Comparison of Sparse Arrays From Viewpoint of Coarray Stability and Robustness

Chun-Lin Liu ${ }^{1}$ and P. P. Vaidyanathan ${ }^{2}$

Dept. of Electrical Engineering, MC 136-93
California Institute of Technology
Pasadena, CA 91125, USA
cl.liu@caltech.edu ${ }^{1}$, ppvnath@systems.caltech.edu ${ }^{2}$

IEEE SAM 2018 July 9, 2018
 Caltech

Outline

1 Introduction

2 Review of Sparse Arrays and Robustness

3 Comparison of Sparse Arrays

4 Concluding Remarks

Outline

2 Review of Sparse Arrays and Robustness

3 Comparison of Sparse Arrays

4 Concluding Remarks

Direction-Of-Arrival (DOA) Estimation

Wavelength λ

[^0]
Physical Array and Difference Coarray

Physical array

[^1]
Sensor Failures

Array \#2 (2 fails)

4 elements

Array \#3 (1 fails)

$$
\begin{aligned}
& >_{0} \times{ }_{2} \times{ }_{4} \times{ }_{6} \\
& 4 \text { elements }
\end{aligned}
$$

Coarray MUSIC is not applicable here!

[^2]
Outline

1 Introduction

2 Review of Sparse Arrays and Robustness

3 Comparison of Sparse Arrays

4 Concluding Remarks

ULA and Sparse Arrays

ULA (not sparse)

- Identify at most $N_{s}-1$ uncorrelated sources. ${ }^{1}$
(N_{s} is the number of sensors)
- Can only find fewer sources than sensors.

[^3]
Coprime Arrays

The coprime array with $(M, N)=1$ is the union of
1 an N-element ULA with spacing M and
2 a $2 M$-element ULA with spacing N.

[^4]
The Essentialness Property

The sensor $n \in \mathbb{S}$ is essential with respect to \mathbb{S} if $\overline{\mathbb{D}} \neq \mathbb{D}$.

Physical array	Difference coarray	
	$\times_{-7} \bullet \bullet \bullet \bullet \bullet \bullet \underset{0}{*} \bullet \bullet \bullet \bullet \bullet \bullet{ }_{7} \times$	0 is essential
		1 is inessential
		2 is inessential
		7 is inessential

[^5]
Maximally Economic Sparse Arrays

An array \mathbb{S} is maximally economic if all the sensors in \mathbb{S} are essential

Physical array (a) ${ }_{0}^{0} \underset{1}{0} \times \times{ }_{4} \times{ }_{6}^{0}$	Difference coarray ${ }_{-6} \bullet \bullet \bullet \bullet \bullet{ }_{0} \bullet \bullet \bullet \bullet \bullet{ }_{6}$	
(b) $\times \underset{1}{0} \times \times_{4} \times{ }_{6}$	$\times{ }_{-5} \times \bullet \bullet \times{ }_{0} \times \bullet \bullet \times{ }_{5} \times$	0 is essential
(c) $\overbrace{0} \times \times \times \times{ }_{4} \times 0_{6}$	${ }_{-6} \times \bullet \times \bullet \times{ }_{0} \times \bullet \times \bullet \times{ }_{6}$	1 is essential
(d) $0_{0}^{0} 0 \times \times \times \times{ }_{1}$	$-_{-6}^{\bullet \bullet} \times \times \times \bullet{ }_{0}^{0} \bullet \times \times \times \bullet_{6}^{\circ}$	4 is essential
(e) ${\underset{0}{0} 0}_{0} \times \times \times 0 \times \times$		6 is essential

Array (a) is maximally economic

[^6]
Maximally Economic Sparse Arrays

\square Array geometries that are maximally economic:
Minimum redundancy array ${ }^{0} \bullet \times \times \times \times x \times x \times \bullet \times \times \times \times \times \times \bullet \times \times{ }^{23}$

■ Array geometries that are not maximally economic:
Uniform linear array

Coprime array
$0 \quad 15$
$\bullet \times \bullet \times \bullet \bullet \bullet \times \times \bullet \times \times \times \times$ •

[^7]
Minimum Redundancy Arrays and Minimum Hole Arrays

Definition of MRA

$$
\mathbb{S}_{\mathrm{MRA}} \triangleq \underset{\mathbb{S}}{\arg \max }|\mathbb{D}|
$$

subject to

$$
\begin{align*}
& |\mathbb{S}|=N_{s}, \\
& \mathbb{D}=\mathbb{U} . \tag{1}
\end{align*}
$$

■ N_{s} physical sensors

- Hole-free \mathbb{D}

Definition of MHA

$$
\mathbb{S}_{\mathrm{MHA}} \triangleq \underset{\mathbb{S}}{\arg \min }|\mathbb{H}|
$$

subject to

$$
\begin{aligned}
& |\mathbb{S}|=N_{s}, \\
& w(m)=1 \text { for } m \in \mathbb{D} \backslash\{0\} .
\end{aligned}
$$

- N_{s} physical sensors
- \mathbb{H} : the set of holes
- $w(m)$: the number of sensor pairs with separation m
- (1): m is not a hole.

[^8]
Cantor Arrays

\mathbb{S}_{0}
$\mathbb{S}_{1}{ }_{0}^{\circ}{ }_{1}^{\circ}$

${ }^{1}$ Smith, Proceedings of the London Mathematical Society, 1874; Cantor, Mathematische Annalen, 1883; Puente-Baliarda and Pous, IEEE Trans. Antennas Propag., 1996; Lii and Vaidyanathan, IEEE CAMSAP, 2017.

Outline

1 Introduction

2 Review of Sparse Arrays and Robustness

3 Comparison of Sparse Arrays

4 Concluding Remarks

The Size of the Difference Coarray

$$
2 N_{s}-1 \leq|\mathbb{D}| \leq N_{s}^{2}-N_{s}+1
$$

- $N_{s}=|\mathbb{S}|$ is the number of sensors.
\square If \mathbb{S} is a ULA, then $|\mathbb{D}|=2 N_{s}-1$.
\square If \mathbb{S} is a MHA, then $|\mathbb{D}|=N_{s}^{2}-N_{s}+1$.
(MRA does not in general achieve it)

The Fragility F_{1} and the Normalized Size of \mathbb{D}

$F_{1} \triangleq \frac{\# \text { of essential sensors }}{\# \text { of all sensors }\left(N_{s}\right)}$

$$
\mathfrak{D} \triangleq \frac{|\mathbb{D}|}{N_{s}^{2}-N_{s}+1}
$$

[^9]
The $F_{1}-\mathfrak{D}$ Plane: ULA $\left(N_{s}=6,7, \ldots, 70\right)$

The $F_{1}-\mathfrak{D}$ Plane: Coprime Arrays $\left(N_{s}=6,7, \ldots, 70\right)$

The $F_{1}-\mathfrak{D}$ Plane: Nested Arrays $\left(N_{s}=6,7, \ldots, 70\right)$

$$
F_{1}=\frac{\# \text { of Ess. }}{N_{s}}, \mathfrak{D}=\frac{|\mathbb{D}|}{N_{s}^{2}-N_{s}+1}
$$

The $F_{1}-\mathfrak{D}$ Plane: ULA/Coprime Arrays/Nested Arrays

Nested arrays The largest \mathbb{D} The least robust

ULA

The smallest \mathbb{D}
The most robust

$$
F_{1}=\frac{\# \text { of Ess. }}{N_{s}}, \mathfrak{D}=\frac{|\mathbb{D}|}{N_{s}^{2}-N_{s}+1}
$$

The $F_{1}-\mathfrak{D}$ Plane: $N_{s}=8$ Sensors, Aperture $A \leq 34$

The $F_{1}-\mathfrak{D}$ Plane: $N_{s}=8$ Sensors, Aperture $A \leq 34$

The $F_{1}-\mathfrak{D}$ Plane: $N_{s}=8$ Sensors, Aperture $A \leq 34$

The $F_{1}-\mathfrak{D}$ Plane: $N_{s}=8$ Sensors, Aperture $A \leq 34$

Outline

1 Introduction

2 Review of Sparse Arrays and Robustness

3 Comparison of Sparse Arrays

4 Concluding Remarks

Concluding Remarks

- Comparison of sparse arrays
- Robustness (F_{1})

■ Size of the difference coarray (\mathfrak{D})

- The $F_{1}-\mathfrak{D}$ plane

■ Future work

- Array geometries with large and robust difference coarrays
- Analysis of the achievable/unachievable regions on the $F_{1}-\mathfrak{D}$ plane

[^0]: ${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

[^1]: ${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

[^2]: ${ }^{1}$ Liu and Vaidyanathan, IEEE Signal Process. Letters, 2015.
 ${ }^{2} 100$ snapshots, 0 dB SNR, $D=2$ sources, $\theta_{1}=-0.1, \theta_{2}=0.1$, equal-power, uncorrelated sources.

[^3]: ${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.
 ${ }^{2}$ Moffet, IEEE Trans. Antennas Propag., 1968.
 ${ }^{3}$ Pal and Vaidyanathan, IEEE Trans. Signal Process., 2010.
 ${ }^{4}$ Vaidyanathan and Pal, IEEE Trans. Signal Process., 2011.
 ${ }^{5}$ Liu and Vaidyanathan, IEEE Trans. Signal Process., 2016.

[^4]: ${ }^{1}$ Vaidyanathan and Pal, IEEE Trans. Signal Process., 2011.

[^5]: ${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018; \mathbb{D} is the difference coarray of \mathbb{S} and $\overline{\mathbb{D}}$ is the difference coarray of $\mathbb{S} \backslash\{n\}$.

[^6]: ${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018.

[^7]: ${ }^{1}$ Liu and Vaidyanathan, IEEE CAMSAP, 2017; Liu and Vaidyanathan, IEEE ICASSP, 2018.

[^8]: ${ }^{1}$ Moffet, IEEE Trans. Antennas Propag., 1968.
 ${ }^{2}$ Taylor and Golomb, 1985.

[^9]: ${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018.

