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Abstract—Sparse arrays have received attention in array signal
processing since they can resolve O(N2) uncorrelated sources us-
ing N physical sensors. The reason is that the difference coarray,
which consists of the differences between sensor locations, has a
central uniform linear array (ULA) segment of size O(N2). From
the theory of the k-essentialness property and the k-fragility,
the difference coarrays of some sparse arrays are not robust to
sensor failures, possibly affecting the applicability of coarray-
based direction-of-arrival (DOA) estimators. However, the k-
essentialness property might not fully reflect the conditions under
which these estimators fail. This paper proposes a framework
for the robustness of array geometries based on the importance
function and the generalized k-fragility. The importance function
characterizes the importance of the subarrays in an array subject
to some defining properties. The importance function is also
compatible with the k-essentialness property and the size of the
central ULA segment in the difference coarray. The latter is
closely related to the performance of some coarray-based DOA
estimators. Based on the importance function, the generalized
k-fragility is proposed to quantify the robustness of an array.
Properties of the importance function and the generalized k-
fragility are also studied and demonstrated through numerical
examples.

Index Terms—Sparse arrays, difference coarrays, robustness,
the importance function, the generalized k-fragility.

I. INTRODUCTION

Sparse arrays have drawn attention in many fields of science
and engineering [1]–[6], since they can resolve O(N2) source
directions using N physical sensors under mild assumptions
[7]–[10]. Therefore, it is possible to identify more source di-
rections than sensors using sparse arrays such as the minimum
redundancy array (MRA) [7], the nested array [9], and the
coprime array [10]. This property arises from the difference
coarray of the sparse arrays having O(N2) distinct elements,
where the difference coarray is defined as the set of differences
between the sensor locations. On the contrary, the ULA can
only identify O(N) source directions with N sensors [6].

However, in practice, the robustness of array geometries to
sensor failures plays an important role in the overall system
performance [11]–[13]. It can be assessed from detection and
estimation [11], the peak sidelobe level in the beampattern
[12], and the difference coarray [13]. It is assumed that
the sensors in the array deviate from their operational state,
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causing missing or erroneous data, and then the changes in
the performance metrics are analyzed.

Among these, the robustness of difference coarrays to sensor
failures is recently addressed by the k-essentialness property
[13], which characterizes the patterns of k failed sensors
that change the difference coarray. Based on this concept,
the k-fragility, defined as the ratio of the number of k-
essential subarrays to the number of all subarrays with size
k, admits to compare the robustness of array geometries to
sensor failures [13]. Therefore, the robustness of arrays is
analyzed and compared [14] and robust array configurations
are designed [15]. However, the k-essentialness property might
not fully reflect the conditions under which the coarray-based
DOA estimators fail. Even if the difference coarray changes,
information on the impaired difference coarray might still be
processed using the central ULA segment in the difference
coarray [16], [17], positive-definite Toeplitz completion [18],
or coarray interpolation [19], [20].

This paper aims to extend the theory of k-essentialness and
the k-fragility to a broader family of array robustness. To
begin with, the importance function of the subarrays of an
array characterizes the importance of subarrays, from basic
principles of array robustness. The importance function not
only provides insights into the implementation cost of the array
but also offers a more general framework for array robustness
than the k-essentialness property. Based on these concepts, the
generalized k-fragility is defined to measure the robustness of
sensor arrays subject to the importance function. In particular,
the generalized k-fragility for any importance function is an
increasing function bounded between 0 and 1, which shares
similar properties with the k-fragility in [13]. Furthermore, the
proposed framework can be readily extended to the robustness
of the central ULA segment of the difference coarray.

Note that the structural importance [11] was also proposed
to evaluate the array robustness. The structural importance is
defined as the sensitivity of the performance criterion with
respect to the operational state of each sensor. In this paper,
the importance function is defined for multiple sensor failures
with basic properties, as elaborated in Section III.

The outline of this paper is as follows. Section II reviews
the difference coarray, the k-essentialness property, and the
k-fragility. Section III presents the importance function and
its properties. Section IV studies the generalized k-fragility
and its attributes. Section V demonstrates numerical examples
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Fig. 1. An illustration of the array geometry S, the difference coarray D,
and the central ULA segment U, where the dots denote elements and crosses
stand for empty space. The array geometry is the coprime array with M = 3
and N = 5.

while Section VI concludes this paper.

II. PRELIMINARIES

Consider a linear array whose sensors are located at nλ/2.
Here λ is the wavelength of the far-field, narrowband, and
uncorrelated sources. The index n belongs to an integer-valued
set S. Next the difference coarray of S is defined as [7]–[10]:

Definition 1. The difference coarray D of an array S is
defined as the set of differences between the sensor locations.
Namely, D , {n1 − n2 : n1, n2 ∈ S} .

Based on these assumptions, it is known [8]–[10] that the
measurements on S can be transformed into the measurements
on D. This property has led to the development of coarray-
based DOA estimators [8], [9], [16]–[18], [21]. Among these,
DOA estimators based on the MUSIC algorithm on the differ-
ence coarray [8], [9], [16], [17] operate on the central ULA
segment in the difference coarray, which is defined as follows:

Definition 2. The central ULA segment in the difference
coarray is defined as U , {m : {0,±1,±2, . . . ,±|m|} ⊆ D}.

For example, Fig. 1 depicts the sets S, D, and U for
the coprime array [10] with parameters M = 3 and
N = 5. The coprime array has S = {0,M, 2M, . . . , (N −
1)M,N, 2N, . . . , (2M − 1)N}, as shown in red dots. The
difference coarray D is illustrated in blue dots while the central
ULA segment U is also depicted. It can be observed that the
sizes of these sets are |S| = 10, |D| = 43, and |U| = 35. The
notation | · | represents the cardinality of a set.

In the literature, the sensor locations can be designed
properly such that the set U possesses size up to O(|S|2).
This attribute admits to resolve more sources than sensors
using coarray-based DOA estimators on U [8], [9], [16], [17].
Note that sparse arrays such as the MRA [7], the nested
array [9], and the coprime array [10], satisfy the property that
|U| = O(|S|2).

Next the k-essentialness property is reviewed for the robust-
ness of sparse arrays [13], [14]:

Definition 3. Let A be a subset of S with cardinality k.
Then A is said to be k-essential with respect to S if the removal
of A from S changes the difference coarray. That is, A is k-
essential if D 6= D, where D and D are the difference coarrays
of S and S , S\A, respectively.

Based on Definition 3, the k-fragility of S is defined as [13]

Fk(S) ,
|{A : A is k-essential with respect to S }|(|S|

k

) , (1)

for k = 1, 2, . . . , |S|. It was shown in [13] that 0 ≤ Fk(S) ≤ 1
and Fk(S) is an increasing function in k. The larger the k-
fragility is, the more likely the difference coarray is to change
under k sensor failures. The array is said to be more robust

if Fk(S) is close to 0. Interested readers are referred to [13],
[14] for the more details of these attributes.

The k-essentialness property and the k-fragility correspond
to changes in the difference coarray. However, changes in
the difference coarray are necessary, but not sufficient for
the inapplicability of some coarray-based DOA estimators.
For instance, changes in D are necessary but not sufficient
for changes in U, and the coarray-based MUSIC algorithms
[16], [17] are based on the autocorrelation estimates on U.
Furthermore, techniques such as coarray-interpolation [19],
[20] and sparsity-based methods [22]–[25] can be utilized to
estimate the DOAs when the difference coarray changes.

III. THE IMPORTANCE FUNCTION

In this section, the importance function will be presented
for the framework of the robustness of sparse arrays. The
importance function not only generalizes the k-essentialness
property but also leads to new insights into the robustness of
sparse arrays with respect to the central ULA segment U.

The definition of the importance function is as follows.
Definition 4. A function I is said to be an importance

function with respect to a non-empty set S if the defining
properties hold

1) 0 ≤ I (A) ≤ 1 for all A ⊆ S.
2) I (∅) = 0, where ∅ is the empty set.
3) I (S) = 1.
4) I is monotone. That is, if A ⊆ B ⊆ S, then I (A) ≤

I (B).
The importance of a given subset of S satisfies the properties

in Definition 4. We say that a subset A is the least important for
S if the importance function is 0, while A is the most important
for S if I (A) = 1. Therefore, the empty set ∅ is the least
important and S is the most important, (Properties 2 and 3 in
Definition 4). Furthermore, Property 4 in Definition 4 indicates
that the importance function increases as extra sensors are
added to the subarray.

The importance function is related to the implementation
cost of an array. The subarrays with larger importance func-
tions are implemented with higher cost, since the removal of
these subarrays might cause significant performance degrada-
tion. Based on this concept, array can be designed to strike a
balance between robustness and the implementation cost.

Depending on the criteria for the importance, the importance
function can be defined in different forms, as long as the
properties in Definition 4 hold true. These forms may or may
not be related to the difference coarray. As an example, the
ratio |A|/|S| is an importance function, since the properties in
Definition 4 can be shown to be true for I (A) = |A|/|S|.

However, in this paper, the importance function related
to the difference coarray is of primary interest, due to its
significance in DOA estimation. We will focus on 1) the k-
essentialness property and 2) the central ULA segment U.

To begin with, the importance function corresponding to the
k-essentialness property in Definition 3 can be defined as

Iess(A) ,

{
1, if A is |A|-essential,
0, otherwise,

(2)



where the set A ⊆ S.
The function Iess is an importance function due to the

following. The first three properties in Definition 4 are trivially
true for Iess(A) in (2). Property 4 in Definition 4 for Iess(A)
is also satisfied due to [13, Lemma 3].

As reviewed in Section II, coarray-based DOA estimators
might still work when D changes. It is alternative to consider
the central ULA segment U as the performance metric. As
the size of U decreases, it was observed that the number of
resolvable sources drops [26]–[28] and the DOA estimation
performance tends to degrade [20]. Based on these, the func-
tion IU is proposed to incorporate the size of the central ULA
segment U with the importance:

Definition 5. Assume that the array is denoted by the set
S. Let the set U be defined in Definition 2. The importance
function associated with the size of U is defined as

IU(A) , 1−
∣∣U∣∣
|U|

, (3)

where A is a subset of S. The set U denotes the central ULA
segment in the difference coarray of S = S\A.

It will be shown next that the function IU(A) is an
importance function. First, by definition, the set U satisfies
0 ≤ |U| ≤ |U|, implying that 0 ≤ IU(A) ≤ 1. Second,
if A = ∅, then we have S = S, so the difference coarray
and its central ULA segment remain unchanged. Therefore
IU(∅) = 0. On the other hand, if A = S, then we obtain
S = ∅, D = ∅, and U = ∅, so that IU(S) = 1. Property
4 in Definition 4 can be verified through the following chain
of arguments. Suppose that A ⊆ B ⊆ S. We define the sets
S1 , S\A and S2 , S\B. Due to [13, Proposition 1], we have
D2 ⊆ D1, where D1 and D2 are the difference coarrays of S1
and S2, respectively. As a result, the central ULA segments in
the difference coarrays of S1 and S2, denoted by U1 and U2,
satisfy U2 ⊆ U1. Therefore, we have IU(A) ≤ IU(B).

Apart from the properties in Definition 4, the importance
function IU has these additional properties:

Proposition 1. The importance function IU in (3) satisfies
the following attributes.

1) IU(A) = 1 if and only if A = S.
2) IU(A) ≤ Iess(A).

Proof: The first property is due to the following. Accord-
ing to (3), IU(A) = 1 if and only if U = ∅. This condition
is equivalent to the condition that S , S\A = ∅. As a result,
IU(A) = 1 if and only if A = S.

The second property can be proved as follows. Based on
(2), the importance function Iess(A) is either 1 or 0. If
Iess(A) = 1, then the inequality holds according to Property
1 in Definition 4. On the other hand, if Iess(A) = 0, then we
have D = D, owing to Definition 3. Therefore, U = U and
IU(A) = 0.

The importance functions Iess and IU correspond to
different performance metrics. The former focuses on changes
in D while the latter considers the size of U. Furthermore, Iess

is binary-valued but IU may have more than two values.

IV. THE GENERALIZED k-FRAGILITY

The importance function not only provides insights into the
importance of subarrays of a given array configuration, but
also makes it possible to quantify the array robustness. In what
follows, the generalized k-fragility is defined:

Definition 6. The generalized k-fragility Fk(S,I ) related
to the array S and the importance function I is defined as

Fk(S,I ) ,
∑

A⊆S, |A|=k

I (A)(|S|
k

) , (4)

for k = 0, 1, . . . , |S|.
The generalized k-fragility can be viewed as the extensions

of the k-fragility associated with the importance function
I . In particular, the generalized k-fragility Fk(S,Iess) is
equivalent to the k-fragility Fk(S) in (1), for k = 1, 2, . . . |S|.

Next some properties about Fk(S,I ) are presented.
Lemma 1. For the importance function I in Definition 4,

the generalized k-fragility Fk(S,I ) satisfies these properties:
1) 0 ≤ Fk(S,I ) ≤ 1 for k = 0, 1, . . . , |S|.
2) F0(S,I ) = 0 and F|S|(S,I ) = 1.
3) Fk(S,I ) is an increasing function in k.
The generalized k-fragility can be interpreted as a measure

for the array robustness, subject to the performance metric
defined in the importance function I . An array is said to be
more robust (or less fragile) if Fk(S,I ) is close to 0, and less
robust (or more fragile) if Fk(S,I ) is close to 1. Furthermore,
Fk(S,I ) is an increasing function in k, showing that as more
elements are removed, the array becomes less robust. These
interpretations are consistent with the k-fragility in (1).

Proof of Lemma 1: The first property is a direct conse-
quence of Property 1 in Definition 4 while the second property
follows from Properties 2 and 3 in Definition 4.

The third property can be proved as follows. It is assumed
that the set A ⊆ S and |A| = k. Let the element n be in the
set S, but not in A. Therefore, A ⊆ A∪{n}, and according to
Property 4 in Definition 4, the importance function I satisfies

I (A) ≤ I (A ∪ {n}). (5)

Summing up all possible A and n in (5) leads to∑
A⊆S, |A|=k, n∈S\A

I (A) ≤
∑

A⊆S, |A|=k, n∈S\A

I (A ∪ {n}). (6)

Next the duplicated terms in the summations of (6) are
analyzed. The left-hand side of (6) can be simplified as
(|S| − k)

∑
A⊆S,|A|=k I (A). The right-hand side of (6), on

the other hand, can be expressed in terms of another set
B , A∪{n}. Each B can be constructed from A∪{n} in k+1
ways. Therefore, the right-hand side of (6) can be rewritten as
(k + 1)

∑
B⊆S,|B|=k+1 I (B). Based on these expressions and

Definition 6, we obtain

(|S| − k)
(
|S|
k

)
Fk(S,I ) ≤ (k + 1)

(
|S|
k + 1

)
Fk+1(S,I ),

which simplifies to Fk(S,I ) ≤ Fk+1(S,I ).
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Fig. 2. The importance functions for (a) the ULA with 10 sensors, (b) the
MRA with 10 sensors, (c) the nested array with N1 = N2 = 5, and (d) the
coprime array with M = 3, N = 5.

Next the properties of the generalized k-fragility associated
with the importance function IU are presented, whose the
proof is a direct consequence of Proposition 1 and Lemma 1:

Proposition 2. Let IU be defined in Definition 5. The
generalized k-fragility associated with IU has these properties

1) Fk(S,IU) = 1 if and only if k = |S|.
2) Fk(S,IU) ≤ Fk(S,Iess) for k = 0, 1, . . . , |S|, where

Iess is defined in (2).
Summarizing, the generalized k-fragility associated with the

importance function I quantifies the robustness of arrays in
the range 0 ≤ Fk(S,I ) ≤ 1. For any importance function I ,
Lemma 1 is satisfied. Additional properties for Fk(S,Iess)
and Fk(S,IU) are can be found in Proposition 2.

V. NUMERICAL EXAMPLES

In this section, the importance function and the gener-
alized k-fragility will be demonstrated through numerical
examples. We consider the following arrays. The ULA [6]
with 10 sensors has S = {0, 1, . . . , 9}. The MRA [7] with
10 sensors owns S = {0, 1, 3, 6, 13, 20, 27, 31, 35, 36}. The
nested array [9] with N1 = 5 and N2 = 5 possesses S =
{1, 2, 3, 4, 5, 6, 12, 18, 24, 30}. The coprime array [10] with
M = 3 and N = 5 has S = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}.
All these arrays have 10 sensors.

The importance functions for (a) the ULA, (b) the MRA,
(c) the nested array, and (d) the coprime array, are depicted in
Fig. 2, where the sensor locations are denoted by n ∈ S. The
importance function Iess({n}) is marked with red triangles
while the importance function IU({n}) is shown in blue dots.

The properties in Definition 4 and Proposition 1 are consis-
tent with the results in Fig. 2. In these examples, the impor-
tance functions all satisfy 0 ≤ IU({n}) ≤ Iess({n}) ≤ 1 for
all n ∈ S. Furthermore, Iess({n}) is either 0 or 1.

It is also confirmed that the change in D is not sufficient for
the change in U. For instance, it is observed in Fig. 2(d) that

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k

F
k
(S
,I

) ULA (Iess)
ULA (IU)
MRA (Iess)
MRA (IU)
Nested (Iess)
Nested (IU)
Coprime (Iess)
Coprime (IU)

Fig. 3. The generalized k-fragility Fk(S,I ) for the ULA, the MRA, the
nested array, and the coprime array. The array geometries are identical to
those in Fig. 2.

Iess({0}) = 1 and IU({0}) = 0. Therefore, if the element 0
is deleted from the coprime array, then the difference coarray
changes (Iess({0}) = 1) but the central ULA segment in
the difference coarray remains the same, since IU({0}) = 0
implies U = U in Definition 5.

Fig. 3 depicts the generalized k-fragility Fk(S,Iess) and
Fk(S,IU) for the ULA, the MRA, the nested array, and the
coprime array. These curves are consistent with the properties
in Lemma 1 and Proposition 2. Second, based on Fk(S,Iess),
the ULA is the most robust array, followed by the coprime
array, and finally the nested array and the MRA. In particular,
the MRA and the nested array share the same level of
robustness, in the sense of the k-essentialness property and
Fk(S,Iess). However, if the size of U is considered for the
importance function, the nested array is more robust than the
MRA, due to the results of Fk(S,IU) in Fig. 3. Note that
this relation is in accordance with the numerical results for
the estimation performance of coarray MUSIC in [14].

VI. CONCLUDING REMARKS

This paper proposed a generalized framework for analyz-
ing the robustness of arrays to sensor failures, based on
the importance function and the generalized k-fragility. The
importance function is compatible with the k-essentialness
property and the size of the central ULA segment of the
difference coarray. The latter was known to be closely related
to the performance of some coarray-based DOA estimators.
Based on these, the generalized k-fragility was presented to
quantify the robustness among arrays. Numerical examples
demonstrated the properties of the importance function and
the generalized k-fragility.

The proposed framework is applicable to any importance
functions. Therefore, it is of interest to investigate other
realistic criteria for the robustness of both array geometries
and DOA estimators that can be utilized in the importance
function and the generalized k-fragility.
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