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Abstract

In array processing, mutual coupling between sensors has an adverse effect on the estimation of parameters (e.g.,

DOA). While there are methods to counteract this through appropriate modeling and calibration, they are usually

computationally expensive, and sensitive to model mismatch. On the other hand, sparse arrays, such as nested arrays,

coprime arrays, and minimum redundancy arrays (MRAs), have reduced mutual coupling compared to uniform linear

arrays (ULAs). With N denoting the number of sensors, these sparse arrays offer O(N2) freedoms for source

estimation because their difference coarrays have O(N2)-long ULA segments. But these well-known sparse arrays

have disadvantages: MRAs do not have simple closed-form expressions for the array geometry; coprime arrays have

holes in the coarray; and nested arrays contain a dense ULA in the physical array, resulting in significantly higher

mutual coupling than coprime arrays and MRAs. This paper introduces a new array called the super nested array,

which has all the good properties of the nested array, and at the same time achieves reduced mutual coupling.

There is a systematic procedure to determine sensor locations. For fixed N , the super nested array has the same

physical aperture, and the same hole-free coarray as does the nested array. But the number of sensor pairs with small

separations (λ/2, 2× λ/2, etc.) is significantly reduced. Many theoretical properties are proved and simulations are

included to demonstrate the superior performance of these arrays. In the companion paper, a further extension called

the Qth-order super nested array is developed, which further reduces mutual coupling.

Index Terms

Sparse arrays, nested arrays, coprime arrays, super nested arrays, mutual coupling, DOA estimation.

I. INTRODUCTION

Array processing plays a significant role in many applications such as radar [1], astronomy [2], tomography

[2], and communications [3]. Sensor measurements enable us to extract source profiles, such as direction-of-arrival
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Fig. 1. The concept of 2D representations of linear arrays. The top of this figure shows the 1D representation of a nested array withN1 = N2 = 5,

where bullets denote sensors and crosses indicate empty locations. In the 1D representation of this example, the array aperture is divided into

N2 = 5 layers of size N1 + 1 = 6. These layers are stacked into the associated 2D representation, as marked by arrows. Notice that in this

paper, 2D representations denote linear arrays, not planar arrays. They are introduced to simplify the discussion in the future development.

(DOA), radial velocity, range, power, and polarization [1]–[4]. However, in practice, electromagnetic characteristics

cause mutual coupling between sensors, making the sensor responses interfere with each other [1], [5]. This has

an adverse effect on the estimation of parameters (e.g., DOA). State-of-the-art approaches aim to decouple (or

“remove”) the effect of mutual coupling from the received data by using proper mutual coupling models [6]–[15].

Such methods are usually computationally expensive, and sensitive to model mismatch.

An altogether different approach to reduce the effect of mutual coupling is to use sparse arrays, in which the

number of sensor pairs with small separations (small multiples of λ/2) is much fewer than in uniform linear

arrays (ULAs). This paper is based on this theme. Sparse arrays such as nested arrays, coprime arrays [16]–[20],

minimum redundancy arrays (MRAs) [21] and minimum hole arrays (MHAs) [22], [23] have reduced mutual

coupling compared to ULAs. They also offer another important advantage over ULAs: with N denoting the number

of sensors, these sparse arrays offer O(N2) freedoms for source estimation because their difference coarrays have

O(N2)-long ULA segments [16], [17]. That is, the number of uncorrelated source directions that can be estimated

is increased from N − 1 to O(N2). Typically a MUSIC algorithm is performed in the difference coarray domain

to achieve this [16], [17].

In practice, these well-known sparse arrays have some shortcomings: MRAs and MHAs do not have simple

closed-form expressions for the array geometry, and the sensor locations are usually found from tabulated entries

[21]–[24]. Coprime arrays have holes in the coarray, so that the ULA part of the coarray is smaller than those of

the nested array and the MRA [17]. Finally nested arrays, by definition, contain a dense ULA in the physical array,

resulting in significantly higher mutual coupling than coprime arrays and MRAs [16].

The main aim of this paper is to introduce a new array configuration called the super nested array, which has all

the good properties of the nested array, and at the same time achieves reduced mutual coupling by redistributing the
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Fig. 2. The 1D and 2D representations of a second-order super nested array with N1 = N2 = 5. It will be proved in this paper that super

nested arrays possess the same number of sensors, the same physical aperture, and the same hole-free coarray as their parent nested arrays.

Furthermore, super nested arrays alleviate the mutual coupling effect. In this example, there is only one pair of sensors with separation 1, located

at 29 and 30. However, for the parent nested array in Fig. 1, locations 1 through 6 are crowded with sensors, leading to more severe mutual

coupling effect.

elements of the dense ULA part of the nested array. There is a systematic procedure to do this. We will show how

to determine the appropriate sensor locations for any N . For fixed N (number of sensors), the super nested array

has the same physical aperture as the parent nested array. Furthermore, its difference coarray is exactly identical

to that of the nested array and is, in particular, free from holes. However, unlike the nested array, the number of

sensor pairs with small separations (λ/2, 2 × λ/2, etc.) is significantly reduced. More quantitative statements of

these properties will be given in this paper based on the weight function w(m) of the sparse array (where w(m) is

the number of pairs of elements with element-spacing mλ/2). Several other properties of the new array geometry

will also be established.

To explain how the super nested array is obtained from a nested array, it is first convenient to develop a two-

dimensional (2D) representation of linear arrays. This is demonstrated in Fig. 1 which shows the traditional (1D)

and the corresponding 2D representations of a nested array with N1 = N2 = 5 (N1 and N2 have the same meaning

as in [16]; also see Fig. 3(a)). The top of Fig. 1 depicts this array configuration along an 1D axis, where bullets

are physical sensors and crosses stand for empty space. Layer 1 is defined as the locations from 1 to N1 + 1 = 6

while Layer 2 begins with N1 + 2 = 7 and ends with 2(N1 + 1) = 12. The 2D representation establishes a 2D

topology by stacking all these layers, as illustrated in the bottom of Fig. 1. Then, the dense ULA and the sparse

ULA structure of a nested array can be readily visualized. Note that in this paper, 2D representations denote linear

arrays, not planar arrays.

Next, Fig. 2 provides a first glance at a second-order super nested array with parameters N1 = N2 = 5. These

parameters are the same as those in Fig. 1. Hence, the array in Fig. 1 is said to be the parent nested array of the

array in Fig. 2. It can be seen from this example that this super nested array is sparser than its parent nested array
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(for the same physical aperture) in the sense that the number of element pairs with small spacing (spacings of 1, 2,

and 3) are reduced. In this super nested array, there is only one pair of sensors with separation 1, but in its parent

nested array, five sensor pairs of separation 1 exist. We will see that such rearrangements will significantly reduce

the adverse effects of mutual coupling in DOA estimation. Later on, it will be shown in Fig. 8 that, with mutual

coupling, the DOA estimation error for the (third-order) super nested array is as small as 2% of that for its parent

nested array, which is truly remarkable.

Even though the 1D representation of super nested arrays seems irregular, their 2D representation provides a

geometrical point of view, as shown in Fig. 2. It can be noticed that Fig. 2 resembles Fig. 1, except for few sensor

locations. In this example, we start with the parent nested array in Fig. 1 and then relocate some sensors, from

location 2 to 8, 4 to 10, and 6 to 29, yielding the super nested array in Fig. 2. The systematic construction of super

nested arrays from nested arrays for arbitrary N1 and N2 will be described more rigorously in Section IV.

A. Paper outline

Section II reviews sparse array processing and mutual coupling models. In Section III, we present a motivating

example which compares the performances of well-known sparse arrays in the presence of mutual coupling. Super

nested arrays are then introduced in Section IV, and some of their basic properties are proved (Lemma 1 and

Lemma 2). In Section V, we study the difference coarray of the super nested array in detail. It will be proved

that super nested arrays have the same hole-free coarray as their parent nested arrays (Theorem 1, and Corollary

1). Furthermore, a closed-form expression for the weight function w(m) of the super nested array is provided in

Theorem 2. The first three weights (which dominate the effects of mutual coupling) are shown to be always smaller

for the super nested array, compared to the parent nested array (w(1) and w(3) being significantly smaller). The

improved performance of super nested arrays under mutual coupling will be demonstrated through examples in

Section VI. Section VII concludes this paper.

A MATLAB code to generate the sensor locations of the super nested array can be found in [25]. This code

takes N1 and N2 (which are defined by the parent nested array as in Fig. 3(a)) as the inputs and returns the sensor

locations as the output.

The arrays introduced in this paper will be called second-order super nested arrays, for reasons that will become

clear soon. In the companion paper, a further extension called the Qth-order super nested array is developed, which

further reduces mutual coupling.

II. PRELIMINARIES

A. Sparse Array Processing

Assume D monochromatic far-field sources impinge on the sensor array, where the sensor locations are nd. Here

n belongs to some integer set S and d = λ/2 denotes the minimum distance between sensors. For the ith source,

its complex amplitude is written as Ai and its direction-of-arrival (DOA) is denoted by θi ∈ [−π/2, π/2]. The
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measurement vector xS on the sensor array S can be modeled as follows:

xS =

D∑
i=1

AivS
(
θ̄i
)

+ nS, (1)

where vS(θ̄i) = [ej2πθ̄in]n∈S are steering vectors and nS is the additive noise term. θ̄i = (d/λ) sin θi is the

normalized DOA. We obtain −1/2 ≤ θ̄ ≤ 1/2. The parameters Ai and nS are assumed to be zero-mean, uncorrelated

random variables with E[AiA
∗
j ] = σ2

i δi,j and E[nSn
H
S ] = σ2I. Here σ2

i is the power of the ith source, σ2 is the

noise power, and δp,q is the Kronecker delta. θ̄i is considered to be fixed but unknown.

Here we briefly review the bracket notation in sparse array processing. Consider an example of a sensor array with

three elements. The first, second, and third elements are located at d, 3d, and 5d, respectively. After normalizing by

d, the sensor locations can be specified by the following integer set: S = {1, 3, 5}. Assume that the signals received

by the first, second, and third sensor are −2, 5, and −10, respectively. These signals can be modeled as a column

vector xS = [−2,−5,−10]T . The square brackets [xS]i indicate the ith component of xS, i.e., the signal received

by the ith sensor. We write [xS]1 = −2, [xS]2 = −5, and [xS]3 = −10. The angle brackets 〈xS〉n represent the

value of the signal at the sensor location nd. That is, 〈xS〉1 = −2, 〈xS〉3 = −5, and 〈xS〉5 = −10. These notations

apply to covariance matrices as [RS]i,j = E
[
[xS]i[xS]∗j

]
and 〈RS〉n,m = E [〈xS〉n〈xS〉∗m].

The covariance matrix of xS can be expressed as

RS =

D∑
i=1

σ2
i vS(θ̄i)v

H
S (θ̄i) + σ2I. (2)

Since the entries in vS(θ̄i)v
H
S (θ̄i) are of the form ej2πθ̄i(n1−n2), where n1, n2 ∈ S, it enables us to reshape (2) into

an autocorrelation vector xD as in [16], [26]

xD =

D∑
i=1

σ2
i vD(θ̄i) + σ2e0, (3)

where 〈e0〉n = δn,0 for n ∈ D.

Definition 1 (Difference coarray). For a sparse array specified by an integer set S, its difference coarray D is

defined as

D = {n1 − n2 | n1, n2 ∈ S} .

In other words, the original model (1) in the physical array domain S, is converted into another model (3) in the

difference coarray domain D. According to D, we define the following terminologies:

Definition 2 (Degrees of freedom). The number of degrees of freedom (DOF) of a sparse array S is the cardinality

of its difference coarray D.

Definition 3 (Uniform DOF). Given an array S, let U denote the central ULA segment of its difference coarray.

The number of elements in U is called the number of uniform degrees of freedom or “uniform DOF” of S.
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If the uniform DOF is F , then the number of uncorrelated sources that can be identified by using coarray MUSIC

is (F − 1)/2 [16], [26].

Definition 4 (Restricted arrays [21]). A restricted array is an array whose difference coarray D is a ULA with

adjacent elements separated by λ/2. In other words, there are no holes in the coarray domain. Thus the phrase

“restricted array” is equivalent to “array with hole-free difference coarray.”

Definition 5 (General arrays [21]). If the difference coarray D of a sparse array S is not a ULA with inter-element

spacing λ/2, then it is a general array.

For instance, if S = {1, 2, 4}, the corresponding difference coarray becomes D = {−3,−2,−1, 0, 1, 2, 3} and the

maximum contiguous ULA segment of D is exactly D. Therefore, its DOF and uniform DOF are both 7, implying

that S is a restricted array. However, S = {1, 2, 5} results in D = {−4,−3,−1, 0, 1, 3, 4} and the maximum ULA

section U = {−1, 0, 1}. The associated DOF and uniform DOF are 7 and 3, respectively. This array is a general

array. As another example, nested arrays are restricted arrays [16] while coprime arrays are general arrays [17],

[26].

In the finite-snapshot setting, where the measurement vectors x̃S(k), k = 1, 2, . . . ,K are given, the covariance

matrix can be estimated by

R̃S =
1

K

K∑
k=1

x̃S(k)x̃HS (k).

The finite-snapshot version of the autocorrelation function can be averaged from the covariance matrix by

〈x̃D〉m =
1

w(m)

∑
(n1,n2)∈M(m)

〈R̃S〉n1,n2
,

where the set M(m) contains all pairs (n1, n2) contributing to the coarray support m, i.e.

M(m) =
{

(n1, n2) ∈ S2 | n1 − n2 = m
}
, m ∈ D. (4)

Here w(m) are the weight functions, given by the following definition:

Definition 6 (Weight functions). The weight function w(m) of an array S is defined as the number of sensor pairs

that lead to coarray index m, which is exactly the cardinality of M(m) in (4):

w(m) = |M(m)| , m ∈ D.

Notice that the weight function w(m) for any linear array with N elements satisfies the following properties:

w(0) = N,
∑
m∈D

w(m) = N2, w(m) = w(−m). (5)

The proof of (5) follows from (4) and Definition 6.

Next, we need to estimate the true normalized DOAs θ̄i from x̃D. A variation [27] of the rank-enhanced spatial

smoothing MUSIC algorithm [16], [26] (SS MUSIC) will be used in this paper. The spatial smoothing step is
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TABLE I

SOME TERMINOLOGIES RELATED TO SPARSE ARRAYS

This paper Alternative names

Restricted arrays [21] Fully augmentable arrays [28]

General arrays [21] Partially augmentable arrays [29]

Minimum redundancy

arrays (MRAs)
Restricted MRAs [21]

Minimum hole arrays

(MHAs)

Golomb arrays [22], Minimum-gap arrays

[29]

avoided in [27] as follows: let the finite snapshot autocorrelation vector be x̃D. We construct a Hermitian Toeplitz

matrix R̃ satisfying

〈R̃〉n1,n2
= 〈x̃D〉n1−n2

,

where n1, n2 ∈ U+. The set U denotes the maximum contiguous ULA segment of D. U+ is the non-negative part

of U. It was proved in [27] that the MUSIC spectrum over R̃ possesses the same performance as that over the

spatially smoothed matrix R̃ss, if the noise subspace is classified by the magnitudes of the eigenvalues of R̃.

Finally, we will review some well-known sparse array configurations, like minimum redundancy arrays (MRAs)

[21], minimum hole arrays (MHAs) [22], [23], nested arrays [16], and coprime arrays [17]. All these arrays are

capable of resolving O(N2) sources provided with O(N) sensors [16], [17], [21], [26], [28], and increasing the

spatial resolution [16], [18]–[20], [26], [30].

MRAs [21] maximize their uniform DOF subject to a given total number of sensors. In general, MRAs may

or may not be restricted [21], but in some references restricted MRAs are simply referred to as MRAs [29]. In

this paper, we use the term MRAs to imply restricted MRAs. In [31], the author introduced a closed-form array

geometry which yields arrays which are almost MRAs (although the author refers to these as MRAs in [31]).

However, no systematic development of the properties of coarrays are included therein. MHAs [22], [23] minimize

the number of holes in its coarray for a given total number of sensors, such that all the differences, except 0, occur

at most once, i.e., w(m) ∈ {0, 1} for m 6= 0. MHAs are sometimes called Golomb arrays [22], or minimum-gap

arrays [29]. Some common terminologies for these arrays are summarized in Table I. These arrays offer certain

optimality to the array profiles but it is extremely intricate to obtain explicit expressions of the sensor locations for

arbitrary number of sensors [21]–[24], [31].

Nested arrays [16] and coprime arrays [17], on the other hand, characterize their sensor locations in a closed-form,

simple, and scalable fashion. For nested arrays, the sensor locations are given by

Snested = {1, 2, . . . , N1,

(N1 + 1), 2(N1 + 1), . . . N2(N1 + 1)} , (6)
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λ/2

(N1 + 1)λ/2

(b) • • • •• • • • •

N sensors with inter-element spacing Mλ/2

2M − 1 sensors with inter-element spacing Nλ/2
Mλ/2

Nλ/2

Fig. 3. 1D representations of (a) nested arrays and (b) coprime arrays.

where N1 and N2 are positive integers. The sensor locations for coprime arrays are

Scoprime = {0,M, 2M, . . . , (N − 1)M,

N, 2N, . . . , (2M − 1)N} , (7)

where M and N are a coprime pair of positive integers. It can be readily visualized in Fig. 3 that nested arrays are

composed of two parts: dense ULA and sparse ULA. The dense ULA consists of N1 sensors with separation λ/2

while the sparse ULA is made of N2 sensors with separation (N1 +1)λ/2, where λ is the wavelength. On the other

hand, coprime arrays comprise two ULAs. One is N sensors with spacing Mλ/2 while the other is 2M−1 sensors

with spacing Nλ/2. These simple expressions facilitate the design process with arbitrary number of sensors.

B. Mutual Coupling

Equation (1) assumes that the sensors do not interfere with each other. In practice, any sensor output is influenced

by its neighboring elements, which is called mutual coupling. In this section, we will review mutual coupling models

on sensor arrays.

Mutual coupling can be incorporated into (1) as follows:

xS =

D∑
i=1

AiCvS(θ̄i) + nS, (8)

where C is a mutual coupling matrix that can be obtained from electromagnetics. Closed-form expressions for C

have been investigated for decades. If the sensor array is a linear dipole array, C can be written as [10]–[12], [32],

[33]

C = (ZA + ZL)(Z + ZLI)
−1, (9)

where ZA and ZL are the element/load impedance, respectively. 〈Z〉n1,n2
is given by

η0
4π (0.5772 + ln(2βl)− Ci(2βl) + jSi(2βl)) , if n1 = n2,

η0
4π

(
〈R〉n1,n2

+ j 〈X〉n1,n2

)
, if n1 6= n2.
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Here η0 =
√
µ0/ε0 ≈ 120π is the intrinsic impedance. β = 2π/λ is the wavenumber, where λ is the wavelength.

l is the length of dipole antennas. R and X are

〈R〉n1,n2

= sin(βl) (−Si(u0) + Si(v0) + 2Si(u1)− 2Si(v1))

+ cos(βl)(Ci(u0) + Ci(v0)− 2Ci(u1)− 2Ci(v1)

+ 2Ci(βdn1,n2
))− (2Ci(u1) + 2Ci(v1)− 4Ci(βdn1,n2

)) ,

〈X〉n1,n2

= sin(βl) (−Ci(u0) + Ci(v0) + 2Ci(u1)− 2Ci(v1))

+ cos(βl)(−Si(u0)− Si(v0) + 2Si(u1) + 2Si(v1)

− 2Si(βdn1,n2
)) + (2Si(u1) + 2Si(v1)− 4Si(βdn1,n2

)) .

where dn1,n2
= |n1 − n2|λ/2 is the distance between sensors. The parameters u0, v0, u1, and v1 are

u0 = β
(√

d2
n1,n2

+ l2 − l
)
, v0 = β

(√
d2
n1,n2

+ l2 + l
)
,

u1 = β
(√

d2
n1,n2

+ 0.25l2 − 0.5l
)
,

v1 = β
(√

d2
n1,n2

+ 0.25l2 + 0.5l
)
,

Si(u) and Ci(u) are sine/cosine integrals, defined as

Si(u) =

∫ u

0

sin t

t
dt, Ci(u) =

∫ u

∞

cos t

t
dt.

Eq. (9) quantifies the mutual coupling effect of linear dipole antenna arrays. Note that C relies on the dipole length

l and the sensor element spacing dn1,n2 , which are geometric parameters.

However, (9) is too complicated to anaylze. It is desirable to establish a simple mutual coupling model. The

mutual coupling matrix C can be approximated by a B-banded symmetric Toeplitz matrix in the ULA configuration

[6], [11], [33]. It is empirically observed that the entries of C behave like functions of sensor separations only. In

other words, we can write C as

〈C〉n1,n2
=

c|n1−n2|, if |n1 − n2| ≤ B,

0, otherwise,
(10)

where n1, n2 ∈ S and coupling coefficients c0, c1, . . . , cB satisfy 1 = c0 > |c1| > |c2| > · · · > |cB |. It is

assumed that the magnitudes of coupling coefficients are inversely proportional to their sensor separations [6], i.e.

|ck/c`| = `/k.

The mutual coupling models such as (9) and (10) are based on certain assumptions [6]–[14], [34], [35]. The

actual mutual coupling matrix C is unknown to the user. If the mutual coupling effect is completely omitted in

our estimators, the performance degrades [36]. Another approach is to estimate mutual coupling and source profiles

based on particular mutual coupling models [6], [8], [11]–[14], [35]. For instance, BouDaher et al. considered
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Fig. 4. Comparison among ULAs, MRAs, nested arrays, coprime arrays and their MUSIC spectra P (θ̄) in the presence of mutual coupling. It

can be observed that higher uniform DOF and smaller weight functions w(1), w(2), w(3) tend to decrease the RMSE.

DOA estimation with coprime arrays in the presence of mutual coupling [35]. Their algorithm jointly estimated

the mutual coupling matrix C, the source power, and the DOA under certain optimization criterion. At the expense

of some extra computations, this approach estimates the true DOA satisfactorily. In principle, all of the above

decoupling methods are applicable with the super nested arrays to be developed in this paper, and can only improve

the performance further.

III. MUTUAL COUPLING IN SPARSE ARRAYS: A MOTIVATING EXAMPLE

In this section, we provide an example of DOA estimation in the presence of mutual coupling for several array

configurations. It will be observed that uniform DOF and weight functions of sensor arrays play a crucial role. This

observation provides some insights to design sensor arrays that reduce the mutual coupling effect.

In Fig. 4, we evaluate the performance of ULAs, MRAs [21], nested arrays [16], and coprime arrays [17], [26]

in the presence of mutual coupling. The number of sensors is 6 for each array. Then, the sensor locations are given

by (6) with N1 = N2 = 3 for nested arrays and (7) with M = 2 and N = 3 for coprime arrays. The sensor

locations are listed on the first row of Fig. 4. The number of sources D = 4 and the DOA profiles are θ̄1 = 0,

θ̄2 = 0.1, θ̄3 = 0.2, and θ̄4 = 0.3. The SNR is 0 dB and the number of snapshots K is 1000. The mutual coupling

matrix C is based on (10), where c0 = 1, c1 = 0.5ejπ/4, c2 = 0.5ej0.7π/2, c3 = 0.5ej0.7π/3, and B = 3. The

measurement with mutual coupling can be expressed as in Eq. (8). The DOAs are estimated from the measurement

vectors without any decoupling algorithms [6], [8], [11]–[14], [35].
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The second row of Fig. 4 shows weight functions of different array geometries. The coarray of ULA has

consecutive integers from −5 to 5, the coarray of MRA ranges from −13 to 13, the nested array owns coarray

aperture from −11 to 11, and the coprime array has the maximum contiguous ULA section in its coarray domain

from −7 to 7. Then, the uniform DOF, as defined in Definition 3, for ULA, MRA, the nested array, the coprime

array are 11, 27, 23, and 15, respectively. Hence, the maximum number of detectable sources for ULA, MRA,

nested array, and coprime array is 5, 13, 11, and 7, respectively [16], [26]. The MUSIC algorithm is performed

for ULA while the coarray MUSIC (SS MUSIC) is used in all the sparse arrays. In addition, the weight functions

w(m) also exhibit different distributions for different arrays. If we consider w(1) among all these arrays, we obtain

w(1) = 5, 1, 3, 2 for ULA, MRA, nested arrays, and coprime arrays, respectively. When w(1) becomes smaller,

there are fewer sensor pairs with separation 1 so, qualitatively, we obtain a sparser array configuration.

The associated MUSIC spectra P (θ̄) and the root-mean-squared error (RMSE), are shown on the third row and

the fourth row of Fig. 4, respectively. The RMSE (E) is defined as

E =

√√√√ 1

D

D∑
i=1

(
ˆ̄θi − θ̄i

)2

, (11)

where ˆ̄θi denotes the estimated normalized DOA of the ith source, according to the root MUSIC algorithm, and θ̄i

is the true normalized DOA. It can be observed that ULA fails to identify four sources accurately in this example,

while MRA has the best estimation performance. In nested arrays and coprime arrays, four peaks can be seen but

they have more estimation error. These spectra conclude the estimation performance: MRA is the best one, followed

by nested arrays and then coprime arrays. ULA has the worst performance. In the example of Section VI (Fig. 8)

we will see that super nested arrays can achieve significantly smaller error than MRAs in the presence of mutual

coupling.

Fig. 4 provides some insightful qualitative statements. First, as the uniform DOF increases, the corresponding

RMSE decreases. The size of this virtual ULA, or equivalently the uniform DOF, is 27 for MRA, 23 for the nested

array, 15 for the coprime array, and 11 for ULA. This explains why the RMSE is the least for the MRA, followed

by the nested array, coprime array and lastly the ULA.

Second, the RMSE also tends to decrease as the weight functions w(1), w(2), and w(3) decrease. However, this

qualitative argument cannot be concluded from Fig. 4 directly, since these examples have different uniform DOFs

and weight functions. For a meaningful comparison, let us look at the nested array and the super nested array. As

presented in Section V, the uniform DOF of the super nested array is identical to that of the nested array while

the weight functions w(1), w(2), and w(3) of the super nested array are smaller than those of the nested array.

It is observed from Fig. 8 to 11 that the RMSE of the super nested array are less than those of the nested array.

This phenomenon can be elaborated as follows: Decreasing these weights reduces the number of sensor pairs with

significant mutual coupling. Less mutual coupling implies the mutual coupling matrix C is closer to the identity

matrix, which makes the RMSE likely to decrease.

Based on these observations, the MRA seems to be the best array with minimum mutual coupling since it owns
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the maximum DOF as well as the smallest w(1), w(2), and w(3). However, it is quite intricate to determine the

MRA configuration. First, the sensor locations of MRA can only be found using combinatorial search or table

lookup [21], [31]. This is neither scalable nor practical if our design budget is a large number of sensors, say, 100

physical sensors. On the other hand, if our design budget is a fixed array aperture, which exists in applications such

as airplane, submarine, or mobile devices, MRA might not be optimal. For instance, provided the available space

being 11d, we cannot use the MRA in Fig. 4 since its total aperture is 13d. If we apply MRA with 5 sensors, we

obtain S = {0, 1, 4, 7, 9} but the maximum number of distinguishable sources decreases to 9. The space is not fully

utilized.

Like MRA, nested and coprime arrays also have O(N2) uniform DOF given O(N) sensors but they have closed-

form expressions for sensor locations for any N . Even though their uniform DOF are less than those of MRA, they

offer simple design equations. These equations admit simple calculations and regular array geometries. In some

situations, the nested arrays can be superior to MRAs. For example, under the constraint that the available aperture

is 11d, the nested array with N1 = 3 and N2 = 3 is an acceptable design, and it resolves 11 sources. The MRA

with 5 sensors can only resolve 9 sources.

According to Fig. 4, it is tempting to conclude that nested arrays are superior to coprime arrays but this is not

always true. The estimation performance depends heavily on the mutual coupling coefficients. If mutual coupling

is negligible, the performance is governed by the uniform DOF, implying nested arrays are superior [16], [17].

However, as mutual coupling becomes severe, the performance of nested arrays worsens much more than that of

coprime arrays, as we shall see in Section VII of the companion paper [37] later. This is because nested arrays

contain a dense ULA part, while coprime arrays have only two pairs of sensors with separation one [17].

Presented with these issues, we are motivated to find a sparse array configuration that satisfies the following

three criteria:

1) The sensor locations should be describable using simple rules or closed forms as in the case of nested and

coprime arrays.

2) The coarray of the sparse array should have a large contiguous ULA section. In fact we will aim for sparse

arrays whose coarrays are ULAs (i.e., hole free) of the same size as coarrays of nested arrays.

3) The weight functions w(1), w(2), and w(3) have to be small. It is preferable to achieve w(1) ≤ wcoprime(1) =

2, so that mutual coupling can be mitigated in the new array configuration.

IV. SECOND-ORDER SUPER NESTED ARRAYS

In this section, we develop second-order super nested arrays. For fixed number of sensors, these have the same

physical aperture and the same difference coarray enjoyed by nested arrays (in particular there are no holes in

coarray). But they have reduced mutual coupling because of smaller values of the crucial weights w(1), w(2), and

w(3).

Nested arrays are parametrized by integers N1 and N2, which denote the number of sensors in the dense ULA

part and the sparse ULA part, respectively. To alleviate mutual coupling, we need to remove some sensors in the
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(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

• • • • • • • • • • • • • •× × × × ×× × × ×× × ×××××××××× ×××××××××
N1 + 1 = 11 N1 + 1 = 11 N1 + 1 = 11 N1 + 1 = 11

N2 = 4

(b)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

• • • • • • • • • • • • • •× × × ×× × × × ××××××× ××××××× ××××××× ××××××× ××××××
N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8 N1 + 1 = 8

N2 = 7

Fig. 5. 1D representations of second-order super nested arrays with (a) N1 = 10, N2 = 4, and (b) N1 = N2 = 7. Bullets stand for physical

sensors and crosses represent empty space. Both configurations consist of 14 physical sensors but (b) leads to larger total aperture and a sparser

pattern. It will be proved that the uniform DOF of (a) and (b) are 2N2(N1 + 1)− 1, which are 87 and 111, respectively.

first layer (dense ULA part) and relocate them appropriately, keeping in mind the three criteria at the end of the

preceding section. Note that there are many rearrangements to nested arrays that satisfy our design criteria. We will

show that the following array geometry is a valid solution:

Definition 7 (Second-order super nested arrays). Assume N1 and N2 are integers satisfying N1 ≥ 4 and N2 ≥ 3.

Second-order super nested arrays are specified by the integer set S(2), defined by

S(2) = X(2)
1 ∪ Y(2)

1 ∪ X(2)
2 ∪ Y(2)

2 ∪ Z(2)
1 ∪ Z(2)

2 ,

where

X(2)
1 = {1 + 2` | 0 ≤ ` ≤ A1} ,

Y(2)
1 = {(N1 + 1)− (1 + 2`) | 0 ≤ ` ≤ B1} ,

X(2)
2 = {(N1 + 1) + (2 + 2`) | 0 ≤ ` ≤ A2} ,

Y(2)
2 = {2(N1 + 1)− (2 + 2`) | 0 ≤ ` ≤ B2} ,

Z(2)
1 = {`(N1 + 1) | 2 ≤ ` ≤ N2} ,

Z(2)
2 = {N2(N1 + 1)− 1} .

The parameters A1, B1, A2, and B2 are defined as

(A1, B1, A2, B2)=



(r, r−1, r−1, r−2), if N1 = 4r,

(r, r−1, r−1, r−1), if N1 = 4r + 1,

(r+1, r−1, r, r−2), if N1 = 4r + 2,

(r, r, r, r−1), if N1 = 4r + 3,

where r is an integer.
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Z(2)
1

Z(2)
2

(b)

Fig. 6. 2D representations of (a) the parent nested array, and (b) the corresponding second-order super nested array, S(2), where N1 = N2 = 13.

Bullets denote sensor locations while crosses indicate empty locations. Thin arrows illustrate how sensors migrate from nested arrays to second-

order super nested arrays. The dense ULA in nested arrays is split into four sets: X(2)
1 , Y(2)

1 , X(2)
2 , and Y(2)

2 in second-order super nested

arrays. The sensor located at N1 + 1, belonging to the sparse ULA of nested arrays, is moved to location N2(N1 + 1) − 1 in second-order

super nested arrays.

A MATLAB code for generating super nested arrays can be found in [25]. The function super_nested.m

takes N1 and N2 as inputs and returns the set S(2). (The parameter Q should be set to 2; higher Q produces higher

order super nested arrays described in the companion paper [37]). In addition, interactive_interface.m

offers an interactive panel where users can design their array configurations over 2D representations and visualize

the associated weight functions easily.

Note that Definition 7 is applicable to N1 ≥ 4. In particular, if N1 = 4 or 6, then the sets X(2)
1 , Y(2)

1 , and X(2)
2

are non-empty but the set Y(2)
2 becomes the empty set, since the parameter B2 = −1. Otherwise, if N1 is 5, or

greater than 6, the sets X(2)
1 , Y(2)

1 , X(2)
2 , and Y(2)

2 are non-empty.

As an example, let us consider second-order super nested arrays with various combinations of N1 and N2. In

Fig. 5(a), N1 = 10 and N2 = 4 while in Fig. 5(b), N1 = N2 = 7. It can be observed that there are N1 +N2 = 14

sensors in each configuration. The total aperture becomes 43 and 55 in parts (a) and (b), respectively. The difference

coarray for (a) and (b) comprises consecutive integers from −43 to 43, and −55 to 55, respectively.

Next, the relationship between nested arrays and second-order super nested arrays is elaborated in Fig. 6(a) and

(b) for N1 = N2 = 13. These linear arrays are shown in terms of their 2D representations, as defined in Fig. 1. The

dashed rectangles mark the support of dense ULA, sparse ULA, X(2)
1 , Y(2)

1 , X(2)
2 , Y(2)

2 , Z(2)
1 , and Z(2)

2 , respectively.

It can be seen from Fig. 6(a) and (b) that second-order super nested arrays modify nested arrays in two ways.

First, the sensors in the dense ULA part of nested arrays are broken into four ULA sections X(2)
1 , Y(2)

1 , X(2)
2 , and

Y(2)
2 in second-order super nested arrays. Each of them possesses inter-element spacing 2. In addition, the sensor

at location N1 + 1 is moved to N2(N1 + 1) − 1. The weight function w(1) for nested arrays and second-order
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super nested arrays are 13 and 1, respectively. Second-order super nested arrays significantly decrease the number

of sensor pairs with separation 1. As a result, second-order super nested arrays are qualitatively sparser than nested

arrays and mutual coupling effect could alleviate.

In the following development, as a shorthand notation, the addition between a set and a scalar is defined as

A± c = {a± c | ∀a ∈ A}.

Provided with two sets A and B, the difference set between A and B is given by

diff(A,B) = {a− b | a ∈ A, b ∈ B} .

It can be seen that diff(A,B) does not necessarily equal to diff(B,A). Next, some simple properties of second-order

super nested arrays are proved. More advanced properties pertaining to the difference coarray will be proved in

Section V.

Lemma 1 (Relation to the dense ULA of the parent nested array). Let X(2)
1 , Y(2)

1 , X(2)
2 , and Y(2)

2 be given in

Definition 7. Then

X(2)
1 ∪ Y(2)

1 ∪ (X(2)
2 − (N1 + 1)) ∪ (Y(2)

2 − (N1 + 1))

= {1, 2, . . . , N1} .

Proof: According to Definition 7, X(2)
1 collects all the odd numbers from 1 to 1 + 2A1 while X(2)

2 − (N1 + 1)

includes all the even numbers ranging from 2 to 2 + 2A2. As a result, we have

X(2)
1 ∪ (X(2)

2 − (N1 + 1))

⊇ {1, 2, . . . ,min(1 + 2A1, 2 + 2A2) + 1}. (12)

Furthermore, it can be shown that |max(X(2)
1 )−max(X(2)

2 − (N1 + 1))| = |(1 + 2A1)− (2 + 2A2)| = 1. Therefore,

we can replace the inclusion (⊇) in (12) with equality (=) and obtain

X(2)
1 ∪ (X(2)

2 − (N1 + 1))

= {1, 2, . . . ,min(1 + 2A1, 2 + 2A2) + 1}

=



{1, 2, . . . , 2r + 1}, if N1 = 4r,

{1, 2, . . . , 2r + 1}, if N1 = 4r + 1,

{1, 2, . . . , 2r + 3}, if N1 = 4r + 2,

{1, 2, . . . , 2r + 2}, if N1 = 4r + 3.
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Similarly, Y(2)
1 and Y(2)

2 − (N1 + 1) give

Y(2)
1 ∪ (Y(2)

2 − (N1 + 1))

= {max(N1 − 2B1, N1 − 1− 2B2)− 1, . . . , N1}

=



{2r + 2, . . . , N1}, if N1 = 4r,

{2r + 2, . . . , N1}, if N1 = 4r + 1,

{2r + 4, . . . , N1}, if N1 = 4r + 2,

{2r + 3, . . . , N1}, if N1 = 4r + 3.

Whichever N1 is, the union of these four sets covers all the integers from 1 to N1.

Lemma 2 (Total number of sensors). The number of elements in S(2) is N1 +N2.

Proof: Firstly, X(2)
1 , Y(2)

1 , X(2)
2 , Y(2)

2 , Z(2)
1 , and Z(2)

2 are disjoint, which can be easily checked from Definition

7. Thus, the cardinality of S(2) is the same as the sum of the cardinality of the individual set. We obtain

|S(2)| =

(
2∑
q=1

|X(2)
q |+ |Y(2)

q |

)
+ |Z(2)

1 |+ |Z
(2)
2 |

=

(
2∑
q=1

(Aq + 1)+ + (Bq + 1)+

)
+ (N2 − 1) + 1

= N1 +N2,

where (x)+ = max(x, 0) denotes the non-negative part of x. Therefore, there are N1 +N2 sensor in second-order

super nested arrays.

V. COARRAY OF SECOND-ORDER SUPER NESTED ARRAYS

In this section, we will show that super nested arrays are restricted arrays, that is, the coarray does not have

holes. This property enables us to apply algorithms such as MUSIC in the coarray domain conveniently, as in the

case of nested arrays and MRAs. We will also derive the expressions for the first few weight functions w(m) of

the super nested array.

Theorem 1. Second-order super nested arrays are restricted arrays, i.e., they have hole-free difference coarrays.

Proof: The statement that a second-order super nested array is a restricted array, is equivalent to the following

argument: For every m ranging from −(N2(N1 + 1) − 1) to N2(N1 + 1) − 1, there exists at least one pair of

physical sensors with sensor separation m. Nevertheless, we do not need to check all possible m’s according to

the following properties:

1) If m is in the coarray, −m also belongs to the same coarray.

2) m = 0 is included in any coarray.
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TABLE II

RANGES OF P1 AND P2

N1 4r 4r + 1 4r + 2 4r + 3

3 + 2B1 2r + 1 2r + 1 2r + 1 2r + 3

2 + 2B2 2r − 2 2r 2r − 2 2r

max(P1) 2r − 1 2r + 1 2r − 1 2r + 1

N1 + 2− 2A1 2r + 2 2r + 3 2r + 2 2r + 5

N1 − 1− 2A2 2r + 1 2r + 2 2r + 1 2r + 2

min(P2) 2r + 1 2r + 2 2r + 1 2r + 4

Holes in P1 ∪ P2 2r − 2r 2r + 2, 2r + 3

Therefore, it suffices to check that for 1 ≤ m ≤ N2(N1 +1)−1, we can identify at least one pair (n1, n2) ∈ (S(2))2

such that n1 − n2 = m.

If m = 1, the sensors on N2(N1 + 1)− 1 ∈ Z(2)
2 and N2(N1 + 1) ∈ Z(2)

1 contribute to w(1).

When 2 ≤ m ≤ N1, we turn to evaluate the following sets:

diff({2(N1 + 1)} ,X(2)
2 ∪ Y(2)

2 )

= {N1 − 1− 2` | 0 ≤ ` ≤ A2}

∪ {2 + 2` | 0 ≤ ` ≤ B2} ,

diff({N1 + 3} ,X(2)
1 ∪ Y(2)

1 )

= {N1 + 2− 2` | 0 ≤ ` ≤ A1}

∪ {3 + 2` | 0 ≤ ` ≤ B1} .

It is clear that these sets are contained in the difference coarray since 2(N1 +1) ∈ Z(2)
1 and N1 +3 ∈ X(2)

2 . Note that

the set {2 + 2` | 0 ≤ ` ≤ B2} includes all the even numbers starting from 2 to 2+2B2 while {3 + 2` | 0 ≤ ` ≤ B1}

collects all the odd numbers from 3 to 3 + 2B1. This observation is summarized into

P1 = {m | 2 ≤ m ≤ min(3 + 2B1, 2 + 2B2) + 1}

⊆ {2 + 2` | 0 ≤ ` ≤ B2} ∪ {3 + 2` | 0 ≤ ` ≤ B1} ,

which indicates that the contiguous integers from 2 to min(3 + 2B1, 2 + 2B2) + 1, denoted by P1, are contained

in the coarray of second-order super nested arrays. A similar result for {N1 − 1 − 2` | 0 ≤ ` ≤ A2} and

{N1 + 2− 2` | 0 ≤ ` ≤ A1} is given by the set P2:

P2 ={m|max(N1+2−2A1, N1−1−2A2)− 1 ≤ m ≤ N1}

⊆ {N1−1−2` | 0 ≤ ` ≤ A2}∪{N1+2−2` | 0 ≤ ` ≤ A1} .
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TABLE III

RANGES OF X(2)
1 ∪ (X(2)

1 + 1) AND Y(2)
1 ∪ (Y(2)

1 + 1)

N1 4r 4r+ 1 4r+ 2 4r+ 3

max(X(2)
1 ∪(X(2)

1 +1)) =

2 + 2A1

2r+ 2 2r+ 2 2r+ 4 2r+ 2

min(Y(2)
1 ∪(Y(2)

1 +1)) =

(N1 + 1)− (1 + 2B1)
2r+ 2 2r+ 3 2r+ 4 2r+ 3

It can be verified in Table II that P1 ∪ P2 contains all the differences within 2 ≤ m ≤ N1, except for N1 = 4r,

4r+2, and 4r+3. In the case of N1 = 4r, the coarray index 2r can be found in the pair of sensors on 1 ∈ X(2)
1 and

1 + 2A1 ∈ X(2)
1 . When N1 = 4r+ 2, the pair of sensors on (N1 + 1) + 2 ∈ X(2)

2 and (N1 + 1) + (2 + 2A2) ∈ X(2)
2

leads to coarray index 2r. If N1 = 4r+ 3, the differences 2r+ 2 and 2r+ 3 are exactly N1−1−2A2 and 3 + 2B1,

respectively, as shown in Table II. Hence, 2 ≤ m ≤ N1 is included in the difference coarray.

For the coarray index q(N1 + 1) ≤ m ≤ (q + 1)(N1 + 1), where 1 ≤ q ≤ N2 − 2, we consider the differences

diff({(q + 1)(N1 + 1)},X(2)
1 ∪ Y(2)

1 )

= diff({N1 + 1},X(2)
1 ∪ Y(2)

1 ) + q(N1 + 1),

diff({(q + 2)(N1 + 1)},X(2)
2 ∪ Y(2)

2 )

= diff({N1 + 1}, (X(2)
2 − (N1 + 1)) ∪ (Y(2)

2 − (N1 + 1)))

+ q(N1 + 1),

According to Lemma 1, the union of diff({N1 + 1},X(2)
1 ∪Y

(2)
1 ) and diff({N1 + 1}, (X(2)

2 − (N1 + 1)) ∪ (Y(2)
2 −

(N1 + 1))) covers all the consecutive integers from 1 to N1. In other words, the coarray index q(N1 + 1) < m <

(q + 1)(N1 + 1) can be found in the difference sets among X(2)
1 , Y(2)

1 , X(2)
2 , Y(2)

2 , and Z(2)
1 . It is obvious that the

differences q(N1 + 1) are contained in the self-difference of Z(2)
1 .

The last part of the proof considers (N2−1)(N1 +1) ≤ m ≤ N2(N1 +1)−1. In this case, we take the following

four sets: diff({N2(N1 + 1)},X(2)
1 ), diff({N2(N1 + 1)},Y(2)

1 ), and

diff({N2(N1+1)−1},X(2)
1 ) = diff({N2(N1+1)},X(2)

1 +1),

diff({N2(N1+1)−1},Y(2)
1 ) = diff({N2(N1+1)},Y(2)

1 +1).

To prove these difference sets cover (N2 − 1)(N1 + 1) ≤ m ≤ N2(N1 + 1) − 1, it suffices to show that X(2)
1 ∪

Y(2)
1 ∪ (X(2)

1 + 1) ∪ (Y(2)
1 + 1) contains contiguous integers from 1 to N1 + 1. Note that X(2)

1 ∪ (X(2)
1 + 1) is

{1, . . . , 2 + 2A1} and Y(2)
1 ∪ (Y(2)

1 + 1) is {(N1 + 1) − (1 + 2B1), . . . , N1 + 1}. Table III shows the maximum

element in X(2)
1 ∪ (X(2)

1 + 1) and the minimum element in Y(2)
1 ∪ (Y(2)

1 + 1). It is evident that there are no holes

in X(2)
1 ∪ Y(2)

1 ∪ (X(2)
1 + 1) ∪ (Y(2)

1 + 1). This completes the proof.
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Corollary 1. Second-order super nested arrays have the same coarray as their parent nested arrays.

Proof: According Definition 7, second-order super nested arrays share the same boundary points, located at 1

and N2(N1+1), as their parent nested arrays. In addition, both of them are restricted arrays (Theorem 1). Therefore,

they possess the same coarray.

Theorem 2. Let S(2) be a second-order super nested array with N1 ≥ 4, N2 ≥ 3. Its weight function w(m) at

m = 1, 2, 3 is

w(1) =

2, if N1 is even,

1, if N1 is odd,

w(2) =

N1 − 3, if N1 is even,

N1 − 1, if N1 is odd,

w(3) =


3, if N1 = 4, 6,

4, if N1 is even, N1 ≥ 8,

1, if N1 is odd.

For comparison, the first three weight functions for nested arrays [16] and coprime arrays [17], [26] are

Nested: w(1) = N1, w(2) = N1−1, w(3) = N1−2, (13)

Coprime: w(1) = w(2) = w(3) = 2, (14)

where N1, N2 for nested arrays and M,N for coprime arrays are sufficiently large. As a result, w(1) and w(3) for

second-order super nested arrays are notably smaller than those for their parent nested array, and comparable to

those for coprime arrays. The proof of Theorem 2 is as follows:

Proof: First, we analyze the structure of the positive part of the difference coarray. It is known that, if the array

configuration S = A∪B, then the difference coarray D can be divided into self differences, like diff(A,A),diff(B,B),

and cross differences, such as diff(A,B),diff(B,A) [17]. We will use this approach to prove Theorem 2.

The self differences are discussed as follows: According to Definition 7, since X(2)
1 , Y(2)

1 , X(2)
2 , and Y(2)

2 are

ULAs with separation 2, their self differences contain 0,±2,±4,±6, and so on. We obtain

(A1)+ + (B1)+ + (A2)+ + (B2)+ (15)

pairs of sensors with separation 2, where (x)+ = max(x, 0) is the positive part of a real number x. Next, it can be

shown that the self differences of Z(2)
1 include 0,±(N1 + 1),±2(N1 + 1),±3(N1 + 1), up to ±(N2 − 2)(N1 + 1).

Since N1 ≥ 4, the self differences of Z(2)
1 do not contain 1, 2, and 3. The self difference of Z(2)

2 is exactly zero

because there is only one element in Z(2)
2 .

For the cross differences, it suffices to consider the sets of interest: diff(Y(2)
1 ,X(2)

1 ), diff(X(2)
2 ,Y(2)

1 ), diff(Y(2)
2 ,X(2)

2 ),

diff({2(N1 + 1)},Y(2)
2 ), and diff({N2(N1 + 1)},Z(2)

2 ), since the remaining choices of cross differences, like
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diff(X(2)
2 ,X(2)

1 ), diff(Z(2)
1 ,X(2)

1 ), and so on, do not include 1, 2, and 3. Evaluating the minimum elements of the

sets of interest leads to

min diff(Y(2)
1 ,X(2)

1 ) = (N1 + 1)− (1 + 2B1)− (1 + 2A1)

=



4r − 1− 2(r − 1 + r), if N1 = 4r,

4r + 1− 1− 2(r − 1 + r), if N1 = 4r + 1,

4r + 2− 1− 2(r − 1 + r + 1), if N1 = 4r + 2,

4r + 3− 1− 2(r + r), if N1 = 4r + 3.

=

1, if N1 is even,

2, if N1 is odd,
(16)

min diff(X(2)
2 ,Y(2)

1 ) = (N1 + 3)− (N1) = 3, (17)

min diff(Y(2)
2 ,X(2)

2 )

= (2(N1 + 1)− (2 + 2B2))− ((N1 + 1) + (2 + 2A2))

=

3, if N1 is even,

2, if N1 is odd,
(18)

min diff({2(N1 + 1)},Y(2)
2 )

= 2(N1 + 1)− (2(N1 + 1)− 2) = 2, (19)

diff({N2(N1 + 1)},Z(2)
2 ) = 1. (20)

Furthermore, since the sets X(2)
1 , Y(2)

1 , X(2)
2 , and Y(2)

2 are ULAs with sensor separation 2, their cross differences

are also ULAs with separation 2. Applying this property to (16) gives

The second smallest element of diff(Y(2)
1 ,X(2)

1 ), if exists,

=

3, if N1 is even,

4, if N1 is odd.
(21)

Now it is clear to determine the weight functions w(m) for m = 1, 2, 3, based on (15) to (21). For m = 1, the

sensor pairs of separation 1 only occur at (16) and (20), while (15), (17), (18), (19), and (21) do not contribute to

w(1). This argument proves the w(1) part. When m = 2, the associated sensor pairs can be found in (15), (16),

(18), and (19). Therefore, w(2) can be expressed as

w(2) =

1 +
∑2
q=1 (Aq)+ + (Bq)+ if N1 is even,

3 +
∑2
q=1 (Aq)+ + (Bq)+ if N1 is odd.
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=

N1 − 3, if N1 is even,

N1 − 1, if N1 is odd.

If m = 3, we first consider the case when N1 is even. When N1 = 4, we obtain the following sets

X(2)
1 = {1, 3} , Y(2)

1 = {4} , X(2)
2 = {7} , Y(2)

2 = ∅,

where ∅ denotes the empty set. Besides, the minimum element in Z(2)
1 is 2(N1+1) = 10. Counting these differences

directly gives w(3) = 3. When N1 = 6, these sets become

X(2)
1 = {1, 3, 5} , Y(2)

1 = {6} , X(2)
2 = {9, 11} , Y(2)

2 = ∅,

and 2(N1 + 1) = 14 so w(3) = 3.

If N1 ≥ 8 and N1 is an even number, then X(2)
1 has at least three elements, Y(2)

1 has at least two elements, and

Y(2)
2 is non-empty. In this case, the sensor pairs with separation 3 can be found in (17) and (18). Furthermore, the

sensor pairs with separation 3 in (21) are

Pair #1 : ((N1 + 1)− (1 + 2B1))− (1 + 2(A1 − 1)) = 3,

Pair #2 : ((N1 + 1)− (1 + 2(B1 − 1)))− (1 + 2A1) = 3.

Therefore w(3) = 4 if N1 ≥ 8 and N1 is even.

When N1 is odd, the only sensor pair leading to w(3) is shown in (17), which completes the proof.

Summarizing this section, super nested arrays are generalizations of nested arrays. First of all, there is a simple

closed-form expression for sensor locations, as in the case of nested and coprime arrays (and unlike MRAs). Second,

for a fixed number of sensors, the physical aperture and the difference coarray are exactly identical to those of

nested arrays, so that the DOF for DOA estimation remains unchanged. In particular, there are no holes in the

coarray unlike coprime arrays. Finally, as in coprime arrays, the mutual coupling effects are much less severe than

in nested arrays, because the sensors in the dense ULA part of the nested array have now been redistributed. In

short, the super nested array combines the best features of nested and coprime arrays.

VI. NUMERICAL EXAMPLES

In this section, we select six array configurations: ULA, MRA, nested arrays, coprime arrays, second-order super

nested arrays, as well as third-order super nested arrays1, and then compare their performance in the presence of

mutual coupling. The number of sensors is fixed to be 14. The sensor locations for MRA are given by [31]2

SMRA = {0, 1, 6, 14, 22, 30, 38, 46, 54, 56, 58, 61, 63, 65}.

1Higher order super nested arrays will be introduced in the companion paper [37], and have even better performance. Here we include an

example just for completeness of comparison.
2Strictly speaking, this array only gets close to the minimum redundancy (or equivalently maximum uniform DOF), rather than achieving the

optimal one. However, it is still called MRA in [31].
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Fig. 7. Comparison among ULA, nested array, coprime array, second-order super nested array, and third-order super nested array in the presence

of mutual coupling. The coupling leakage L is defined as ‖C− diag(C)‖F / ‖C‖F , where [diag(C)]i,j = [C]i,j δi,j .

For nested arrays and super nested arrays, we set N1 = N2 = 7. For coprime arrays, we choose M = 4 and N = 7.

The sensor locations are given by (6), (7) and Definition 7 so that there are N1 + N2 = 14 sensors for nested

arrays as well as super nested arrays and N + 2M − 1 = 14 sensors for coprime arrays. If the central ULA part

of the difference coarray of an array has 2P + 1 elements, i.e., the uniform DOF is 2P + 1, then P sources can

be identified using the coarray MUSIC (SS-MUSIC) algorithm [16], [26]. In our case the nested and super nested

arrays have a ULA for the coarray and the coprime array has a central ULA part and then some holes. It is readily

verified that the number of identifiable sources in each case is as follows:

ULA: 13 sources. (22)

MRA: 65 sources. (23)

Coprime array: MN +M − 1 = 31 sources. (24)

(Super) Nested array: N2(N1 + 1)− 1 = 55 sources. (25)

It is well-known that the array aperture affects the estimation performance [38]–[40]. Larger array aperture tends

to have finer spatial resolution and smaller estimation error. However, it suffices to consider the uniform DOF rather

than the array aperture, since the uniform DOF is approximately twice the array aperture for restricted arrays. For

instance, consider a physical array whose sensors are located at 0, 1, 4, 6, in units of λ/2. Then, the array aperture

is 6 and the difference coarray D = {−6, . . . , 6}. The uniform DOF is 13 = 2 × 6 + 1, which is about twice

the array aperture 6. Therefore, in what follows, we focus on the uniform DOF, rather than the array aperture, to

explain the overall estimation performance.
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A. Weight Functions and Mutual Coupling Matrices

The first example compares weight functions and the associated mutual coupling matrix (10). We choose c1 =

0.3ejπ/3 and B = 100. The remaining coupling coefficients are given by c` = c1e
−j(`−1)π/8/` for 2 ≤ ` ≤ B. The

first row of Fig. 7 shows the weight functions w(m). In nested arrays, the associated weight function possesses a

triangular region in the center, due to the dense ULA part. This triangular region breaks into smaller ones in the

second-order super nested array (w(1) = 1, w(2) = 6, w(3) = 1, as in Theorem 2) and the third-order super nested

array (w(1) = 1, w(2) = 3, w(3) = 2). Coprime arrays exhibit smaller weight functions (w(1) = w(2) = w(3) = 2,

as in (14)) than those of nested arrays (w(1) = 7, w(2) = 6, w(3) = 5, as in (13)).

The quantity |[C]i,j |2, where C is the mutual coupling matrix, is shown in log-scale on the second row of Fig.

7. The darker region indicates less energy in the corresponding entry. It can be seen that all these C matrices are

nearly-diagonal. In particular, C is a symmetric Toeplitz matrix for ULA. Note that if C is a diagonal matrix, sensor

responses do not interfere with each other so it is free from mutual coupling. Hence, the energy of the off-diagonal

components characterizes the amount of mutual coupling. We define the coupling leakage L as

L =
‖C− diag(C)‖F

‖C‖F
,

where [diag(C)]i,j = [C]i,j δi,j and ‖·‖F denotes the Frobenius norm of a matrix. It is clear that 0 ≤ L ≤ 1.

Conceptually speaking, the smaller L is, the less the mutual coupling is. According to the third row of Fig. 7, the

ULA suffers from the most severe mutual coupling effect. The third-order super nested array possesses the least

L, suggesting it might have the least mutual coupling effect. In addition, high-order super nested arrays reduce the

mutual coupling effect of their parent nested arrays, which can be inferred from the coupling leakage L among the

nested array, the second-order super nested array, and the third-order one.

B. MUSIC Spectra in the Presence of Mutual Coupling

The second part of the simulation investigates the associated MUSIC spectra under various array configurations.

The number of snapshots is 500 while the SNR is 0 dB. The measurement vector xS is contaminated by the mutual

coupling matrix C and the MUSIC spectrum P
(
θ̄
)

is evaluated directly from xS without using any decoupling

algorithms. Note that these results can be further improved by a variety of decoupling algorithms [6], [11]–[13],

[35]. Our setting provides a baseline performance for different arrays. We will show that, even without decoupling,

super nested arrays are still able to perform DOA estimation within reasonable amount of error.

Fig. 8 shows the MUSIC spectra when D = 10 sources are located at θ̄i = −0.1+0.2(i−1)/9 for i = 1, 2, . . . , 10,

as indicated by the ticks and the vertical lines. This example examines the performance when the number of sources

(D = 10) is less than the number of sensors 14. It is deduced from Fig. 8 that the ULA and the coprime array have

false peaks, the nested array displays 11 peaks, while the MRA and the super nested arrays can resolve 10 true

peaks. In terms of the estimation error E defined in (11), the best performance is exhibited by the third-order super

nested array (E = 0.00023647), followed by the second-order super nested array (E = 0.00042112), then the MRA

(E = 0.00060242), then the nested array (E = 0.01216), then the coprime array (E = 0.12509), and finally the ULA
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(a) ULA, D = 10, E = 0.17445.
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(b) MRA, D = 10, E = 0.00060242.
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(c) Nested array, D = 10, E = 0.01216.
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(d) Coprime array, D = 10, E = 0.12509.
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(e) Second-order super nested, D = 10, E = 0.00042112.
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(f) Third-order super nested, D = 10, E = 0.00023647.

Fig. 8. The MUSIC spectra P (θ̄) for ULA, MRA, nested arrays, coprime arrays, second-order super nested arrays, and third-order super nested

arrays when D = 10 sources are located at θ̄i = −0.1 + 0.2(i − 1)/9, i = 1, 2, . . . , 10, as depicted by ticks and vertical lines. The SNR

is 0 dB while the number of snapshots is K = 500. Note that the number of sources 10 is less than the number of sensors 14. The mutual

coupling is based on (10) with c1 = 0.3ejπ/3, B = 100, and c` = c1e−j(`−1)π/8/` for 2 ≤ ` ≤ B.
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(a) MRA, D = 20, E = 0.00070437.
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(b) Nested array, D = 20, E = 0.015037.
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(c) Coprime array, D = 20, E = 0.12749.
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(d) Second-order super nested, D = 20, E = 0.00082022.
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(e) Third-order super nested, D = 20, E = 0.00071101.

Fig. 9. The MUSIC spectra P (θ̄) for MRA, nested arrays, coprime arrays, second-order super nested arrays, and third-order super nested arrays

when D = 20 sources are located at θ̄i = −0.2 + 0.4(i− 1)/19, i = 1, 2, . . . , 20, as depicted by ticks and vertical lines. The SNR is 0 dB

while the number of snapshots is K = 500. Note that the number of sources 20 is greater than the number of sensors 14. The mutual coupling

is based on (10) with c1 = 0.3ejπ/3, B = 100, and c` = c1e−j(`−1)π/8/` for 2 ≤ ` ≤ B.
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(E = 0.17445). It is noteworthy that the estimation error for the second-order super nested array is approximately

70% of that for the MRA, 3.5% of that for the nested array, and 0.3% of that for the coprime array. On the other

hand, the RMSE for the third-order super nested array is roughly 40% of that for the MRA, only 2% of that for the

nested array, and only 0.2% of that for the coprime array. To evaluate the RMSE, we use the root MUSIC algorithm

[4] on the noise subspace to estimate DOAs. In the root MUSIC algorithm, suppose the roots on or inside the unit

circle are denoted by r1, r2, . . . , rD, rD+1, . . . , rP such that 1 ≥ |r1| ≥ |r2| ≥ · · · ≥ |rD| ≥ |rD+1| ≥ · · · ≥ |rP |.

These DOAs are obtained from the phases of r1, r2, . . . , rD, which lead to D DOAs.

Fig. 9 lists another experiment with D = 20 sources, where D exceeds the number of sensors 14. These sources

are located at θ̄i = −0.2 + 0.4(i− 1)/19, where i = 1, 2, . . . , 20. The ULA fails to distinguish 20 sources due to

(22). The MRA and the super nested arrays are capable of distinguishing 20 sources while the nested array (21

peaks) and the coprime array (with false peaks) are not. Among those resolving true DOAs, the best performance

is exhibited by MRA (E = 0.00070437), followed by the third-order super nested array (E = 0.00071101), and

then the second-order super nested array (E = 0.00082022).

The reason why the ranking is different for large D is this: when D is small, the performance depends mostly

on the mutual coupling, so the super nested arrays perform better than MRA. But as D gradually increases and

gets closer to the upper limit of super nested arrays (55, as in (25)), which is smaller than the upper limit for MRA

(65, as in (23)), this degrades the performance of super nested arrays before it begins to affect MRA.

Fig. 10 plots the MUSIC spectra for D = 20 equal-power, uncorrelated sources. These sources are more widely

separated, compared to those in Fig. 9. The true normalized DOAs are θ̄i = −0.4 + 0.8(i− 1)/19, i = 1, 2, . . . , 20.

Hence, based on Section III, the mutual coupling (or the weight functions) becomes more significant than the

uniform DOF (or the spatial resolution). The least RMSE is now enjoyed by the third-order super nested array (E =

0.00073657), followed by the second-order super nested array (E = 0.0011955), then the MRA (E = 0.0012123),

then the coprime array (E = 0.027151), and finally the nested array (E = 0.04245). It can be observed that the

coprime array, in this example, is more satisfactory than the nested array. There is only one spurious peak in the

coprime array, as in Fig. 10(c), while many spurious peaks and missing targets exist in the nested array, as shown

in Fig. 10(b). It is because the coprime array has reduced mutual coupling (w(1) = w(2) = w(3) = 2, as in (14)),

in comparison of the nested array (w(1) = 7, w(2) = 6, w(3) = 5, as in (13)), even though the uniform DOF of

the coprime array is smaller than that of the nested array.

Fig. 11 considers the MUSIC spectra under the linear dipole model for mutual coupling, (9), which is more

practical than (10). For the mutual coupling model (9), the parameters ZA and ZL are 50 ohms while the dipole length

l = λ/2. The source locations are identical to those in Fig. 10. In this scenario, the best estimation performance is

exhibited by the third-order super nested array (E = 0.00083662), followed by the MRA (E = 0.00091204), then

the second-order super nested array (E = 0.0010173), then the coprime array (E = 0.0014204), and finally the

nested array (E = 0.0017399). It can be observed that all these sparse arrays are capable of identifying 20 sources.

This phenomenon is due to the following: First, the sources are widely separated and D = 20 is less than the

maximum number of identifiable sources, as shown in (23) to (25). Second, the estimation peroformance depends
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(a) MRA, D = 20, E = 0.0012123.
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(b) Nested array, D = 20, E = 0.04245.
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(c) Coprime array, D = 20, E = 0.027151.
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(d) Second-order super nested, D = 20, E = 0.0011955.
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(e) Third-order super nested, D = 20, E = 0.00073657.

Fig. 10. The MUSIC spectra P (θ̄) for MRA, nested arrays, coprime arrays, second-order super nested arrays, and third-order super nested arrays

when D = 20 sources are located at θ̄i = −0.4 + 0.8(i− 1)/19, i = 1, 2, . . . , 20, as depicted by ticks and vertical lines. The SNR is 0 dB

while the number of snapshots is K = 500. The mutual coupling is based on (10) with c1 = 0.3ejπ/3, B = 100, and c` = c1e−j(`−1)π/8/`

for 2 ≤ ` ≤ B.
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(a) MRA, D = 20, E = 0.00091204.
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(b) Nested array, D = 20, E = 0.0017399.
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(c) Coprime array, D = 20, E = 0.0014204.
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(d) Second-order super nested, D = 20, E = 0.0010173.
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(e) Third-order super nested, D = 20, E = 0.00083662.

Fig. 11. Based on the practical mutual coupling model (9), the MUSIC spectra P (θ̄) are listed for MRA, nested arrays, coprime arrays,

second-order super nested arrays, and third-order super nested arrays, where D = 20 sources are located at θ̄i = −0.4 + 0.8(i − 1)/19,

i = 1, 2, . . . , 20. The SNR is 0 dB while the number of snapshots is K = 500. The parameters in (9) are given by ZA = ZL = 50 and

l = λ/2.
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on the mutual coupling model and the choice of parameters. In this specific example, the mutual coupling effect

in Fig. 11 is less severe than that in Fig. 10 so that all these sparse arrays are able to resolve the sources correctly.

VII. CONCLUDING REMARKS

In this paper, we introduced super nested arrays. These share many of the good properties of nested arrays but

at the same time, have reduced mutual coupling effects. For a fixed number of sensors, the super nested array

has the same aperture and the same coarray as the parent nested array. Therefore, the DOF for DOA estimation

is unchanged, while at the same time the effects of mutual coupling are reduced. One future direction for further

improvement would be to use these arrays in conjunction with techniques which decouple or compensate the effect

of mutual coupling such as the ones in [6], [8], [10]–[15], [35].

Notice from Theorem 2 that, while the weights w(1) and w(3) are significantly smaller than that of the parent

nested array, the weight w(2) is only slightly improved. How can we modify the array configuration further so that

w(2) is also decreased significantly without noticeably penalizing w(1) and w(2)? The answer lies in the Qth-order

super nested array which is introduced and studied in considerable detail in the companion paper [37].
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