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Abstract—In array processing, sparse arrays are capable of
resolving O(N2) uncorrelated sources with N sensors. Sparse
arrays have this property because they possess uniform linear
array (ULA) segments of size O(N2) in the difference coarray,
defined as the differences between sensor locations. However,
the coarray structure of sparse arrays is susceptible to sensor
failures, and the reliability of sparse arrays remains a significant
but challenging topic for investigation. Broadly speaking, ULAs
whose difference coarrays only have O(N) elements, are more
robust than sparse arrays with O(N2) coarray sizes. This
paper advances a theory for quantifying such robustness by
introducing the k-essentialness of sensors and the k-essential
family of arrays. The proposed theory is motivated by the coarray
MUSIC algorithm, which estimates source directions based on
difference coarrays. Furthermore, the concept of essentialness
not only characterizes the patterns of k faulty sensors that
shrink the difference coarray, but also leads to the notion of
k-fragility, which assesses the robustness of array geometries
quantitatively. However, the large size of the k-essential family
usually complicates the theory. It will be shown that the k-
essential family can be compactly represented by the so-called
k-essential Sperner family. Finally the proposed theory is used to
provide insights into the probability of change of the difference
coarray, as a function of the sensor failure probability and array
geometry. In a companion paper, the k-essential Sperner family
for several commonly used array geometries will be derived
in closed-form, resulting in a quantitative comparison of the
robustness of these arrays.

Index Terms—Sparse arrays, difference coarrays, the k-
essentialness property, the k-fragility, the k-essential Sperner
family.

I. INTRODUCTION

Sparse arrays, which have nonuniform sensor spacing, have
recently attracted considerable attention in array signal pro-
cessing [1]–[5]. Unlike uniform linear arrays (ULA), which
resolve at most N − 1 uncorrelated sources with N sensors,
some sparse arrays are capable of identifying O(N2) uncorre-
lated sources using N physical sensors. These arrays include
minimum redundancy arrays (MRA) [2], nested arrays [4],
coprime arrays [5], and their generalizations [6]. This O(N2)
property is because the difference coarray, defined as the set of
differences between the sensor locations, possesses an O(N2)-
long central ULA segment. By analyzing the samples on
the difference coarray, quite a few direction-of-arrival (DOA)
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estimators have been shown to resolve more uncorrelated
sources than sensors [4], [5], [7]–[12].

In practice, sensor failure could occur randomly and may
lead to the breakdown of the overall system [13], [14]. It can
be empirically observed that, for some sparse arrays, such as
MRA, faulty sensors could shrink the size of the O(N2)-long
ULA segment in the difference coarray significantly. Further-
more, small ULA segments in the difference coarray typically
lead to degraded performance [4], [7], [8], [15]. Due to these
observations, in the past, sparse arrays were considered not to
be robust to sensor failure. However, the impact of damaged
sensors on sparse arrays remains to be analyzed, since these
observations assume specific array configurations.

The issue of sensor failure was addressed in the literature in
two respects, including 1) developing new algorithms that are
functional in the presence of sensor failure and 2) analyzing
the robustness of array geometries. In the first case, various
approaches have been developed, including DOA estimators
based on minimal resource allocation network [16], impaired
array beamforming and DOA estimation [17], array diagnosis
based on Bayesian compressive sensing [18], and so on [19],
[20]. However, the interplay between the array configuration
and the exact condition under which these algorithms are
applicable, remains to be investigated. The second aspect
assesses the robustness of array configurations with faulty
sensors [21], [22]. For instance, Alexiou and Manikas [21]
proposed various measures to quantify the robustness of arrays
while Carlin et al. [22] performed a statistical study on the
beampattern with a given sensor failure probability. Even so,
the impact of damaged sensors on the difference coarray has
not yet been analyzed in a deterministic fashion, which is
crucial for sparse arrays.

In this paper, we aim to investigate the influence of faulty
sensors on the difference coarray. The main focus of this paper
is not to develop new algorithms, but to analyze the robustness
of arrays. Note that the proposed theory is motivated by the
coarray MUSIC algorithm, which relies on the data on the
difference coarray to estimate the DOAs. Therefore, changes in
the difference coarray may hinder the applicability of coarray
MUSIC [4], [7], [8].

A sensor is said to be essential if its deletion changes
the difference coarray. Note that the essentialness property,
which was originally introduced to study the economy of
sensors [23], depends purely on the array geometry, rather
than the source parameters and the estimation algorithms. One
of the main contributions of this paper is to show that the
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Fig. 1. An illustration of the essentialness property. Si and Di represent
the physical array and the difference coarray of the ith array, respectively.
Elements are marked by dots while empty space is depicted by crosses. It
can be observed that removing the sensor at 1 from Array #1 changes the
difference coarray (D2 6= D1). However, in Array #3, which is obtained by
removing the sensor at 2 from Array #1, the difference coarray remains the
same (D3 = D1). We say that the sensor at 1 is essential with respect to
Array #1 while the sensor at 2 is inessential with respect to Array #1.

essentialness property can be used to assess the robustness of
the array geometry, in the sense of preserving the difference
coarray. A generalization of this, called k-essentialness, is
then developed in order to study the effect of multiple sensor
failures on the difference coarray. The coarray robustness is
quantified using the notion of k-fragility which is introduced
later in the paper. This quantity ranges from 0 to 1; an array
is more robust if the fragility is closer to 0.

For an array with N sensors, the size of the k-essential
family can be as large as

(
N
k

)
, which makes it challenging

to analyze and to store the complete information. To address
this issue, we introduced the k-essential Sperner family, which
encodes the information in the k-essential family with great
economy.

These proposed quantities find applications in quantifying
the susceptibility of the difference coarray with respect to
random sensor failures. Note that this topic is of considerable
interest in reliability engineering [13], [14]. Our study offers
several insights into the interplay between the overall reliabil-
ity, the essentialness property, and the fragility. For instance,
under mild assumptions, the system reliability decreases as the
number of essential sensors increases.

As an example, Fig. 1 demonstrates the main idea of
the essentialness property. Let us consider Array #1 and its
difference coarray, as depicted on the top of Fig. 1. The sensor
at 1 is essential since its removal from Array #1 alters the
difference coarray. However, the sensor at 2 is inessential,
since D3 = D1. This example shows that according to the
sensor locations, some sensors are more important than others,
as far as preserving the difference coarray is concerned. The
essentialness property and its connection to the robustness of
the array geometry will be developed in depth later.

Paper outline: Section II reviews the theory of sparse ar-
rays. Section III proposes the k-essential family while Section
IV introduces the k-fragility. Section V presents the k-essential
Sperner family. Section VI offers a number of insights into the
system reliability for the difference coarray while Section VII
concludes this paper. Parts of the results were presented in a

conference paper [24], including (a) the definitions of the k-
essentialness property and the k-fragility, (b) Theorems 1 and
2, and (c) sketches of the proofs of these theorems.

A. Remarks on Redundancy and the Proposed Theory

The proposed theory shares concepts similar to redundancy
discussed in [2], [25]. For instance, it was stated in [25] that
“the redundancy of an array may be described as the degree
to which it contains elements that can be eliminated without
changing its coarray.” This statement is closely related to the
definition of the essentialness property (Definition 3). Even
so, in this paper, this concept is developed with a different
approach, as we will elaborate in the following items.

1) The redundancy is defined as R =
(
N
2

)
/max(U), where

N is the number of sensors and max(U) is the maximum
element in the central ULA segment of the difference
coarray [2], [25]. According to this definition, the redun-
dancy R is a scalar attribute of an array. On the other
hand, in our proposed theory, the essentialness property
is a binary attribute of each individual sensor while the
maximal economy and the k-fragility are attributes of
the entire array.

2) The redundancy R explicitly takes the central ULA seg-
ment U of the difference coarray into consideration. The
set U is usually important for MUSIC-like algorithms on
the difference coarray [4], [7]–[9], [26]. Even though
the proposed theory is motivated by the coarray MUSIC
algorithm, the central ULA segment in the difference
coarray is not involved in the essentialness property and
other derived attributes.

3) The essentialness property can be interpreted as the
importance of each physical sensor in an array. Based on
this interpretation, we can use the essentialness property
to determine the implementation cost of the physical
sensing devices. On the contrary, the redundancy [2],
[25] does not reveal the importance of each sensor.

4) The redundancy R and the k-fragility Fk are both
quantities characterizing the arrays. By definition, R ≥ 1
and 0 ≤ Fk ≤ 1 for any array configurations. The
redundancy R can be interpreted as how much the
central ULA segment of the difference coarray is away
from the largest number of positive lags

(
N
2

)
. In the

proposed theory, the k-fragility can be viewed as the
tendency that the difference coarray changes under
sensor failures, where the sizes and the structures
of the difference coarray are not of primary inter-
est. Therefore, the redundancy and the k-fragility are
different concepts.

5) In the literature, the redundancy is mainly used for
designing arrays with minimum redundancy [2]. In this
paper, the essentialness property and the proposed theory
aim to quantify the robustness of an arbitrary array
configuration. Based on this, it is possible to design
novel arrays that are as robust as ULAs and have size
O(N2) in the difference coarray [27], [28].

6) Minimum redundancy implies maximal economy, but
the converse is not necessarily true [29, Section III]. For



3

instance, the nested array is maximally economic but its
redundancy is not minimized.

II. REVIEW OF SPARSE ARRAYS

Assume that D monochromatic and far-field sources with
wavelength λ impinge on a one-dimensional sensor array,
where the sensor locations are nλ/2. Here n belongs to an
integer set S. Let θi ∈ [−π/2, π/2] and Ai ∈ C be the DOA
and the complex amplitude of the ith source, respectively. The
array output of the linear sensor array S, denoted by xS, is
modeled as

xS =

D∑
i=1

AivS(θ̄i) + nS ∈ C|S|, (1)

where vS(θ̄i) , [ej2πθ̄in]n∈S is the steering vector and
nS is the noise term. The normalized DOA is defined as
θ̄i , (sin θi)/2 ∈ [−1/2, 1/2]. The notation |S| denotes
the cardinality of the set S. It is assumed that the sources
and the noise are zero-mean and uncorrelated. Namely, if
s , [A1, . . . , AD,n

T
S ]T , then we have E[s] = 0 and

E[ssH ] = diag(p1, . . . , pD, pnI), where pi and pn are the
powers of the ith source and the noise, respectively. Under
these assumptions, the covariance matrix of xS becomes [4]:

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (2)

Next we will define the difference coarray D as follows:
Definition 1: The difference coarray of a linear array S is

defined as D , {n1 − n2 : n1, n2 ∈ S}.
Based on Definition 1, vectorizing (2) and averaging over

duplicated entries lead to the autocorrelation vector xD on the
difference coarray:

xD =

D∑
i=1

pivD(θ̄i) + pne0 ∈ C|D|, (3)

where e0 is a column vector with 1 in the middle (the (|D|+
1)/2-th element) and 0 elsewhere.

Note that (3) can be regarded as the output defined on the
difference coarray, instead of that on the physical array (1). If
sensor locations are designed properly, the size of the differ-
ence coarray can be much larger than the size of the physical
array. In particular, |D| = O(|S|2). This property makes it
possible to develop coarray-based DOA estimators that resolve
more uncorrelated sources than sensors and achieve higher
spatial resolution [4], [5], [7], [8].

Next we will define some useful quantities regarding the
difference coarray. The central ULA segment of D, denoted
by U, is the longest ULA in D that includes the entry 0.
In other words, U , {m : {0,±1, . . . ,±|m|} ⊆ D}. The
smallest ULA containing D is denoted by V , {m ∈ Z :
min(D) ≤ m ≤ max(D)}. An integer h is said to be a hole
in the difference coarray if h ∈ V but h /∈ D. A difference
coarray is hole-free if D = U.

Definition 2: The weight function w(m) of a linear array
S is defined as the number of sensor pairs with coarray index
m. That is, w(m) =

∣∣{(n1, n2) ∈ S2 : n1 − n2 = m}
∣∣.

It is known that the difference coarray plays a significant
role in DOA estimation based on (3). For instance, the
performance of coarray MUSIC relies on U [4], [8], [15], [26].
In addition, the performance of any unbiased DOA estimator
using sparse arrays is known to be limited by the difference
coarray [15], [30], [31].

Now let us review some existing array geometries and their
difference coarrays. First, the ULA with N sensors [1] is
denoted by the set SULA , {0, 1, . . . , N − 1}. The difference
coarray for ULA is DULA = {±0,±1, . . . ,±(N − 1)}. It can
be shown that |DULA| = 2N − 1 = O(N). Next, the nested
array [4] is defined as

Snested , {1, 2, . . . , N1,

(N1 + 1), 2(N1 + 1), . . . , N2(N1 + 1)}, (4)

where N1 and N2 are positive integers. The difference coarray
of the nested array is Dnested = {0,±1, . . . ,±(N2(N1 + 1)−
1)}. In particular, Dnested has no holes. Given N sensors, if
N1 and N2 are approximately N/2, the size of the difference
coarray can be shown to be |Dnested| = O(N2) [4]. Finally,
the coprime array [5] is parameterized by a pair of integers
(M,N) whose greatest common divisor is 1. The sensors for
the coprime array are located at

Scoprime , {0, M, . . . , (N − 1)M,

N, 2N, . . . , (2M − 1)N}. (5)

It can be shown that the difference coarray for the coprime
array has holes [5] and the largest central ULA segment is
Ucoprime = {0,±1, . . . ,±(MN + M − 1)} [6]. Namely,
|Ucoprime| = 2MN + 2M − 1 = O(MN), and there are
|Scoprime| = N + 2M − 1 = O(M +N) physical sensors.

For some sparse arrays, such as minimum redundancy arrays
(MRA) [2], minimum hole arrays (MHA) [32], and Cantor
arrays [33], the sensor locations cannot be readily expressed
in closed-form. The MRA and MHA are typically constructed
using integer programming [2], [32], whereas the Cantor
arrays can be constructed recursively [23], [33]. For the details
of these arrays, the interested readers are referred to [2], [23],
[32] and the references therein.

III. THE ESSENTIALNESS PROPERTY

In this section, we will present the essentialness property,
which is useful in studying the robustness of sparse arrays.

It is well-known that coarray MUSIC is applicable to the
autocorrelation vector on U as long as |U| > 1 (e.g., see
[8]). However, it will be demonstrated in Example 1 that U
is susceptible to sensor failure. For certain array geometries,
even one damaged physical sensor could alter U significantly
and coarray MUSIC may fail.

Example 1: In Fig. 1, Array #1 has S1 = {0, 1, 2, 4, 6} and
D1 = {0,±1, . . . ,±6} = U1. In this case, the coarray MUSIC
algorithm may be used, since |U1| = 13 > 1. Now suppose
the sensor located at 1 fails. The new array configuration
(Array #2) and the associated difference coarray becomes
S2 = {0, 2, 4, 6} and D2 = {0,±2,±4,±6}, respectively. So
the size of the ULA segment of D2 is 1 and the coarray MUSIC
algorithm is not applicable. On the other hand, if the sensor



4

at 2 fails, we have Array #3, which has S3 = {0, 1, 4, 6} and
D3 = {0,±1, . . . ,±6}. Since |U3| = 13 > 1, the coarray
MUSIC algorithm may still be implemented.

Example 1 shows that, the location of the faulty sensors
could modify the difference coarray, which affects the appli-
cability of coarray MUSIC. Note that, even if the difference
coarray changes, there might exist other DOA estimators, such
as compressed sensing based methods [10], [11] and coarray
interpolation [12], [34], that work on the new difference coar-
ray. However, these approaches are typically computationally
expensive and the exact conditions under which the method
works, remain to be explored. For this reason, we only focus
on coarray MUSIC and the integrity of the difference coarray
in this paper and the companion paper [29]. Other scenarios
are left for future work.

We begin with the following definition [23]:
Definition 3: The sensor located at n ∈ S is said to be

essential with respect to S if the difference coarray changes
when sensor at n is deleted from the array. That is, if S =
S\{n}, then D 6= D. Here D and D are the difference coarrays
for S and S, respectively.

The essentialness property was originally introduced in [23]
to study symmetric arrays and Cantor arrays. The main focus
in [23] was the economy of sensors.

In this paper, we focus on the fact that the removal of
(or failure of) an essential sensor makes it difficult to apply
coarray MUSIC. The removal of an inessential sensor, on the
other hand, does not affect the applicability of coarray MUSIC
at all. Our focus in this paper is a study of essentialness,
and its generalization called k-essentialness for arbitrary array
geometries. One potential use of this knowledge is that one can
design essential sensors more carefully so they have smaller
failure probability, although this is not the focus here.

Given an array S, the essential sensors can be found by
searching over all the sensors in S, according to Definition 3.
The knowledge of the weight function w(m) also gives useful
insights about this:

Lemma 1: Suppose that w(m) is the weight function of S.
Let n1 and n2 belong to S. If w(n1 − n2) = 1, then n1 and
n2 are both essential [23].

The proof of Lemma 1 can be found in [23, Lemma 1].
Note that the condition that w(n1 − n2) = 1 is sufficient,
but not necessary for the essentialness of both n1 and n2. For
instance, if S = {0, 1, 2}, then it can be shown that n1 = 1 and
n2 = 0 are both essential with respect to S, due to Definition 3.
However, the weight function satisfies w(n1 − n2) = w(1) =
2.

Lemma 1 serves as a building block of many results in this
paper and the companion paper [29], as we will develop later.

Due to Lemma 1 and the fact that w(max(S)−min(S)) = 1
for any S, we have the following lemma:

Lemma 2: For any array S, the leftmost element (min(S))
and the rightmost element (max(S)) are both essential.

As a result, when studying the essentialness property, it
suffices to consider the elements min(S) < n < max(S),
which simplifies the discussion.

Next we will develop the concept of maximal economy,
which was first presented in [23]. It is formally defined as

(a)
0 1 4 6

Physical array

−6 0 6

Difference coarray

(b)
1 4 6 −5 0 5

(c)
0 4 6 −6 0 6

(d)
0 1 6 −6 0 6

(e)
0 1 4 −4 0 4

Fig. 2. An example of MESA. (a) The original array and its difference coarray.
The array configurations and the difference coarrays after the deletion of (b)
the sensor at 0, (c) the sensor at 1, (d) the sensor at 4, or (e) the sensor at
6, from the original array in (a). Here the sensors are denoted by dots while
crosses denote empty space.

Definition 4: A sensor array S is said to be maximally
economic if all the sensors in S are essential [23].

These arrays are also called maximally economic sparse ar-
rays (MESA) [23]. By definition, none of the sensors in MESA
can be removed without changing the difference coarray. For
instance, the array S = {0, 1, 4, 6} in Fig. 2(a) is maximally
economic, due to the results in Figs. 2(b) (c), (d), and (e).

Note that maximal economy is a property of the entire array,
in contrast to the essentialness property, which is associated
with sensors in an array, as in Definition 3. In this paper, the
general properties will be discussed while in the companion
paper [29, Section III], it will be proved that MESA includes
MRA, MHA, nested arrays with N2 ≥ 2, and Cantor arrays.

A. The k-Essential Family

If there are multiple sensor failures, the influence of these
faulty sensors on the difference coarray becomes more com-
plicated. If two sensors are inessential, it means that either one
of them can be removed without changing the coarray. But if
both sensors are removed, the difference coarray may change.

In the following development, the essentialness property
in Definition 3 will be generalized into the k-essentialness
property to handle multiple sensor failures. To begin with, the
family of all size-k subarrays over an integer set S is defined
as

Sk , {A ⊆ S : |A| = k}. (6)

Then the k-essentialness property is defined as
Definition 5: A subarray A of S is said to be k-essential

with respect to array S if it has the following properties.
1) A has size exactly k. Namely, A ∈ Sk.
2) The difference coarray changes when A is removed from

S.
Note that essentialness, as defined in Definition 3, is equiv-

alent to 1-essentialness (k = 1 in Definition 5). Namely, n ∈ S
is essential if and only if {n} ⊆ S is 1-essential. For brevity,
we will use these terms interchangeably.

Example 2: For instance, let us consider the ULA with 9
sensors, as depicted in Fig. 3(a). It can be shown that {1} is not
1-essential, {2} is not 1-essential, {7} is not 1-essential, {1, 2}
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(a)
0 1 2 3 4 5 6 7 8

Physical array

−8 0 8

Difference coarray

(b)
0 2 3 4 5 6 7 8 −8 0 8

(c)
0 1 3 4 5 6 7 8 −8 0 8

(d)
0 1 2 3 4 5 6 8 −8 0 8

(e)
0 3 4 5 6 7 8 −8 0 8

(f)
0 2 3 4 5 6 8 −8 −6 0 6 8

Fig. 3. Array configurations and the difference coarrays for (a) the ULA with
9 sensors, and the arrays after the removal of (b) 1, (c) 2, (d) 7, (e) {1, 2},
and (f) {1, 7} from (a).

is not 2-essential, but {1, 7} is 2-essential, all with respect to
the array in Fig. 3(a).

It is useful to enumerate all the k-essential subarrays be-
cause these are the subarrays whose failure could make the
coarray MUSIC fail. The collection of these subarrays is called
the k-essential family:

Definition 6: The k-essential family Ek with respect to a
sensor array S is defined as

Ek , {A : A is k-essential with respect to S}. (7)

Here k ∈ {1, 2, . . . , |S|}.
The implication of the k-essential family is as follows.

If an array S and its k-essential family Ek are given, then
for any subarray A of size k, it is possible to determine
whether S and S\A share the same difference coarray, without
actually computing the difference coarray. This can be done
by searching for A in Ek. Furthermore, the size of Ek (i.e., the
number of k-essential subarrays) also quantifies the robustness
of the system, as we shall elaborate in Section IV.

In general, given an array configuration S, the k-essential
family Ek can be uniquely determined, by examining all possi-
ble
(|S|
k

)
subarrays, as in Definition 6. From the computational

perspective, this task becomes intractable for large number of
sensors. In addition, even if Ek can be enumerated, it remains
difficult to retrieve information from Ek, which might have
size up to the order of

(|S|
k

)
.

These challenges will be addressed in two respects. First, the
size of the k-essential family, namely |Ek|, can be expressed or
bounded in terms of simpler things like the number of sensors,
the weight function, and the number of essential sensors, as
presented in Theorem 1. These results lead to the robustness
analysis of array configurations, as we will develop in Section
IV. Second, the retrieval of the information in Ek could be
accelerated by the k-essential Sperner family, which will be
discussed in Section V in detail.

Next, some properties of Ek are discussed in Theorem 1,
whose proof can be found in the next subsection.

Theorem 1: Let Ek be the k-essential family with respect to
a nonempty integer set S (set of sensors), and let the family Sk
be as defined in (6). Let d·e and b·c be the ceiling function and

0 1 2 3 4 5

E1 = {{0}, {5}},
E2 = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {1, 5},

{2, 5}, {3, 5}, {4, 5}, {1, 4}, {2, 3}},
Ek = Sk, for all 3 ≤ k ≤ 6.

Essential Inessential

Fig. 4. The ULA with 6 physical sensors, where the essential sensors and
the inessential sensors are denoted by diamonds and rectangles, respectively.
The k-essential subarrays are also listed.

(a)

−20 −15 −10 −5 0 5 10 15 20
0

6

Coarray location m

w
(m

)

ULA:

(b)

−20 −15 −10 −5 0 5 10 15 20
0

6

Coarray location m

w
(m

)

MRA:

(c)

−20 −15 −10 −5 0 5 10 15 20
0

6

Coarray location m

w
(m

)
MHA:

Fig. 5. The array geometries and the weight functions for (a) the ULA with
6 sensors, (b) the MRA with 6 sensors, and (c) the MHA with 6 sensors. The
sensors are depicted in dots while the empty space is shown in crosses. The
definition of Mq in Property 3 of Theorem 1 leads to M1 = 2,M2 = 2 for
(a), M1 = 22,M2 = 4 for (b), and M1 = 30,M2 = 0 for (c).

the floor function, respectively. Then the following properties
hold true:

1) (|S| − k)|Ek| ≤ (k + 1)|Ek+1| for all 1 ≤ k ≤ |S| − 1.
The equality holds if and only if Ek = Sk.

2) Ek = Sk for all Q ≤ k ≤ |S|, where Q = min{Q1, Q2}.
The parameters Q1 and Q2 are given by

Q1 = |S| − |E1|+ 1, (8)

Q2 =

⌈
|S| −

√
8|S| − 11 + 1

2

⌉
, for |S| ≥ 2. (9)

3) Let Mq = |{m ∈ D : w(m) = q}| be the number of ele-
ments in the difference coarray such that the associated
weight function is q. If |S| ≥ 2, then⌈√

4M1 + 1 + 1

2

⌉
≤ |E1| ≤ min

{
M1 +

⌊
M2

2

⌋
, |S|
}
.

(10)

Example 3: Theorem 1 can be illustrated by the following
concrete examples. Fig. 4 depicts the k-essential family of the
ULA with 6 sensors. First, we obtain that E1 6= S1, |E1| = 2,
and |E2| = 11. If k = 1, then we have (|S| − 1)|E1| = 10
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and (1+1)|E2| = 22, which illustrates Property 1 of Theorem
1. Second, Fig. 4 shows that the ULA with 6 sensors has
|E1| = 2 and Ek = Sk for 3 ≤ k ≤ 6. This is consistent with
Property 2 of Theorem 1, since we have Q1 = 5, Q2 = 3, and
Q = 3 in (8) and (9). Finally, let us demonstrate Property 3
of Theorem 1 using the ULA, the MRA, and the MHA. The
array geometries and the weight functions for these arrays are
depicted in Fig. 5. Furthermore, the parameters M1 and M2

can be found in the caption of Fig. 5. Substituting M1 and
M2 into the lower bound and the upper bound in (10) leads
to

(a) ULA: Lower bound = 2, Upper bound = 3, (11)
(b) MRA: Lower bound = 6, Upper bound = 6, (12)
(c) MHA: Lower bound = 6, Upper bound = 6. (13)

Next let us consider the number of essential sensors (|E1|) for
these arrays. According to Fig. 4, we have |E1| = 2 for the
ULA with 6 sensors, which is in accordance with (11). For
MRA and MHA with 6 sensors, using Definition 5, it can be
numerically shown that they are maximally economic. This
result is consistent with (12) and (13). Note that the maximal
economy of MRA and MHA will be proved in the companion
paper [29].

Remarks on Property 1 of Theorem 1 : This property says
that the size of Ek cannot be arbitrary. In particular, if Ek
becomes Sk, we have the following corollary:

Corollary 1: For any k in 1 ≤ k ≤ |S|−1, if Ek = Sk, then
Ek+1 = Sk+1.

Note that Corollary 1 can be utilized to accelerate the
computation of Ek for all k. Due to Definition 6, Ek can be
evaluated numerically from k = 1, 2, and so on. If Ek is
Sk for some particular k, then the algorithm stops, since it is
guaranteed that E` = S` for k+1 ≤ ` ≤ |S|. Another usage of
Corollary 1 is to study the k-essential family of MESA. Due
to Definition 4 (E1 = S1) and Corollary 1, we obtain

Corollary 2: If S is maximally economic, then Ek = Sk for
all 1 ≤ k ≤ |S|.

Implications of Property 2 of Theorem 1: If the number of
faulty sensors k is sufficiently large (≥ Q where Q is defined
in Property 2 of Theorem 1), then the difference coarray is
guaranteed to change. For instance, if k = |S|, then all the
sensors fail so the difference coarray changes from a nonempty
set to the empty set. The parameter Q depends on Q1 and
Q2, which can be readily computed given the array geometry.
Q1 is the number of inessential sensors plus one while Q2

is purely a function of the number of sensors. In particular,
assume that the number of sensors |S| is large enough. Based
on (9), we have Q2 ≈ |S|−

√
2|S|, implying that, if the number

of operational sensors (|S| − k) is smaller than
√

2|S|, then
Ek = Sk, that is, any subset of k sensors is k-essential with
respect to S.

Note that the condition that Q ≤ k ≤ |S| is only
sufficient but not necessary for Ek = Sk. For instance, if
S = {0, 1, . . . , 15}, then (8) and (9) result in Q1 = 15,
Q2 = 11, so Q = 11. However, in this case, it can be
numerically shown that E10 = S10.

Property 2 of Theorem 1 can also be utilized to characterize
MESA, as in the following corollary, which is readily verified:

Corollary 3: Let S be a sensor array. If 1 ≤ |S| ≤ 3, then
S is maximally economic.

Remarks on Property 3 of Theorem 1 : Eq. (10) is anal-
ogous to Cheeger inequalities in graph theory [35], where
the Cheeger constant is bounded by the expressions based on
the topology of graphs. Here in (10), the number of essential
sensors is analogous to the Cheeger constant. The bounds in
(10) also depend on the weight functions, which depend on
the array geometry.

Another remark is the connection between the difference
coarray and graph theory. It was shown in [36] that the
difference coarray is closely related to numbered undirected
graphs, where each vertex corresponds to a number and the
differences of the numbers on the vertices are assigned to
edges. Interested readers are referred to [36] and the references
therein. In this paper, we will use this concept to prove
Theorem 1.

B. Proof of Theorem 1
The following results are useful in proving Theorem 1:
Proposition 1: Let D and D be the difference coarrays of S

and S, respectively. If S ⊆ S, then D ⊆ D.
The proof of Proposition 1 can be readily seen.

Lemma 3: Assume that A and B are sets such that A ⊆ B ⊆
S. If A ∈ E|A|, then B ∈ E|B|.

Proof: Assume that S1 , S\A and S2 , S\B. The
difference coarrays of S, S1, and S2 are denoted by D, D1,
and D2, respectively. The notation X ⊂ Y denotes that X is
a subset of Y but X 6= Y. We will show that D2 ⊆ D1 ⊂ D.
First, since A ⊆ B ⊆ S, we have S2 ⊆ S1, implying D2 ⊆ D1

due to Proposition 1. Second, due to the definition of the k-
essential family, A ∈ E|A| is equivalent to D1 ⊂ D. Hence
D2 ⊂ D, which means B ∈ E|B|.

Lemma 4: Assume that an array S has difference coarray
D. Then D satisfies 2|S| − 1 ≤ |D| ≤ |S|2 − |S|+ 1.

Proof: Let S be {s1, s2, . . . , sN} such that s1 < s2 <
· · · < sN , where N = |S| is the number of sensors. If
N = 1, then this lemma is trivially true. Next let us consider
N ≥ 2. Since the sensor locations s1, s2, . . . , sN are distinct,
the differences 0,±(s2 − s1),±(s3 − s1), . . . ,±(sN − s1)
are all distinct, which proves the lower bound. For the upper
bound, it is known that there are

(
N
2

)
ways to choose two

distinct numbers from N numbers and each choice leads
to two differences. In addition, the difference 0 is obtained
by choosing the same number twice. Hence |D| is at most
2
(
N
2

)
+ 1 = N2 −N + 1.

Now let us move on to the proof of Theorem 1:
1) Proof of Property 1 of Theorem 1: This proof technique

can be found in [37]. Let us count the number of pairs (A,B) ∈
Ek × Ek+1 such that A ⊂ B. Let L be the number of such
pairs. For every n1 ∈ S but n1 /∈ A, it can be shown that
A ⊂ A ∪ {n1} ⊆ S and therefore A ∪ {n1} ∈ Ek+1, due to
Lemma 3. Since (A,A ∪ {n1}) has |Ek| × |S\A| choices, we
have

L = (|S| − k)|Ek|. (14)

Similarly, it can be shown that B\{n2} ⊂ B ⊆ S, for all B ∈
Ek+1 and n2 ∈ B. However, the statement that B\{n2} ∈ Ek,
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{0} {5}

{0, 1} {0, 2} {0, 3} {0, 4} {0, 5} {1, 5} {2, 5} {3, 5} {4, 5} {1, 4} {2, 3}

10 edges

{0} {1} {2} {3} {4} {5}

22 edges

Layer #1 (E1)

Layer #2 (E2)

Layer #3 (S1)

Fig. 6. An illustration for the main idea of the proof of Property 1 of Theorem
1. Here the array is the ULA with 6 sensors and the k-essential family E1
and E2 are depicted in Fig. 4.

(the converse of Lemma 3), is not necessarily true. Therefore,
by counting the number of n2 and B, we have

L ≤ (k + 1)|Ek+1|, (15)

with equality if and only if B\{n2} ∈ Ek for all B ∈ Ek+1 and
all n2 ∈ B. Combining (14) and (15) proves the inequality. The
equality holds if and only if (A∪{n1})\{n2} ∈ Ek. Therefore
Ek = ∅ or Sk, where ∅ is the empty set. Since min(S) and
max(S) are both essential, Ek is not empty. This proves the
condition for equality.

Example 4: For clarity, the proof of Property 1 of Theorem
1 is demonstrated using an undirected graph in Fig. 6. We
focus on the ULA with 6 sensors and k = 1. The array
geometry and the k-essential family E1 and E2 are depicted in
Fig. 4. The nodes in Fig. 6 are grouped into Layer #1 (elements
in E1), Layer #2 (elements in E2), and Layer #3 (elements in
S1). The numbers in the nodes denote subarrays of the ULA.
We say that the node A in Layer #1 and the node B in Layer #2
are connected, if and only if A is a subset of B. For instance,
the node {0} in Layer #1 and the node {0, 1} in Layer #2
are connected. By definition, the parameter L is exactly the
number of edges between Layer #1 and Layer #2. Since there
are |E1| = 2 nodes in Layer #1 and each node contributes to
|S| − 1 = 5 edges, we have L = 2 × 5 = 10, which is (14).
Next, let us consider the number of edges between Layer #2
and Layer #3. Let B in Layer #2 and C in Layer #3. We say
that there exists an edge between B and C if and only if C
is a subset of B. For example, the node {3, 5} in Layer #2 is
connected to both node {3} and node {5} in Layer #3. As a
result, each node in Layer #2 corresponds to k+ 1 = 2 edges.
Then the number of edges between Layer #2 and #3 becomes
11×2 = 22, which is indeed greater than or equal to L = 10.

2) Proof of Property 2 of Theorem 1: Let us consider any
subarray A ⊆ S such that |A| = k ≥ |S| − |E1| + 1 = Q1.
The cardinality of S\A becomes |S| − k ≤ |E1| − 1 < |E1|,
implying that there is at least one essential element in A. Due
to Lemma 3, A is k-essential, which proves the lower bound
Q1.

The proof for the lower bound Q2 is as follows. Let the
difference coarray of an array S be denoted by D. Suppose
that A ⊆ S and |A| = k. Assume that S , S\A has difference
coarray D. Due to Lemma 4, D and D satisfy

2|S| − 1 ≤ |D| ≤ |S|2 − |S|+ 1, (16)

2(|S| − k)− 1 ≤ |D| ≤ (|S| − k)2 − (|S| − k) + 1. (17)

0 5

(a)

0

1 6

9

1113

(b)

0

1 4

10

1217

(c)

Fig. 7. The directed graph G in the proof of (20), for (a) the ULA with 6
sensors, (b) the MRA with 6 sensors, and (c) the MHA with 6 sensors. The
number of directed edges is (a) M1 = 2, (b) M1 = 22, and (c) M1 = 30.

It is guaranteed that D 6= D, if the range of |D| in (16) and
that of |D| in (17) are disjoint. Therefore, Ek = Sk if

(|S| − k)2 − (|S| − k) + 1 ≤ (2|S| − 1)− 1. (18)

If |S| ≥ 2, then the sufficient condition (18) leads to |S| −
(
√

8|S| − 11 + 1)/2 ≤ k ≤ |S|+ (
√

8|S| − 11− 1)/2. Since
k is an integer, we have k ≥ Q2.

3) Proof of Property 3 of Theorem 1: Let Sq = {n1, n2 :
w(n1 − n2) = q} ⊆ S be the sensors such that the associated
weight function is q. The set Gq collects the essential sensors
in Sq but not in S` for 1 ≤ ` ≤ q − 1. Namely,

Gq = {n : {n} ∈ E1, n ∈ Sq,
n /∈ S`, 1 ≤ ` ≤ q − 1}. (19)

By definition, the number of essential sensors is given by
|E1| =

∑|S|
q=1 |Gq|. Next, it can be shown (see below) that

the size of Gq satisfies:

(
√

4M1 + 1 + 1)/2 ≤ |G1| ≤M1, (20)
0 ≤ |G2| ≤M2/2, (21)
|Gq| = 0, q ≥ 3. (22)

Since |E1| is an integer, |E1| is lower bounded by
d(
√

4M1 + 1 + 1)/2e and upper bounded by M1 + bM2/2c,
which proves this theorem.

Proof of (20): Consider a simple, directed graph G with
vertices G1 and directed edges from n1 to n2 if w(n1−n2) =
1 for all distinct n1, n2 ∈ G1. Due to |S| ≥ 2 and Lemma 2,
both of the distinct elements min(S) and max(S) belong to
G1. Therefore |G1| ≥ 2. By definition, M1 is the number
of directed edges in G. Next the range of M1 is discussed.
Due to (19), each vertex in G corresponds to at least one
directed edge and hence |G1| ≤ M1. On the other hand, the
maximum number of edges in G is 2

(|G1|
2

)
= |G1|(|G1| −

1) [38]. Rearranging M1 ≤ |G1|(|G1| − 1) proves the lower
bound in (20).

Example 5: Let us consider the arrays in Fig. 5 to elaborate
the proof of (20). For instance, in Figs. 4 and 5(a), the ULA
has E1 = {{0}, {5}} and w(5− 0) = 1. In this case, we have
G1 = {0, 5}, due to (19), and the number of directed edges
is M1 = 2, as in Fig. 7(a), which is in accordance with (20).
For the MRA with 6 sensors, Example 3 and Fig. 5(b) show
that all sensors are essential and w(13 − 0) = w(11 − 1) =
w(9 − 6) = 1. Therefore, we obtain G1 = {0, 1, 6, 9, 11, 13}
and M1 = 22, as depicted in Fig. 7(b). These quantities also
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confirm (20). Finally, as in Example 3 and Fig. 5(c), the MHA
with 6 sensors has E1 = S1 and w(1 − 0) = w(12 − 10) =
w(17−4) = 1. Hence G1 = {0, 1, 4, 10, 12, 17} and M1 = 30,
which are consistent with (20). Note that, in this case, the
associated graph G is a complete directed graph, as illustrated
in Fig. 7(c).

Proof of (21): First, it will be shown that, each case of
w(m) = w(−m) = 2 corresponds to at most one element in
G2. Then the upper bound in (21) can be proved since there
are at most M2/2 such cases.

Let (n1, n2), (n′1, n
′
2) ∈ S2 be the only two sensor pairs

such that (n1, n2) 6= (n′1, n
′
2) and n1−n2 = n′1−n′2. We have

w(n1−n2) = w(n2−n1) = 2. Without loss of generality, the
pair (n1, n2) is considered in the following. If n1 ∈ G2, then
the sensor failure at n1 leads to failure of the pairs (n1, n2)
and (n′1, n

′
2) at the same time. Since n1 6= n′1, we have n′2 =

n1 ∈ G2 and n2 + n′1 = 2n1. Similarly, if n2 ∈ G2, then
n′1 = n2 ∈ G2 and n1 + n′2 = 2n2. If both n1 and n2 belong
to G2, then n1 = n2 = n′1 = n′2. These arguments show that,
among n1, n2, n′1, and n′2, there is at most one element in
G2. Therefore, each case of w(m) = w(−m) = 2 leads to at
most one element in G2.

Proof of (22): Let n1 ∈ Gq . Since 3 ≤ q ≤ |S|, there
exist three distinct pairs (n1, n2), (n′1, n

′
2), (n′′1 , n

′′
2) ∈ S2 such

that n1−n2 = n′1−n′2 = n′′1 −n′′2 . The essentialness property
of n1 indicates that, the sensor failure at n1 removes these
three pairs simultaneously. Since n1 6= n′1 and n1 6= n′′1 , we
have n1 = n′2 = n′′2 so n′1 = n′′1 , which disagrees with the
assumption of distinct pairs. Hence |Gq| = 0.

IV. THE k-FRAGILITY

After studying the general properties of the k-essential
family Ek, in this section, we will focus on the size of the k-
essential family. Larger the size, higher is the likelihood that
the difference coarray changes due to failure of k sensors.
For instance, if Ek = Sk, it means that any k faulty sensors
shrink the difference coarray. The notion of fragility is useful
to capture this idea.

Definition 7: The fragility or k-fragility of a sensor array S
is defined as

Fk ,
|Ek|
|Sk|

=
|Ek|(|S|
k

) , (23)

where k = 1, 2, . . . , |S|.
Fk can also be regraded as the probability that the dif-

ference coarray changes, if all failure patterns of size k are
equiprobable. Larger Fk indicates that this array configuration
is less robust, or more fragile to sensor failure, in the sense
of changing the difference coarray.

With these physical interpretations, next we will move on
to some properties of the k-fragility Fk:

Theorem 2: Let S be an integer set denoting the sensor lo-
cations. The k-fragility Fk with respect to S has the following
properties:

1) Fk ≤ Fk+1 for all 1 ≤ k ≤ |S| − 1. The equality holds
if and only if Fk = 1.

2) Fk = 1 for all k such that Q ≤ k ≤ |S|, where Q is
defined in Property 2 of Theorem 1.
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The number of faulty sensors, k
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(b) Nested
(c) CoprimeMore
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(c) F1 = 0.8125
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(b)
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(b)

0 4 8 12 16 20 24 27 32 36 45 54 63
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Fig. 8. The array geometries (top) and the k-fragility Fk (bottom) for (a) the
ULA with 16 sensors, (b) the nested array with N1 = N2 = 8, and (c) the
coprime array with M = 4 and N = 9.

3) min{1, 2/|S|} ≤ Fk ≤ 1 for all 1 ≤ k ≤ |S|.
Proof: Properties 1 and 2 of Theorem 2 follow from

Properties 1 and 2 of Theorem 1, respectively. The lower
bound in Property 3 of Theorem 2 is due to Definition 7,
Lemma 2, and Property 1 of Theorem 2.

Example 6: Fig. 8 demonstrates the k-fragility Fk for (a) the
ULA with 16 sensors, (b) the nested array with N1 = N2 = 8,
as in (4), and (c) the coprime array with M = 4 and N =
9, (5). All these arrays have 16 physical sensors. The array
geometries for these arrays are depicted on the top of Fig. 8.
On the bottom of Fig. 8, the data points of Fk are computed
numerically using Definitions 6 and 7. For all these arrays,
the k-fragility Fk is increasing in k (Property 1 of Theorem
2) and Fk is bounded between 2/|S| = 0.125 and 1 (Property
3 of Theorem 2). As an example, the ULA has |S| = 16,
Q1 = 15, Q2 = 11, and Q = min{Q1, Q2} = 11. Hence we
obtain Fk = 1 for all 11 ≤ k ≤ 16 (Property 2 of Theorem
2), which is consistent with Fig. 8.

Furthermore, smaller Fk indicates that the array configura-
tion tends to be more robust to sensor failures. Among the
arrays considered in Fig. 8, the most robust array in terms of
F1, is the ULA, followed by the coprime array, and finally the
nested array.

Next we will present the k-fragility for MESA. According
to Definition 4, an array S being a MESA is equivalent to
F1 = 1, implying the following corollary due to Theorem 2:

Corollary 4: If S is maximally economic, then Fk = 1 for
all 1 ≤ k ≤ |S|.

For instance, for the nested array with N1 = N2 = 8, the k-
fragility Fk = 1 for all k, as shown in Fig. 8. This numerical
result is consistent with the fact that the nested array with
N2 ≥ 2 is a MESA, as proved in the companion paper [29,
Theorem 1].

As another remark, Theorem 1 of the companion paper
[29] indicates that MRA, MHA, and Cantor arrays are all
maximally economic. Therefore they have Fk = 1 for all k,
like the nested array.
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Fig. 9. An example of the underlying structure of k-essential family Ek . Here
the ULA with 7 sensors, S = {0, 1, . . . , 6}, is considered while the numbers
in each small box denote a subarray. For instance, “0, 1, 2” represents the
subarray {0, 1, 2}.

V. THE k-ESSENTIAL SPERNER FAMILY

The concept of the k-essentialness property makes it possi-
ble to investigate the failure patterns that modify the difference
coarray. However the k-essential family Ek may contain as
many as

(|S|
k

)
subarrays of size k. Hence, in general, it is

challenging to retrieve information from Ek, for large number
of sensors and k. It will be demonstrated through the following
example that there exist simple and compact representations
of the k-essential family:

Example 7: Here we consider the ULA with 7 physical
sensors S = {0, 1, 2, 3, 4, 5, 6}. All of the subarrays over S
with size 1, 2, and 3 are depicted in small boxes in Fig. 9. The
numbers in the small box denote the contents of the subarray.
For instance, “0, 1, 2” represent the subarray {0, 1, 2}. Among
these, the subarrays in Ek are enumerated and shown in shaded
boxes. For example, the boxes within S1 show that 0 and 6
are both essential while 1, 2, 3, 4, and 5 are all inessential.
Next, let us focus on the 12 subarrays in the family E2. It can
be observed that E2 can be partitioned into two parts:

1) Subarrays that contain essential sensors. For instance,
the subarray {0, 1} ∈ E2 satisfies 0 ∈ {0, 1}, where 0

is essential. These subarrays are illustrated in light red
rectangles with sharp corners.

2) Subarrays that do not contain essential sensors. For
example, {1, 5} ∈ E2 but 1 and 5 are both inessential.
This subarray is depicted in a light blue rectangle with
rounded corners.

Furthermore, every subarray in Part 1 of E2 can be obtained
by combining an essential sensor and another sensor in S. For
instance, {0, 1} is constructed from the essential element 0 and
the inessential element 1. As another example, the subarray
{0, 6} ∈ E2 is composed of two essential elements 0 and 6.

The above discussion indicates that E2 can be characterized
by

1) {0}, {6} ∈ E1 (essential sensors), and
2) {1, 5} (those belonging to E2 but not containing essential

sensors),
without listing all the 12 subarrays in E2. This decomposition
results in a compact representation of E2, where only 3
subarrays ({0}, {6}, {1, 5}) are recorded.

Similarly, in Fig. 9, the same technique can be utilized in
E3, which is decomposed into 1) subarrays that include the
elements in E2, as depicted in light red rectangles with sharp
corners, and 2) those that do not, as illustrated in light blue
rectangles with rounded corners. In particular, the second part
of E3 is grouped by a dashed box and denoted by the family E ′3.
This second part of Ek, called the k-essential Sperner family,
is formally defined next. The name comes from Sperner theory
in discrete mathematics [37], [39] as elaborated later.

Definition 8: Let Ek be the k-essential family with respect
to the array S, where the integer k satisfies 1 ≤ k ≤ |S|. The
k-essential Sperner family E ′k is defined as follows:

E ′k ,

{E1, if k = 1, (24a)
{A ∈ Ek : ∀B ∈ Ek−1, B 6⊂ A}, otherwise, (24b)

where B 6⊂ A denotes that B is not a proper subset of A.
Note that the definition E ′1 = E1 is introduced such that E ′k

is well-defined for all 1 ≤ k ≤ |S|.
As one of the advantages, the k-essential Sperner family E ′k

could compress Ek significantly, which would be quite useful
especially when the size of Ek is huge. The example in Fig. 9
displays the k-essential Sperner family E ′1, E ′2, and E ′3. It can
be deduced that the sizes of the k-essential Sperner family
|E ′1| = 2, |E ′2| = 1, and |E ′3| = 5 are much smaller than those
of the k-essential family |E1| = 2, |E2| = 12, and |E3| = 33.

Definition 9 shows that {E ′1, E ′2, . . . , E ′|S|} can be
uniquely determined from {E1, E2, . . . , E|S|}. Conversely,
if {E ′1, E ′2, . . . , E ′|S|} is given, then {E1, E2, . . . , E|S|} can be
perfectly reconstructed due to the following lemma:

Lemma 5: Let E ′k be the k-essential Sperner family of S
with 1 ≤ k ≤ |S|. Then the k-essential family Ek satisfies

Ek =


E ′1, if k = 1, (25a)
{A ∪ B : A ∈ E ′`, 1 ≤ ` ≤ k,

B ⊆ S\A, |B| = k − `} , otherwise. (25b)

For instance, as in Fig. 9, the 3-essential subarray {1, 2, 5}
can be decomposed into A ∪ B, where A = {1, 5} ∈ E ′2
and B = {2} ⊆ S\A = {0, 2, 3, 4, 6}. Another example is
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{0, 3, 6}, which corresponds to either A = {0} ∈ E ′1,B =
{3, 6} ⊆ S\A or A = {6} ∈ E ′1,B = {0, 3} ⊆ S\A.

Proof of Lemma 5: Eq. (25a) follows from (24a) directly,
so it suffices to prove (25b). Let C0 ∈ Ek. If C0 ∈ E ′k, then
C0 is trivially included in (25b). If C0 6∈ E ′k, due to Definition
8, there exists C1 ∈ Ek−1 such that C1 ⊂ C0. The same
argument for C1 and Ek−1 shows that either C1 ∈ E ′k−1 or
C1 is a superset of some C2 ∈ Ek−2. Repeating these steps
show that C0 is a superset of some elements in E ′`. Next, let us
consider the right-hand side of (25b). Since A ⊆ A ∪ B ⊆ S
and A ∈ E ′` ⊆ E`, we have A ∪ B ∈ E|A∪B| = Ek, due to
Lemma 3.

Another advantage of the k-essential Sperner family is that
the k-essentialness property of a given subarray A ⊆ S, can
be readily determined from the k-essential Sperner family,
without computing the difference coarray or searching within
Ek. This can be done by iterating over the elements in E ′k from
k = 1 to k = |S|. The subarray A is reported to be k-essential
if there exists B ⊆ A for some B ∈ E ′` and 1 ≤ ` ≤ k. As
an example, we know that {4, 5, 6} in Fig. 9 is 3-essential
since {0} 6⊆ {4, 5, 6} and {6} ⊆ {4, 5, 6}, where only two
comparisons are needed. On the other hand, if we search for
{4, 5, 6} within the box of E3 from top to bottom and then
from left to right, then 28 comparisons are required. As another
example, {1, 3, 4} can be concluded not to be 3-essential with
8 comparisons using E ′1, E ′2, E ′3, but with 33 comparisons using
E3. Empirically, the reduction in the number of comparisons
is huge especially for large number of sensors and large k.
However, the precise analysis of the complexity is beyond the
scope of this paper and is left for future work.

The term Sperner originates from the Sperner theory in
discrete mathematics [37], [39]. A Sperner family is a family
of sets in which none of the elements is a subset of the other,
which is formally defined as

Definition 9: A family of sets F is a Sperner family if
A 6⊂ B for all A,B ∈ F [37].

With Definition 9, we will show an explicit connection
between the k-essential Sperner family and the Sperner family,
as indicated in Lemma 6:

Lemma 6: The union of any selection of the k-essential
Sperner family {E ′1, E ′2, . . . , E ′|S|} is a Sperner family. Namely,⋃
k∈I E ′k is a Sperner family, where I ⊆ {1, 2, . . . , |S|}.

Proof: Let A,B ∈
⋃
k∈I E ′k such that A ⊂ B. Here A ⊂ B

indicates that A is a subset of B and A 6= B. If A,B ∈ E ′k for
some k ∈ I, then |A| = |B| = k, violating A ⊂ B. Assume
that A ∈ E ′k1 and B ∈ E ′k2 for some k1, k2 ∈ I and k1 < k2.
Let C be a subset of B\A with size |C| = k2 − k1 − 1. Since
A ∈ E ′k1 ⊆ Ek1 and A ⊆ A ∪ C ⊆ S, Lemma 3 indicates that,
A∪C ∈ Ek2−1 . However A∪C ⊂ B, contradicting (24b).

As an example of Lemma 6, if I = {2, 3} and E ′k is given
in Fig. 9, then E ′2 ∪ E ′3 contains {1, 5}, {1, 2, 3}, {1, 2, 4},
{2, 3, 4}, {2, 4, 5}, and {3, 4, 5}, where none of the elements
in E ′2∪E ′3 is a superset of another. Hence E ′2∪E ′3 is a Sperner
family.

Furthermore, Lemma 6 connects the essentialness property,
the fragility, and the k-essential (Sperner) family, with the
well-established results in Sperner theory, such as Sperner’s
theorem [39], the Lubell-Yamamoto-Meshalkin inequality (the

Ek = Sk

Ek+1 = Sk+1

E ′k = ∅

E ′k+1 = ∅

Corollary 1 (a)

(b)

(c)

(d) (e)
Lemma 7

(f)

(g)

(h)

Fig. 10. The relation between Ek = Sk and E ′k = ∅. Here solid arrows
represent logical implication while arrows with red crosses mean that one
condition does not necessarily imply the other.

LYM inequality) [40]–[43], and the Ahlswede-Zhang identity
(the AZ identity) [44]. Interested readers are referred to [37]
for more details.

Similar to Corollary 1, the following show the relations
between the equality Ek = Sk and the emptiness of E ′k.
These results will be quite useful in studying the probability
that the difference coarray changes in Section VI and the k-
essentialness property for several array configurations in the
companion paper [29].

Lemma 7: Let ∅ denote the empty set. Assume that the
integer k satisfies 1 ≤ k ≤ |S|−1. If Ek = Sk, then E ′k+1 = ∅.

Lemma 8: Let E ′k be the k-essential Sperner family of an
array S. Then E ′k = ∅ for all Q + 1 ≤ k ≤ |S|, where Q is
defined in Property 2 of Theorem 1.

These lemmas can be proved readily according to Definition
8, Property 2 of Theorem 1, and Lemma 7.

Fig. 10 summarizes the logical relation between Ek = Sk
and E ′k = ∅ in detail. Here Corollary 1 and Lemma 7 are
denoted by solid arrows while arrows with red crosses (Cases
(a) to (h)) indicate that one condition does not imply the other.
The counter examples for Cases (a) to (h) are listed as follows.
If S = {0, 1, 3, 4, 5, 6, 7, 8, 10}, then the k-essential family and
the k-essential Sperner family become

E1 6= S1, E ′1 = {{0}, {1}, {8}, {10}} 6= ∅, (26)
E2 6= S2, E ′2 = ∅, (27)
E3 6= S3, E ′3 = {{3, 5, 6}, {4, 6, 7}} 6= ∅, (28)
E4 = S4, E ′4 = {{3, 4, 5, 7}} 6= ∅, (29)
E5 = S5, E ′5 = ∅. (30)

Counter examples for Cases (a) to (h) can be found in (26) to
(30). For instance, E4 = S4 but E3 6= S3, which contradicts
(a). Furthermore, the case of E4 and E ′4 contradicts (b); the
instance of E2 and E ′2 contradicts (c). The example of E ′1, E ′2,
and E ′3 disapproves Cases (d) and (e) while E1, E ′2, and E3
contradict Cases (f) and (g). Case (h) has a counter example
of E ′4 and E5. These examples confirm that Cases (a) to (h)
are not necessarily true.

VI. ROBUSTNESS ANALYSIS FOR RANDOM SENSOR
FAILURES

In this section, we assume that the sensors in an array have
a certain probability of failure, and derive an expression for
the probability that the difference coarray will change due
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to this failure. We will show that the concepts introduced in
this paper, such as k-essentialness and fragility, play a crucial
role in this analysis. As explained earlier, the importance of
this analysis arises from the fact that the robustness of the
difference coarray (to sensor failures) is crucial for the success
of algorithms such as coarray MUSIC.

Assumptions: In this section, let a sensor array be S and
the difference coarray be D. Assume that each sensor fails
independently with probability p. After the removal of faulty
sensors, the array and the difference coarray are denoted by
S and D, respectively. Then the probability that D 6= D is
denoted by

Pc , Pr[D 6= D]. (31)

An array is more robust, as Pc is close to 0. This property can
also be used in comparing the robustness among several array
configurations.

Note that Pc is different from the k-fragility Fk, even
though they both correspond to the concept of probability.
As presented in Section IV, if there are k faulty sensors in
the array and all possible failure patterns are equiprobable,
the k-fragility Fk can be interpreted as the probability that the
difference coarray changes. On the other hand, Pc denotes
the probability that the difference coarray changes, due to
any possible sensor failure pattern. Furthermore, Fk depends
purely on the array geometry while Pc depends on the array
geometry and the failure probability of each sensor. In practice,
Pc is more useful since 1) it does not require the information
of the number of faulty sensors and 2) the parameter p, which
determines the quality and the cost of the sensing device, can
be designed based on the budget.

Next, we will present a closed-form relation between Pc
and Fk. Let A ⊆ S be the set of faulty sensors. Assume that
S , S\A and the associated difference coarray D. Due to
Definition 5, the difference coarray changes (D 6= D) if and
only if there exist 1 ≤ k ≤ |S| and A ∈ Ek such that 1) all
the elements in A ∈ Ek fail and 2) all the elements in S are
operational. Summing over all possible k and A leads to the
following expression of Pc:

Pc =

|S|∑
k=1

∑
A∈Ek

Pr

( ⋂
n1∈A

(n1 fails)

)
∩

 ⋂
n2∈S

(n2 fails)c


=

|S|∑
k=1

∑
A∈Ek

[ ∏
n1∈A

Pr [n1 fails]

][ ∏
n2∈S

(1− Pr [n2 fails])

]

=

|S|∑
k=1

|Ek|pk(1− p)|S|−k, (32)

where the second equation is due to the independence of sensor
failures. The complement of an event F is denoted by Fc.
Substituting Definition 7 into (32) leads to

Pc =

|S|∑
k=1

(
|S|
k

)
Fkp

k(1− p)|S|−k, (33)

where Fk is the k-fragility of S.

Note that (33) shows the explicit relation between Fk and
Pc, which holds for any array configuration S. Here each term
in (33) has two contributions: Fk and

(|S|
k

)
pk(1− p)|S|−k. Fk

depends purely on the array geometry while
(|S|
k

)
pk(1−p)|S|−k

relies on k, the number of sensors |S|, and p. This observation
means that, for a fixed number of sensors and a fixed p, it is
possible to reduce Pc by designing new array geometries with
reduced Fk. On the other hand, for a fixed array configuration,
Fk is uniquely determined. In this case, it can be shown that
Pc decreases with p, as p is sufficiently small. Namely, to
reduce Pc, we can deploy sensing devices with small p.

However, the right-hand side of (33) is not computationally
tractable. For instance, if k is approximately |S|/2, the com-
plexity for evaluating Fk is around

( |S|
|S|/2

)
, which becomes

computationally expensive for large |S|. Even so, the behavior
of Pc can still be analyzed based on the following theorem:

Theorem 3: The probability that the difference coarray
changes satisfies max{L1, L2} ≤ Pc ≤ min{U1, U2, 1},
where L1, U1, L2, and U2 are given by

L1 = 1− (1− p)|S| −
(

1− 2

|S|

)Q−1∑
k=1

(
|S|
k

)
pk(1− p)|S|−k,

(34)

U1 = 1− (1− p)|S|, (35)

L2 = 1− (1− p)|E1|, (36)

U2 = 1− (1− p)|E1| + (1− p)|E1|
Q∑
k=2

|E ′k|pk. (37)

Here the parameter Q is given in Property 2 of Theorem 1.
The notation Ek and E ′k represent the k-essential family and
the k-essential Sperner family for the sensor array S.

Proof: First we will show that L1 ≤ Pc ≤ U1. Property
3 of Theorem 2 indicates that Pc is upper bounded by∑|S|
k=1

(|S|
k

)
pk(1− p)|S|−k = 1−(1−p)|S| = U1, which proves

(35). For the lower bound, if |S| = 1, then it can be shown that
Pc = p = L1. If |S| ≥ 2, then Properties 2 and 3 of Theorem
2 imply that Fk ≥ 2/|S| for k = 1, 2, . . . , Q− 1 and Fk = 1
otherwise. Substituting these relations into (33) proves (34).

The proof of Eqs. (36) and (37) is as follows. Let the sensor
array be S and the k-essential Sperner family be E ′k. Assume
that each sensor fails independently with probability p. Let B
be the set of faulty sensors. Assume that S , S\B and its
difference coarray is denoted by D. Since a subarray B is k-
essential if and only if B is a superset of some elements in
E ′` for some 1 ≤ ` ≤ k, as in (25b), it suffices to consider
all elements in E ′1, E ′2, . . . , E ′|S| and the probability that D 6= D
becomes

Pc = Pr
[
D 6= D

]
= Pr

 |S|⋃
k=1

⋃
Ak∈E′k

F(Ak)


= Pr

[( ⋃
A1∈E′1

F(A1)

)
︸ ︷︷ ︸

Event G1

∪

( |S|⋃
k=2

⋃
Ak∈E′k

F(Ak)

)
︸ ︷︷ ︸

Event G2

]
, (38)

where F(Ak) , ∩n∈Ak
(n fails) denotes the event in which

all the elements in Ak fail. Since the event G1 involves
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Fig. 11. The probability that the difference coarray changes Pc and its lower
bounds and upper bounds for the ULA with 12 sensors.

only the essential elements and G2 are associated with
inessential sensors, G1 and G2 are independent. Namely,
Pr[G1 ∩ G2] = Pr[G1]Pr[G2]. Hence Pr[G1 ∪ G2] = 1 −
Pr[Gc1] + Pr[Gc1]Pr[G2], where Gc1 is the complement of the
event G1. The probability Pr[Gc1] can be simplified as

Pr[Gc1] = Pr

[ ⋂
A1∈E′1

(F(A1))c

]
= (1− p)|E1|. (39)

Applying the union bound of Pr[G2] leads to

0 ≤ Pr[G2] ≤
|S|∑
k=2

∑
Ak∈E′k

Pr[F(Ak)] =

|S|∑
k=2

|E ′k|pk. (40)

Substituting (39), (40), and Lemma 8 into Pc = 1−Pr[Gc1] +
Pr[Gc1]Pr[G2] proves (36) and (37).

It can be observed that all these expressions (34) to (37) do
not require the complete knowledge of Fk. For instance, U1

depends only on the probability of single sensor failure p and
the number of sensors, while L2 requires p and the size of E1.
The bounds L1 and U2 are functions of the parameter Q, as
given in Property 2 of Theorem 1. If Q is much smaller than
the number of sensors, then U2 can be evaluated efficiently
with the first few E ′k.

Example 8: Next we will demonstrate an example for the
bounds in Theorem 3. Fig. 11 shows the curves of Pc, L1,
U1, L2, and U2 for the ULA with N = 12 physical sensors,
as a function of p. First it can be observed that the bounds
L1 and U1 are close to Pc for p ≥ 0.8 while for small p, the
bounds L2 and U2 are tighter than L1 and U1. Second, in this
example, the bound U2 is greater than 1 for p ≥ 0.5, which
becomes a trivial upper bound for Pc. This is because the term∑Q
k=2 |E ′k|pk in (37) is derived from the union bound of the

probability, which could be greater than 1.
The bounds in Theorem 3 also makes it possible to derive

approximations for Pc. For fixed number of sensors, if p �
1/|S|, then the high-order terms

∑Q
k=2 |E ′k|pk in (37) become

negligible, since |E ′k| ≤
(|S|
k

)
= O(|S|k). Then we have L2 ≤

Pc ≤ U2 ≈ L2. Therefore, for any array geometry S and
p� 1/|S|, the probability that the difference coarray changes
can be approximated by

Pc ≈ L2 = 1− (1− p)|E1| ≈ |E1|p, (41)

10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

Probability of failure for each sensor, p
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c
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(b) Nested, Exp.
(c) Coprime, (33)
(c) Coprime, Exp.
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(c) Coprime
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Fig. 12. The dependence of the probability Pc that the difference coarray
changes, on the probability of single sensor failure p for (a) the ULA with
12 sensors, (b) the nested array with N1 = N2 = 6, and (c) the coprime
array with M = 4 and N = 5. Here the essential sensors (diamonds)
and the inessential sensors (squares) are depicted on the top of this figure.
Experimental data points (Exp.) are averaged from 107 Monte-Carlo runs.
The approximations of Pc are valid for p� 1/12 due to (41).

since (1 + x)N ≈ 1 + Nx for |x| � 1. Eq. (41) shows that,
for small p, the probability Pc is approximately linear in p
with slope |E1|. This result can be verified through the curve
of Pc in Fig. 11, where the ULA has |E1| = 2, as proved in
the companion paper [29, (26)].

Note that (41) holds for any array configuration S, which
indicates that for the same p � 1/|S|, smaller |E1| leads to
smaller Pc. For instance, due to [29, (26)], the ULA with
N ≥ 4 physical sensors always has Pc ≈ 2p, even for large N .
However this does not hold for MESA, since MESA with N
sensors own Pc ≈ Np, which grows linearly with N . Eq. (41)
can also be expressed as Pc ≈ (|S|p)F1. This indicates that,
if the number of sensors |S| and the sensor failure probability
p are fixed, then Pc is proportional to fragility F1.

Example 9: Fig. 12 demonstrates a numerical example
for Pc across various array configurations with 12 sensors,
such as the ULA with 12 sensors, the nested array with
N1 = N2 = 6, as in (4), and the coprime array with M = 4
and N = 5, as in (5). The probability that the difference
coarray changes is first evaluated based on (33), as depicted
in solid, dashed, and dotted curves on the bottom of Fig.
12. Next, these probabilities are also averaged empirically
from 107 Monte-Carlo runs and each run corresponds to an
independent realization of the array geometry with sensor
failure probability p. The results based on Monte-Carlo runs
are marked in empty circles, crosses, and empty squares on
the bottom of Fig. 12.

First, it can be deduced that the experimental results match
(33) for all these array configurations. For the same p and the
same number of physical sensors, by comparing the values of
Pc, the most robust array geometry is the ULA, followed by
the coprime array, and finally the nested array. Furthermore,
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for p � 1/|S| = 1/12, the approximations for Pc in Fig. 12
become Pc ≈ 2p for ULA, Pc ≈ 12p for the nested array, and
Pc ≈ 9p for the coprime array. These results are consistent
with the approximations in (41).

The results in Fig. 12 and the approximations in (41) hold
true for more sensors. For instance, let us consider the ULA
with 24 sensors, the nested array with N1 = N2 = 12, and
the coprime array with M = 7 and N = 11. All these
arrays have 24 physical sensors, and their Pc can be shown to
behave similarly to those in Fig. 12. In particular, Pc can be
approximated by 2p for ULA, 24p for the nested array, and
17p for the coprime array, when p� 1/24.

VII. CONCLUDING REMARKS

In this paper, we presented a theory to quantify the robust-
ness of difference coarrays with respect to sensor failures. We
began by defining the (k-)essentialness property and the k-
essential family. Based on these, the k-fragility characterizes
the likelihood that the difference coarray changes, while the
k-essential Sperner family offers a compact representation of
the k-essential family. Under mild assumptions, the proposed
theory explained the behavior of the probability that the dif-
ference coarray changes, which is crucial for the functionality
of coarray MUSIC.

In the companion paper [29], we will concentrate on the
relation between the presented theory and the array geometry.
The closed-form expressions of the k-essential Sperner family
for ULA, MRA, MHA, Cantor arrays, nested arrays, and
coprime arrays, will be derived to provide insights into the
importance of each sensor and the robustness of these arrays.

In the future, it is of considerable interest to investigate
the interplay between the DOA estimation performance and
coarray robustness, which may find applications in practical
systems using sparse arrays. Another future topic is to quantify
the robustness of sparse arrays with respect to the central
ULA segment in the difference coarray, which affects the
applicability of DOA estimators such as coarray MUSIC.

As a final remark, the essentialness property can be refor-
mulated to study the robustness of sparse arrays in various
problems. For instance, the performance of MIMO radar [45]
depends on the sum coarray while the 2qth-order difference
coarray [46] plays a critical role in DOA estimation with
2qth-order cumulants. In addition, the proposed theory can be
extended to two-dimensional sparse arrays and their difference
coarrays, which are capable of resolving both the azimuth and
the elevation of the source. It will be interesting to investigate
the robustness of the coarray in these scenarios.
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