A General Framework for the Robustness of Structured Difference Coarrays to Element Failures

Chun-Lin Liu

Dept. of Electrical Engineering
Graduate Institute of Communication Engineering
National Taiwan University, Taipei, Taiwan 10617
chunlinliu@ntu.edu.tw

Outline

1. Introduction

2. The Proposed Framework
 - The Importance Function
 - The Generalized \(k \)-Fragility

3. Numerical Examples

4. Concluding Remarks
Outline

1 Introduction

2 The Proposed Framework
 • The Importance Function
 • The Generalized k-Fragility

3 Numerical Examples

4 Concluding Remarks
Physical Array and Difference Coarray

- Uniform linear array (ULA)\(^1\)
 - \(|\mathcal{D}| = O(|\mathcal{S}|)\)
 - Fewer sources than sensors

- Sparse array\(^2\)
 - Minimum redundancy array
 - Nested array
 - Coprime array
 - \(|\mathcal{D}| = O(|\mathcal{S}|^2)\)
 - More sources than sensors

Robustness of Difference Coarrays to Element Failures

<table>
<thead>
<tr>
<th>Physical array</th>
<th>Difference coarray</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>D_1</td>
</tr>
<tr>
<td>0 2 4 5 6</td>
<td>−6 0 6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S_2</td>
<td>D_2 ≠ D_1</td>
</tr>
<tr>
<td>0 2 4 6 ×</td>
<td>−6 −4 −2 0 2 4 6</td>
</tr>
<tr>
<td>Failed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>D_3 = D_1</td>
</tr>
<tr>
<td>0 2 5 6 ×</td>
<td>−6 0 6</td>
</tr>
<tr>
<td>Failed</td>
<td></td>
</tr>
</tbody>
</table>
Related Work

- Robustness of detection and estimation\(^1\)
- Robustness of the peak sidelobe level in the beampattern to sensor failures\(^2\)
- **Robustness of difference coarrays to sensor failures\(^3\-5\)**
 - The essentialness property and the \(k\)-essentialness property\(^3\)
 - The fragility and the \(k\)-fragility\(^3\)
 - The essentialness and the fragility for array configurations\(^4\)
 - Numerical algorithms\(^5\)

Outline

1. Introduction

2. The Proposed Framework
 - The Importance Function
 - The Generalized k-Fragility

3. Numerical Examples

4. Concluding Remarks
Outline

1. Introduction

2. The Proposed Framework
 - The Importance Function
 - The Generalized k-Fragility

3. Numerical Examples

4. Concluding Remarks
The Importance Function: Definition

The Main Idea

The importance function \mathcal{I} quantifies the importance of a subarray A of S.

Definition

A function \mathcal{I} is said to be an importance function with respect to a non-empty set S if the four defining properties hold:

1. $0 \leq \mathcal{I}(A) \leq 1$ for all $A \subseteq S$. [Range of the importance]
2. $\mathcal{I}(\emptyset) = 0$, where \emptyset is the empty set. [\emptyset is the least important]
3. $\mathcal{I}(S) = 1$. [S is the most important]
4. \mathcal{I} is monotone. [If $A \subseteq B \subseteq S$, then $\mathcal{I}(A) \leq \mathcal{I}(B)$]
Examples of Importance Functions

\(\mathcal{I} \) related to the \(k \)-essentialness

\[\mathcal{I}_{\text{ess}}(A) \triangleq \begin{cases} 1, & \text{if } A \text{ is } |A|\text{-essential}, \\ 0, & \text{otherwise}. \end{cases} \]

\(\mathcal{I} \) related to the size of \(U \)

(Proposed)

\[\mathcal{I}_U(A) \triangleq 1 - \frac{|U|}{|A|}. \]

Failed

\(A = \{0\} \)

\(\mathcal{I}_{\text{ess}}(A) = 1, \quad \mathcal{I}_U(A) = 0. \)
Properties of Importance Functions I_{ess} and I_{U}

Properties of the importance functions I_{ess} and I_{U}

1. $I_{U}(A) = 1$ if and only if $A = S$.
2. $I_{U}(A) \leq I_{\text{ess}}(A)$.

Proofs can be found in the paper\(^1\).

Outline

1. Introduction

2. The Proposed Framework
 - The Importance Function
 - The Generalized k-Fragility

3. Numerical Examples

4. Concluding Remarks
The Generalized k-Fragility

Definition

The generalized k-fragility $\mathcal{F}_k(S, \mathcal{I})$ is defined as

$$\mathcal{F}_k(S, \mathcal{I}) \triangleq \sum_{A \subseteq S, |A|=k} \frac{\mathcal{I}(A)}{\binom{|S|}{k}}, \quad \text{for } k = 0, 1, \ldots, |S|.$$

- S: The array geometry.
- \mathcal{I}: The importance function.
- k: The number of element failures.

Remarks on $\mathcal{F}_k(S, \mathcal{I})$

- A measure for the array robustness w.r.t. \mathcal{I}.
- \mathcal{I}_{ess} or \mathcal{I}_{U}.
- The k-fragility (2) $F_k = \mathcal{F}_k(S, \mathcal{I}_{\text{ess}})$.

The Proposed Framework

The Generalized k-Fragility

Properties of The Generalized k-Fragility

$$
F_k(S, \mathcal{I}) \triangleq \sum_{A \subseteq S, |A|=k} \frac{\mathcal{I}(A)}{\binom{|S|}{k}},
$$
for $k = 0, 1, \ldots, |S|$.

For $F_k(S, \mathcal{I})$

1. $0 \leq F_k(S, \mathcal{I}) \leq 1$. [Robust if $F_k(S, \mathcal{I}) \to 0$]
2. $F_0(S, \mathcal{I}) = 0$ and $F_{|S|}(S, \mathcal{I}) = 1$.
3. $F_k(S, \mathcal{I})$ is increasing in k.

For $F_k(S, \mathcal{I}_{\text{ess}})$ and $F_k(S, \mathcal{I}_{U})$

1. $F_k(S, \mathcal{I}_{U}) = 1$ if and only if $k = |S|$.
2. $F_k(S, \mathcal{I}_{U}) \leq F_k(S, \mathcal{I}_{\text{ess}})$ for $k = 0, 1, \ldots, |S|$.

Proofs can be found in the paper\(^1\).

Importance Function

Uniform Linear Array (10 sensors)

Sensor location n

Minimum Redundancy Array (10 sensors)

Sensor location n

Nested Array (10 sensors, $N_1 = N_2 = 5$)

Sensor location n

Coprime Array (10 sensors, $M = 3, N = 5$)

Sensor location n
Generalized k-Fragility

$\mathcal{F}_k(\mathbb{S}, \mathcal{I})$

Less robust

More robust

Fewer failures

More failures
Outline

1. Introduction

2. The Proposed Framework
 - The Importance Function
 - The Generalized k-Fragility

3. Numerical Examples

4. Concluding Remarks
Concluding Remarks

- This presentation
 - The importance function
 - The generalized k-fragility
- Future work
 - Importance function based on performance metrics
 - Sparse array design based on the importance function

- This work is supported by
 - Ministry of Education, Taiwan
 - Ministry of Science and Technology, Taiwan
 - National Taiwan University
- Prof. P. P. Vaidyanathan (Caltech) for the insightful comments.

Thank you!