∗Ω > 0. With respect to (1.2),

∗Ω =
1√∏n

i=1(1 + λ2
i )

. (1.4)

We also consider the restriction of S (1.1) to L, F ∗S, as a symmetric 2-tensor on L. By

(1.3), if the sum of any two eigenvalues of F ∗S is positive, then

Sii + Sjj =
(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
> 0 (1.5)

for any i ̸= j, or equivalently, (λi + λj)(1 + λiλj) > 0 for any i ̸= j. The region is not a

connected region, and we always focus on the connected component where

λi + λj > 0 and 1 + λiλj > 0 for any i ̸= j . (1.6)

Definition 1.2. A graphical Lagrangian submanifold L ⊂ M is said to be

(i) convex if λi > 0 for each i on L.
2



(ii) two-convex if λi + λj > 0 and 1 + λiλj > 0 for any i ̸= j, or (1.6) holds, on L

It is known that the Lagrangian condition is preserved by the mean curvature flow [17]. The

main theorem of this paper is that (1.6) implies the long-time existence and convergence of the

Lagrangian mean curvature flow.

Theorem 1.3. Let L ⊂ M be compact Lagrangian submanifold. If L is graphical and two-

convex, then the mean curvature flow of L exists for all time, and remains graphical and two-

convex. Moreover, it converges smoothly to a flat Lagrangian submanifold as t → ∞.

This theorem generalizes [19, Theorem A], which assumes L is convex, or λi > 0 for all i. In

fact, all results of Lagrangian mean curvature flows [19, 4, 5] known to us are in the following

cases: (1) the convex case, (2) cases that are equivalent to the convex case through unitary

transformations (see the next subsection), or (3) cases that are perturbations of (1) and (2).

Remark 1.4. In the proof of Theorem 1.3, we implicitly assume that the ambient space M is

also compact. It follows that M is topologically a torus, or its finite quotient. The theorem

holds true for some non-compact M as well. For instance, if M is the cotangent bundle of a

flat n-torus, one can prove by using the distance (squared) to the zero section that the mean

curvature flow of L remains in a compact subset. See for instance [21, Theorem A].

We briefly describe the steps involved the proof as follows:

(i) We start with a compact two-convex Lagrangian that satisfies (1.6). We derive the

evolution equation of the following quantity (see (2.6))

log
∏
i<j

(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
,

show that it is monotone non-decreasing along the mean curvature flow, and therefore

(1.6) is preserved.

(ii) We derive the evolution equation of

log(∗Ω) = −1

2
log(

n∏
i=1

(1 + λ2
i ))

and show that it is monotone non-decreasing along the mean curvature flow as long as

1+λiλj > 0, which was established in the last step. This in particular shows that each

λi remains uniformly bounded.

(iii) We prove that the second fundamental forms are bounded by contradiction. Suppose

the second fundamental forms are unbounded, through a blow-up argument we obtain a

non-flat ancient solution of the graphical Lagrangian mean curvature flow. A Liouville
3



theorem ([15], see Section 3) which applies the Krylov-Safonov estimate to the equation

of the Lagrangian angle θ,

θ =
n∑
i

arctanλi,

allows us to conclude that the ancient solution must be stationary. Finally, we apply the

Bernstein theorem of [22] that asserts any stationary solution satisfying the condition

1 + λiλj > 0 must be affine and arrive at the contradiction.

We remark that the underlying parabolic equation is the following equation for the potential

function u:

∂u

∂t
=

1√
−1

log
det(I+

√
−1D2u)√

det(I+ (D2u)2)
. (1.7)

The estimates of λ′
is correspond to the C2 estimates of the solution u and the estimates of

the second fundamental forms correspond to the C3 estimates.

The convex assumption implies that the right hand side of (1.7) , i.e. the Lagrangian angle

θ, as a function of D2u is concave in the space of symmetric matrices and thus PDE theories

of fully nonlinear elliptic and parabolic equations [3, 12, 1] are applicable. The two-convex

assumption (and the area-decreasing assumption in the next subsection) arises naturally in the

study of the Lagrangian Grassmannian [22] and the Gauss map of the mean curvature flow [28].

It is interesting to see if some similar approach would work for related problems such as the

deformed Hermitian–Yang–Mills equation considered in [11,6] or the curvature type equations

considered in [7]. On the other hand, it is a natural question to ask if two-convexity can replace

the convex assumption in the work of Caffarelli-Nirenberg-Spruck [3].

1.2. Area-Decreasing Lagrangians. It is known that when M = Cn the convex case λi > 0

for each i is essentially equivalent to the case |λi| < 1 for each i through a unitary transformation

U(n) of Cn ([22], or the Lewy transformation in [30]). The two-convex case is essentially

equivalent to the following area-decreasing case through the same unitary transformation.

One can consider another parallel 2-tensor P :

P (X,Y ) = ⟨π1(X), π1(Y )⟩ − ⟨π2(X), π2(Y )⟩ . (1.8)

With respect to the frame (1.2),

Pij = P (ei, ej) =
1− λ2

i

1 + λ2
i

δij .

For a Lagrangian submanifold F : L ↪→ M , F ∗P being 2-positive means that

Pii + Pjj =
1− λ2

iλ
2
j

(1 + λ2
i )(1 + λ2

j )
> 0 (1.9)
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for any i ̸= j.

Definition 1.5. A graphical Lagrangian submanifold L ⊂ M is said to be area-decreasing if

|λiλj | < 1 for any i ̸= j (1.10)

holds true at every p ∈ L.

When M = Cn and L is the graph of ∇f , the condition corresponds to ∇f as a map from

Rn to Rn is area-decreasing.

The same results in Theorem 1.3 hold true for the mean curvature flow of area-decreasing

Lagrangians.

Theorem 1.6. Let L ⊂ M be compact Lagrangian submanifold. If it is graphical and area-

decreasing, then the mean curvature flow of L exists for all time, and remains graphical and

area-decreasing. Moreover, it converges to a flat Lagrangian submanifold as t → ∞.

This theorem generalizes [18, Theorem 2], which assumes dimL = 2.

The paper is organized as follows. In section 2, we derive the evolution equations and provide

quantitative bounds of relevant quantities. In section 3, a Liouville Theorem for ancient solu-

tions of Lagrangian mean curvature flows is discussed. Section 4 is devoted to prove Theorem

1.3 and Theorem 1.6.

Acknowledgement. The second and third authors thank Professor Smoczyk for a discussion

in December 2012, in which it was observed that the argument in [23] also implies the positivity

of S[2] defined in (2.5) is preserved along Lagrangian mean curvature flows.

2. Evolution Equations

For a Lagrangian submanifold, J induces an isometry between its tangent bundle and its

normal bundle. As a consequence, its second fundamental form is totally symmetric. That is

to say,

hijk = ⟨∇̄eiej , J(ek)⟩ (2.1)

is totally symmetric in i, j, k, where {ei} is an orthonormal basis for its tangent space. Here

∇̄ is the covariant derivative of M .

Suppose that F : L × [0, T ) → M is a Lagrangian mean curvature flow. From [19, section

3.2], F ∗S satisfies

(
∂

∂t
−∆)Sij = hmkihmkℓSℓj + hmkjhmkℓSiℓ + 2hkiℓhkjmSℓm , (2.2)

where the equation is in terms of an evolving orthonormal frame and repeated indexes are

summed.
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Since S is a parallel tensor on M , ∇̄S = 0, the (spatial) gradient of F ∗S is (see for example

[23, p.1121])

Sij;k = ek(S(ei, ej))− S(∇ekei, ej)− S(ei,∇ekej)

= S(∇̄ekei −∇ekei, ej) + S(ei, ∇̄ekej −∇ekej), (2.3)

where ∇ is the covariant derivative on L. The definition of second fundamental forms (2)

implies ∇̄ekei −∇ekei = hkiℓJ(eℓ) and

Sij;k = hkiℓ S(J(eℓ), ej) + hkjℓ S(ei, J(eℓ)).

At a space-time point p, Sij;k can thus be expressed in terms the frame (1.2) as

Sij;k = hkij

(
λ2
j

1 + λ2
j

− 1

1 + λ2
i

)
= −1

2
hkij

(
1− λ2

i

1 + λ2
i

+
1− λ2

j

1 + λ2
j

)
. (2.4)

2.1. The Logarithmic Determinant of S[2]. In [3], another tensor S[2] is introduced to study

the two-positivity of F ∗S; see also [23, section 5]. Similar to [20], we consider the equation of

the logarithmic determinant of S[2].

With respect to an orthonormal frame, S[2] is defined by

S
[2]
(ij)(kℓ) = Sikδjℓ + Sjℓδik − Siℓδjk − Sjkδiℓ (2.5)

for any i < j and k < ℓ. It can be regarded as a symmetric endomorphism on Λ2TL.

At a space-time point p, suppose that S is diagonal in terms of the frame (1.2). It follows

from (2.5) that S
[2]
(ij)(kℓ)|p = (Sii + Sjj)δikδjℓ. Thus, the 2-positivity of F ∗S is equivalent to the

positivity of S[2].

It can be proved that the positivity of S[2] is preserved along the flow in the same way as in

[23]. However, in this article we consider another quantity that also controls the two-convexity

condition: the logarithmic determinant of S[2]:

log det(S[2]) = log
∏
i<j

(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
. (2.6)

It is a straightforward computation to show that the function log det(S[2]) satisfies

(
∂

∂t
−∆) ln(detS[2])

at p
=

∑
1≤i<j≤n

[
(Sii + Sjj)

−1(
∂

∂t
−∆)(Sii + Sjj) + (Sii + Sjj)

−2|∇(Sii + Sjj)|2
]

+ 2
∑

1≤i≤n

∑
1≤j<k≤n
j ̸=i, k ̸=i

(Sii + Sjj)
−1(Sii + Skk)

−1|∇Sjk|2 .

(2.7)
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The main task is to calculate the first term on the right hand side of (2.7). According to

(2.2),

(
∂

∂t
−∆)(Sii + Sjj) = 2

∑
k,ℓ

[
h2kℓi(Sii + Sℓℓ) + h2kℓj(Sjj + Sℓℓ)

]
= 4

∑
k

[
h2kii Sii + h2kjj Sjj

]
+ 4(Sii + Sjj)

∑
k

h2kij

+ 2
∑
k

∑
ℓ ̸={i,j}

[
h2kℓi(Sii + Sℓℓ) + h2kℓj(Sjj + Sℓℓ)

]
.

By (2.4),

|∇(Sii + Sjj)|2 =
∑
k

(
hkii

1− λ2
i

1 + λ2
i

+ hkjj
1− λ2

j

1 + λ2
j

)2

. (2.8)

It follows that

(Sii + Sjj)∆(Sii + Sjj) + |∇(Sii + Sjj)|2

− 4(Sii + Sjj)
2
∑
k

h2kij − 2(Sii + Sjj)
∑
k

∑
ℓ̸={i,j}

[
h2kℓi(Sii + Sℓℓ) + h2kℓj(Sjj + Sℓℓ)

]

= 4(Sii + Sjj)
∑
k

[
h2kii Sii + h2kjj Sjj

]
+
∑
k

(
hkii

1− λ2
i

1 + λ2
i

+ hkjj
1− λ2

j

1 + λ2
j

)2

=
∑
k

[
(λi + λj)

2 + (1 + λiλj)
2

(1 + λ2
i )(1 + λ2

j )
(h2kii + h2kjj) +

(1− λ2
i )(1− λ2

j )

(1 + λ2
i )(1 + λ2

j )
2hkiihkjj

]

=
∑
k

[
(1 + λiλj)

2

(1 + λ2
i )(1 + λ2

j )
(hkii + hkjj)

2 +
(λi + λj)

2

(1 + λ2
i )(1 + λ2

j )
(hkii − hkjj)

2

]
.

Hence,

(Sii + Sjj)
−1(

∂

∂t
−∆)(Sii + Sjj) + (Sii + Sjj)

−2|∇(Sii + Sjj)|2

= 4
∑
k

h2kij + 2(Sii + Sjj)
−1
∑
k

∑
ℓ̸={i,j}

[
h2kℓi(Sii + Sℓℓ) + h2kℓj(Sjj + Sℓℓ)

]
+
∑
k

[
(1 + λ2

i )(1 + λ2
j )

(λi + λj)2
(hkii + hkjj)

2 +
(1 + λ2

i )(1 + λ2
j )

(1 + λiλj)2
(hkii − hkjj)

2

]
.

With (2.7), it leads to the following Proposition.
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Proposition 2.1. Suppose that a graphical Lagrangian mean curvature flow is two-convex, then

the function log(detS[2]) satisfies

(
∂

∂t
−∆) log(detS[2])

≥
∑
i<j

∑
k

[
4h2kij +

(1 + λ2
i )(1 + λ2

j )

(λi + λj)2
(hkii + hkjj)

2 +
(1 + λ2

i )(1 + λ2
j )

(1 + λiλj)2
(hkii − hkjj)

2

]
(2.9)

≥ 2|A|2 ≥ 0 . (2.10)

In particular, min log(detS[2]) is monotone non-decreasing along the flow and two-convexity

is preserved.

Proof. It remains to show that (2.10) is no less than 2|A|2 under the condition (1.6). It is

straightforward to verify that under the condition (1.6),

(1 + λ2
i )(1 + λ2

j )

(λi + λj)2
≥ 1 and

(1 + λ2
i )(1 + λ2

j )

(1 + λiλj)2
≥ 1 . (2.11)

Note that both equalities are attained when λi = 1 = λj . Hence, the right hand side of (2.9) is

no less than ∑
i<j

∑
k

[
4h2kij + 2h2kii + 2h2kjj

]
= 2|A|2 + 2(n− 2)

∑
i,k

h2kii . (2.12)

It finishes the proof of this proposition. □

2.2. The Logarithmic Determinant of the Jacobian of π1. In the minimal Lagrangian

case, the equation for log(∗Ω) is derived in [22, (2.4)]. The computation in the parabolic case

is essentially the same, and

(
∂

∂t
−∆) log(∗Ω) =

∑
i,j,k

h2ijk +
∑
i,j

λ2
i h

2
iij + 2

∑
i,j,k
i<j

λiλj h
2
ijk .

By re-grouping the summations, one finds the following proposition.

Proposition 2.2. Along a graphical Lagrangian mean curvature flow, the function log(∗Ω)
satisfies

(
∂

∂t
−∆) log(∗Ω) =

∑
i

(1 + λ2
i )h

2
iii +

∑
i ̸=j

(3 + λ2
i + 2λiλj)h

2
iij

+
∑

i<j<k

(6 + 2λiλj + 2λjλk + 2λkλi)h
2
ijk .

(2.13)

If the flow is in addition two-convex, then ( ∂
∂t −∆) log(∗Ω) ≥ 0 and min log(∗Ω) in monotone

non-decreasing along the flow.
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Proof. It is clear that the right hand side is non-negative if 1 + λiλj > 0 which is part of the

two-convexity assumption.

□

2.3. Some Quantitative Bounds. Since λ
1+λ2 takes value within [−1

2 ,
1
2 ], the expression (1.5),

Sii+Sjj , is always no greater than 1. It follows that for a two-convex Lagrangian, detS[2] takes

value within (0, 1]. Hence, log(detS[2]) ∈ (−∞, 0]. Since ∗Ω = 1/
√∏

i(1 + λ2
i ), log(∗Ω) ∈

(−∞, 0].

For a two-convex Lagrangian submanifold, suppose that log(∗Ω) ≥ −δ1 and log(detS[2]) ≥
−δ2 for some δ1, δ2 > 0. It follows that∑

i

λ2
i ≤ e2δ1 − 1 (2.14)

for all i. From log(detS[2]) ≥ −δ2,

(λi + λj)(1 + λiλj)

(1 + λ2
i )(1 + λ2

j )
≥
∏
k<ℓ

(Skk + Sℓℓ) ≥ e−δ2

for any i ̸= j. Therefore,

(λi + λj)(1 + λiλj) ≥ e−δ2 . (2.15)

Under the condition (1.6), (2.14) and (2.15) lead to that

1 + λiλj ≥
e−δ2√

2(e2δ1 − 1)
and λi + λj ≥

2e−δ2

e2δ1 + 1
(2.16)

for any i ̸= j.

3. A Liouville Theorem

In this section, we state a Liouville theorem for ancient solutions of the Lagrangian mean

curvature flow in Cn ≡ R2n under the graphical condition. For discussions of ancient solutions

of the Lagrangian mean curvature flow under other assumptions, see [13]. The theorem is due

to Nguyen and Yuan [15, Proposition 2.1] and is a direct consequence of the Krylov–Safonov

estimate [12]. We include the proof here for completeness.

Theorem 3.1. Let u be a smooth solution to

∂u

∂t
=

1√
−1

log
det(I+

√
−1D2u)√

det(I+ (D2u)2)
(3.1)

in Q = Rn × (−∞, t0] for some t0 > 0. Denote by λ1, . . . , λn the eigenvalues of the Hessian of

u, D2u. Suppose that every |λi| is bounded over Q. Then, u is stationary, i.e. u satisfies the

special Lagrangian equation.
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Proof. Denote the right hand side of (3.1) by θ. It is the argument of the complex num-

ber det(I +
√
−1D2u). Note that θ is a smooth function over Q, and takes value within

(−nπ/2, nπ/2). According to [8, §III.2.D], the differential of θ is equivalent to the mean curva-

ture of the graph of Du. As a consequence, (3.1) means that the Lagrangian {(x,Du)} evolves

under the mean curvature flow.

The induced metric on the graph of Du has the first fundamental form given by

g = I+ (D2u)2 = (I+
√
−1D2u)(I−

√
−1D2u) .

In particular, (I+
√
−1D2u)−1 is (I−

√
−1D2u)g−1 = g−1(I−

√
−1D2u). With this understood,

the derivative of (3.1) in t gives

∂θ

∂t
= gij ∂tuij = gij ∂i∂j(∂tu) = gij ∂i∂jθ , (3.2)

where [gij ] is the inverse of g = I + (D2u)2. Since |λi|’s are uniformly bounded, (3.2) is a

uniformly parabolic equation. As the right hand side of (3.2) has no first and zeroth order

terms, the Krylov–Safonov estimate [12, Lemma 2 on p.133] implies that there exist positive α

and C depending on n, supQ |u| and supQ |D2u| such that

sup

{
|θ(x̃, t̃)− θ(x, t)|

max{|x̃− x|α, |t̃− t|
α
2 }

: (x̃, t̃), (x, t) ∈ Br × [t0 − r2, t0] , (x̃, t̃) ̸= (x, t)

}
≤ C

1

rα

for any r > 0. By letting r → ∞, one finds that θ(x, t) = θ(x̃, t̃) for any (x, t) ̸= (x̃, t̃).

It follows that the graph of Du is a time-independent minimal/special Lagrangian submani-

fold. It finishes the proof of this theorem. □

4. Proof of the Main Theorems

This section is devoted to the proof of Theorem 1.3. The proof of Theorem 1.6 is almost the

same, and we only address the key ingredient at the end of this section.

4.1. Preserving the Graphical and Two-Convexity Condition. Suppose that L is a

compact, oriented n-dimensional manifold, and F0 : L → M is a two-convex Lagrangian sub-

manifold. Consider the Lagrangian mean curvature flow F : L×[0, T ) → M with F (·, 0) = F0(·),
where T is the maximal existence time. Let

τ̄ = sup{τ ∈ (0, T ) : the flow remains two-convex in [0, τ)} .

Denote by Lt the image of L × {t} under F . Since L is compact, log(detS[2]) ≥ −δ2 and

log(∗Ω) ≥ −δ1 for some δ1, δ2 > 0 on L0. Due to Proposition 2.1, Proposition 2.2 and the

maximum principle, both minLt log(detS
[2]) and minLt log(∗Ω) are non-decreasing in t ∈ [0, τ̄).

If τ̄ < T , it follows from (2.14) and (2.15) that L×{τ̄} is two-convex. Because of the openness
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of the two-convexity condition, this is a contradiction, and τ̄ must be the maximal existence

time.

4.2. Long-time Existence. With (2.10), one may use the same argument as that in the proof

of [26, Theorem A] to prove the mean curvature flow exists for all time. It is based on Huisken’s

monotonicity formula [10] and White’s regularity theorem [29].

Below, we present another argument based on the Liouville theorem (Theorem 3.1). Recall

that Huisken proved that if the maximal existence time T < ∞, then it is characterized by

lim sup
t→T

max
Lt

|A|2 = ∞ ; (4.1)

see [9, Theorem 8.1] for the hypersurface case.

Assume (4.1) for some t̄ < ∞. There exist sequences {tk} ∈ (0, T ) and {xk} ∈ L such that

• tk → T monotonically as k → ∞;

• |A|2(xk, tk) = max{|A|2(x, t) : (x, t) ∈ L× [0, tk]};
• |A|2(xk, tk) → ∞ monotonically as k → ∞.

Denote |A|2(xk, tk) by ρk. Due to [18, Lemma 3.1] (see also [14, Theorem 1]), the second

fundamental form obeys

(
∂

∂t
−∆)|A|2 ≤ −2|∇A|2 + 3|A|4 . (4.2)

By the maximum principle, there exists c > 0 such that T − tk ≥ c ρ−2
k for all k ∈ N. Identify

a neighborhood of F (xk, tk) with a subset of R2n, and consider

F̃k(·, s) = ρk

[
F (·, tk +

s

ρ2k
)− F (xk, tk)

]
. (4.3)

The image of F̃k is given by the graph of Dũk for some ũk : Uk ⊂ Rn×R → R with ũk(0, 0) = 0

andDũk(0, 0) = 0. It follows from ρk → ∞ that any compact subset of Rn×(−∞, c) is contained

in Uk for any k >> 1. By the standard blow-up argument1, ũk converges to u : Rn×(−∞, c) → R
satisfying (3.1), and the convergence is smooth on any compact subset of Rn × (−∞, c).

Note that the slope is invariant under the rescaling (4.3), and λi’s remain unchanged. In

particular, the eigenvalues of D2u satisfy (2.14) and (2.16) everywhere. Hence, Theorem 3.1

implies that the graph ofDu is a special Lagrangian submanifold that satisfies the condition that

for any i, j, 3+2λiλj ≥ δ over Q; we conclude that the graph of Du in R2n, {(x,Du) : x ∈ Rn},
is an affine n-plane by [22, Corollary C]. However, the second fundamental form of the graph

of Dũk has norm 1 at (0, 0). This is a contradiction.

1Since |λi|′s are uniformly bounded, so is D2ũk. The third order derivative D3ũk is equivalent to the second

fundamental form, which is bounded. The higher order derivatives are also bounded; see [2, Proposition 4.8].
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4.3. Convergence. The key to conclude the convergence as t → ∞ is to show that maxLt |A|2 →
0 as t → ∞.

4.3.1. Uniform Boundedness of |A|2. The first task is to show that |A|2 is uniformly bounded.

Suppose not, then

lim sup
t→∞

max
Lt

|A|2 = ∞ . (4.4)

With the same argument as that in section 4.2, one can extract a blow-up limit, which is a

non-trivial ancient solution to (3.1). By the same token, it contradicts to Theorem 3.1 (i).

4.3.2. L2-Convergence of |A|2. With the uniformly boundedness of |A|2, [2, Proposition 4.8]

asserts that |∇ℓA|2 is uniformly bounded for all ℓ ∈ N.

Denote log(detS[2]) by v, whose value belongs to [−δ2, 0). By Proposition 2.1, it obeys

( ∂
∂t −∆)v ≥ 2|A|2. Denote by dµt the volume form of Lt. Since

∂
∂tdµt = −|H|2dµt,

2

∫
Lt

|A|2 dµt ≤
∫
Lt

[
(
∂

∂t
−∆)v − v|H|2

]
dµt =

d

dt

∫
Lt

v dµt .

This together with |
∫
Lt

v µt| ≤ δ2 vol(Lt) ≤ δ2 vol(L0) implies that∫ ∞

0
(

∫
Lt

|A|2dµt) dt < ∞ . (4.5)

By (4.2) and the uniform boundedness of |A|2 and |∇A|2,

d

dt

∫
Lt

|A|2dµt =

∫
Lt

[
(
∂

∂t
−∆)|A|2 − |A|2|H|2

]
dµt

≤
∫
Lt

[
3|A|4 − 2|∇A|2 − |A|2|H|2

]
dµt ≤ c1 . (4.6)

According to [21, Lemma 6.3], (4.5) and (4.6) imply that
∫
Lt

|A|2dµt → 0 as t → ∞.

4.3.3. Convergence of the Flow. Fix t ≥ 0; suppose that maxLt |A|2 is achieved at x0. On a

fixed size neighborhood of x0, Lt is the graph over π1(Tx0M), whose higher derivatives are all

bounded. It follows that there exists a c2 > 0 such that
∫
Lt

|A|2dµt ≥ c2maxLt |A|2. Therefore,

lim
t→0

max
Lt

|A|2 = 0 . (4.7)

Since the mean curvature flow is a gradient flow and the metrics are analytic, it follows from

the theorem of Simon [16] that the flow converges to a unique limit as t → ∞. This finishes

the proof of Theorem 1.3.
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4.4. About Theorem 1.6. Analogous to (2.5), we introduce P [2] to study the 2-positivity of

F ∗P . According to [20, Theorem 3.2], the logarithmic determinant2 of P [2] obeys

(
∂

∂t
−∆) log(detP [2]) ≥ 2|A|2 (4.8)

along the mean curvature flow. In terms of λi, we have

log det(P [2]) = log
∏
i<j

1− λ2
iλ

2
j

(1 + λ2
i )(1 + λ2

j )
. (4.9)

The proof of Theorem 1.6 is very similar to that of Theorem 1.3, and is sketched below. As

in section 4.1, denote by T the maximal existence time. Let

τ̄ = sup{τ ∈ (0, T ) : the flow remains graphical and area-decreasing in [0, τ)} .

By the maximum principle on (4.8), log(detP [2]) is uniformly bounded from below. It follows

from [20, Lemma 3.3] that Lt remains graphical and area-decreasing as long as the flow exists.

For the long-time existence, suppose that T < ∞, and perform the same blow-up argument

as that in 4.2 to get a non-trivial ancient solution of (3.1). Here, we rely on [27, Theorem

1.1] to conclude that any entire, graphical minimal submanifold that satisfies the condition

|λiλj | ≤ 1− δ must be an affine n-plane. It is a contradiction, and thus T = ∞.

By a similar blow-up argument, the second fundamental form cannot tend to infinity as

t → ∞. As in section 4.3.2, one deduces that
∫
Lt

|A|2dµt → 0 as t → ∞ by considering

the integration of (4.8) over Lt. The same argument as that in section 4.3.3 implies that

supLt
|A|2 → 0 as t → ∞. Finally, one invokes the theorem of [16] to finish the proof.
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