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Abstract—In array processing, sparse arrays are capable of
resolving O(N2) uncorrelated sources with N sensors. Sparse
arrays have this property because they possess uniform linear
array (ULA) segments of size O(N2) in the difference coarray,
defined as the differences between sensor locations. However,
the coarray structure of sparse arrays is susceptible to sensor
failures and the reliability of sparse arrays remains a significant
but challenging topic for investigation. In the companion paper,
a theory of the k-essential family, the k-fragility, and the k-
essential Sperner family were presented not only to characterize
the patterns of k faulty sensors that shrink the difference coarray,
but also to provide a number of insights into the robustness
of arrays. This paper derives closed-form characterizations of
the k-essential Sperner family for several commonly used array
geometries, such as ULA, minimum redundancy arrays (MRA),
minimum holes arrays (MHA), Cantor arrays, nested arrays,
and coprime arrays. These results lead to many insights into the
relative importance of each sensor, the robustness of these arrays,
and the DOA estimation performance in the presence of sensor
failure. Broadly speaking, ULAs are more robust than coprime
arrays, while coprime arrays are more robust than maximally
economic sparse arrays, such as MRA, MHA, Cantor arrays,
and nested arrays.

Index Terms—Sparse arrays, difference coarrays, the k-
essentialness property, the k-fragility, the k-essential Sperner
family.

I. INTRODUCTION

Sparse arrays [1]–[4], such as minimum redundancy arrays
(MRA) [2], nested arrays [3], coprime arrays [4], and their
generalizations [5], can resolve O(N2) uncorrelated sources
using N physical elements. This O(N2) property arises
because the difference coarray, defined as the differences
between the sensor locations, possesses anO(N2)-long central
uniform linear array (ULA) segment. However, as far as the
system reliability is concerned [6], [7], in the past, sparse
arrays were considered not to be robust to sensor failures,
due to empirical observations. More details on this argument
can be found in [8], [9] and the references therein.

In the companion paper [9], the concepts such as the k-
essential family, the k-fragility, and the k-essential Sperner
family were proposed to assess the robustness of difference
coarrays of sparse arrays to sensor failures. A subarray of
size k is said to be k-essential if its deletion changes the
difference coarray. All these k-essential subarrays constitute
the k-essential family. With this tool, the robustness can be
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quantified by the k-fragility, or simply fragility, which ranges
from 0 to 1. An array is more robust or less fragile if the
fragility is closer to 0. However, from the computational
perspective, the size of the k-essential family can be as large
as
(
N
k

)
, where N is the number of physical elements. It was

shown in the companion paper [9] that the k-essential family
can be compactly represented by the k-essential Sperner fam-
ily. With these tools, the system reliability can be quantified by
the probability that the difference coarray changes, Pc, under
the assumption of random sensor failures. Many insights into
the interplay between the proposed theory and Pc were also
offered in the companion paper [9].

The main contribution of this paper is to analyze the
robustness of several commonly used array configurations,
such as the ULA [1], MRA [2], minimum hole arrays (MHA)
[10], Cantor arrays [11], [12], nested arrays [3], and coprime
arrays [4], based on the theory in the companion paper [9].
These arrays are widely used in various topics of array signal
processing, such as beamforming [1], [3], [11], [13], [14] and
DOA estimation [3]–[5], [15]. However the robustness of the
difference coarrays of these arrays to sensor failures remains
an open but significant topic in this field. It will be shown in
this paper that MRA, MHA, Cantor arrays, and nested arrays
are maximally economic, that is, any sensor failure changes
the difference coarray. It will also be proved that the fragility
and Pc for maximally economic sparse arrays (MESA) are the
largest among all arrays with a fixed number of sensors. These
theoretical results confirm the empirical observation that MRA
are not robust to sensor failures, in terms of the preservation
of the difference coarray.

In this paper, the closed-form expressions of the k-essential
Sperner family for ULA and coprime arrays are also estab-
lished with detailed derivations. These expressions lead to
a number of contributions. First, it can be proved that, for
sufficiently large number of sensors, ULA are more robust
than MESA and coprime arrays (in terms of the fragility),
which is in accordance with the observation that sparse arrays
are in general less robust than ULA. Furthermore, the explicit
expressions of the k-essential Sperner family for the coprime
array allow one to construct arrays with fewer sensors but
with the same difference coarray as the coprime array. Note
that this topic was previously addressed in the thinned coprime
array [16], where a specific selection of sensors is removed
from the coprime array. Using the expressions we propose
in this paper, it can be shown that there exist other array
geometries that achieve the same difference coarray as the
thinned coprime array.

It is also demonstrated through numerical examples that,
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the DOA estimation performance of arrays is influenced by the
trade-offs between the size and the robustness of the difference
coarray. For this, a number of sparse arrays are compared, with
a fixed failure probability p for each sensor, and fixed number
of sensors. It will be deduced in the examples that, for small
p, the MRA has the best DOA estimation performance, due to
the largest difference coarray, while for large p, the ULA owns
the best performance because of its robustness. An interesting
observation is that, for moderate p, the coprime array could
outperform the ULA, the MRA, and the nested array, since
the coprime array strikes a balance between the size and the
robustness of the difference coarray.

In the literature, more general sparse array configurations
have been reported. For instance, the generalized coprime
arrays [5] have recently received considerable attention. They
extend coprime arrays by two operations: compressions and
displacements. In principle, the robustness of other array
configurations could be analyzed using the theory in the
companion paper [9], but the details would be very involved.
Due to page limitations, the robustness analysis of these arrays
is left for future.

Paper outline: Section II gives a quick review of some of
the key results from the companion paper [9]. Sections III,
IV, and V study the k-essential Sperner family for MESA,
ULA, and coprime arrays, respectively, along with examples,
discussions, and proofs. The performance of these arrays in
the presence of sensor failure is demonstrated in Section VI
while Section VII concludes this paper. Parts of the results
were presented in a conference paper [12].

II. REVIEW OF THE ESSENTIALNESS PROPERTY

Consider a linear array whose sensors are located at nd.
Here n belongs to an integer set S and d is half of the
wavelength of the incoming monochromatic, far-field, and
uncorrelated sources. Under these assumptions, the source
directions can be resolved according to the difference coarray
and the weight function [3], [4], [17]–[19]:

Definition 1: The difference coarray of the sensor array S
is defined as D , {n1 − n2 : n1, n2 ∈ S}.

Definition 2: The weight function w(m) of a linear array
S is defined as the number of sensor pairs with coarray index
m. That is, w(m) =

∣∣{(n1, n2) ∈ S2 : n1 − n2 = m}
∣∣.

Furthermore, the central ULA segment of the difference
coarray, denoted by U, is defined as the largest ULA in D that
contains the element 0, i.e., U , {m : {0, 1, . . . , |m|} ⊆ D}.

Based on this concept, the companion paper [9] studies the
influence of sensor failures on the difference coarray D, as we
will review next:

Definition 3: The sensor located at n ∈ S is said to be
essential with respect to S if the difference coarray changes
when sensor at n is deleted from the array. That is, if S =
S\{n}, then D 6= D. Here D and D are the difference coarrays
for S and S, respectively.

Note that the essentialness property in Definition 3 assumes
one faulty element at a time. A more realistic situation is the
case of multiple sensor failures.

Definition 4: The subarray of size k over an integer set S
is defined as Sk , {A ⊆ S : |A| = k}.

Definition 5: A subarray A is said to be k-essential if 1)
A ∈ Sk, and 2) the difference coarray changes when A is
removed from S.

Definition 6: The k-essential family Ek with respect to a
sensor array S is defined as

Ek , {A : A is k-essential with respect to S}, (1)

where k = 1, 2, . . . , |S|.
With this tool, the robustness of a linear array can be

quantified by the k-fragility, or simply the fragility:
Definition 7: The fragility or k-fragility of a sensor array S

is defined as

Fk ,
|Ek|
|Sk|

=
|Ek|(|S|
k

) , (2)

where k = 1, 2, . . . , |S|.
It was shown in the companion paper [9] that Fk is an

increasing function of k and min{1, 2/|S|} ≤ Fk ≤ 1. As Fk

becomes closer to 1, the array S is less robust (or more fragile)
to sensor failures in the sense of changing the difference
coarray.

Based on the underlying structure of Ek, the k-essential
family Ek can be compactly represented by the k-essential
Sperner family E ′k [9]:

Definition 8: Let Ek be the k-essential family with respect
to the array S, where the integer k satisfies 1 ≤ k ≤ |S|. The
k-essential Sperner family E ′k is defined as follows:

E ′k ,

{E1, if k = 1, (3a)
{A ∈ Ek : ∀B ∈ Ek−1, B 6⊂ A}, otherwise, (3b)

where B 6⊂ A denotes that B is not a proper subset of A. Here
P being a proper subset of Q means that P is a subset of Q
and P 6= Q.

Finally, let us consider the case where each element in
a linear array S fails independently with probability p [9].
Assume that the faulty sensors constitute a set A. The set
S , S\A denotes the set of the operational sensors. The
difference coarrays of S and S are expressed as D and D,
respectively. As discussed in the companion paper [9], the
system reliability can be studied through the probability that
the difference coarray changes, namely, Pc , Pr[D 6= D]. It
was shown in [9, (33)] that Pc can be expressed in terms of
the number of sensors, the probability p, and the k-fragility
Fk.

The main contribution of this paper is to apply the above-
mentioned theory to several commonly used array geometries,
such as minimum redundancy arrays (MRA), minimum hole
arrays (MHA), nested arrays, Cantor arrays, uniform linear
arrays (ULA), and coprime arrays, to assess the robustness. In
what follows, the closed-form expressions of the k-essential
Sperner family E ′k, the k-fragility Fk, and the probability
Pc that the difference coarray changes will be investigated
comprehensively.

III. MAXIMALLY ECONOMIC SPARSE ARRAYS

We begin with the definition of maximally economic sparse
arrays (MESA):
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Definition 9: A sensor array S is said to be maximally
economic if all the sensors in S are essential [12].

The definition was introduced in [12] to study the economy
of the number of sensors in S. However, this paper and the
companion paper [9] concentrate on the robustness analysis of
MESA with respect to the difference coarray.

Definition 9 is actually equivalent to the statement E1 =
S1. This result leads to the following lemma [9, Corollary 2,
Corollary 4, Lemma 7]:

Lemma 1: Let S be a MESA, as defined in Definition 9.
Then the k-essential family Ek, the k-fragility Fk, and the
k-essential Sperner family E ′k for S are given by

Ek = Sk, Fk = 1, k = 1, 2, . . . , |S|, (4)
E ′1 = S1, E ′k = ∅, k = 2, 3, . . . , |S|, (5)

where Sk is defined in Definition 4 and ∅ denotes the empty
set.

Due to Lemma 1, MESA are the least robust arrays in terms
of the k-fragility Fk, since they own the largest k-fragility
Fk among all array configurations. Furthermore, according to
Lemma 1, the condition that E ′k = ∅ for all 2 ≤ k ≤ N is
necessary, but not sufficient for S being maximally economic.
As an example, the array S = {0, 1, 2, 3, 4, 12, 14} has E ′k = ∅
for all 2 ≤ k ≤ 7. But E ′1 = S1\{{2}} and S is not maximally
economic.

The probability Pc that the difference coarray changes can
also be characterized in closed form. In view of Lemma 1,
Eq. [9, (33)] simplifies to

Pc = 1− (1− p)|S| for MESA. (6)

Eq. (6) depends only on the number of sensors in MESA,
instead of the sensor locations. It was shown in [9, Theorem
3] that, for a fixed number of sensors, MESA has the largest
Pc. This observation is in accordance with the statement that
MESA are the least robust or the most fragile arrays among all
possible array geometries, as seen from our earlier discussion
on k-fragility.

The above discussions do not assume a specific array
geometry. One of the main contributions of this paper is the
following theorem:

Theorem 1: The MESA family includes minimum redun-
dancy arrays (MRA), minimum hole arrays (MHA), nested
arrays with N2 ≥ 2, and Cantor arrays.

Example 1: The definitions of these arrays and the proofs
can be found later in Sections III-A to III-D. In this example,
let us consider the geometries and the weight functions of
MRA, MHA, nested arrays, and Cantor arrays with 8 physical
sensors, as illustrated in Fig. 1. Here the essential sensors are
depicted in red diamonds, empty space is shown in crosses,
and the weight functions are illustrated in blue dots. Due to
the symmetry of the difference coarray, only the nonnegative
portion of the weight function is depicted. By definition, the
difference coarray is the support of the weight function, as in
Definition 1 and 2.

It can be observed that the size of the nonnegative part of
the difference coarray, as given by the number of m such
that w(m) ≥ 1 in Fig. 1, is 24 for the MRA, 29 for the
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Fig. 1. The array geometry (S, in diamonds) and the nonnegative part of the
weight function (w(m), in dots) for (a) the MRA with 8 elements, (b) the
MHA with 8 elements, (c) the nested array with N1 = N2 = 4 (8 elements),
and (d) the Cantor array with 8 elements. Here crosses denote empty space.

MHA, 20 for the nested array, and finally 14 for the Cantor
array. This is because Cantor arrays only have O(|S|1.585)
elements in the difference coarray [12] while the remaining
arrays have O(|S|2) elements in D [2], [3], [10]. Furthermore,
the MHA has holes in the difference coarray. That is, there
are some missing elements, such as 26, 27, and 29 in Fig.
1(b), which cannot be obtained from the pairwise differences
of the sensor locations. The remaining arrays have hole-free
difference coarrays, i.e., the difference coarray is composed
of consecutive integers (D = U). Theorem 1 indicates that
none of the physical elements (as the diamonds in Fig. 1) in
these arrays can be removed without changing the difference
coarray.

In Sections III-A to III-D, the details of Theorem 1 will
be clarified, including the definition of these arrays and the
claims of the theorem will be proved.

A. Minimum Redundancy Arrays

Minimum redundancy arrays (MRA) were first proposed by
Moffet [2]. These minimize the so-call redundancy R, defined
as

R ,

(|S|
2

)
(|U| − 1)/2

=

(|S|
2

)
max(U)

, (7)
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subject to the hole-free constraint on the difference coarray.
Next, the definition of the MRA is given as follows:
Definition 10: The MRA with N physical elements can be

defined as [2]:

SMRA , arg max
S

|D| subject to |S| = N, D = U. (8)

Namely, Eq. (8) indicates that the MRA has the largest hole-
free difference coarray for a given number of sensors. For
a fixed number of sensors, it can be shown that Moffet’s
definition is equivalent to Definition 10. However, this paper
considers Definition 10 to facilitate the proof of Theorem 1,
as presented below.

Proof of the maximal economy of MRA: Definition 10 im-
plies that the MRA has the largest hole-free difference coarray
DMRA , {0,±1,±2, · · · ± (max(SMRA) − min(SMRA))},
among all array configurations with N elements. Due to [9,
Corollary 3], the MRA is maximally economic for 1 ≤ N ≤ 3.
If N ≥ 4, then we have the following chain of arguments.
Assume that n ∈ SMRA is inessential. It can be shown that 1)
n 6= min(SMRA) [9, Lemma 2] and 2) the difference coarray
of SMRA\{n} is also DMRA. Now we construct a new array
geometry

S , (SMRA\{n}) ∪ {max(SMRA) + 1}, (9)

which has difference coarray D. Based on (9), the following
properties can be shown to be true

1) |S| = N .
2) D = DMRA ∪ {±(max(SMRA)−min(SMRA) + 1)}.

Hence D is hole-free. However, we have |D| = |DMRA| + 2,
which contradicts (8). Therefore all elements in SMRA are
essential.

B. Minimum Hole Arrays

Minimum hole arrays (MHA) are also called Golomb arrays
or minimum gap arrays [10], [20]. These arrays are defined to
minimize the number of holes, such that each nonzero element
in the difference coarray results from a unique sensor pair.
Formally:

Definition 11: The MHA with N physical elements can be
defined as [10]

SMHA , arg min
S
|H|

subject to |S| = N, w(m) = 1 for m ∈ D\{0}, (10)

where H , {m : min(D) ≤ m ≤ max(D),m 6∈ D} are the
holes in D.

More details on MHA can be found in [21] and the
references therein. In this paper, the main focus of MHA is to
prove their maximal economy, as presented below:

Proof of the maximal economy of MHA: Let SMHA =
{s1, s2, . . . , sN} be a MHA with N elements such that
s1 < s2 < · · · < sN . Due to [9, Corollary 3], it suffices
to consider MHA with N ≥ 4. Next, Definition 11 indicates
that the weight function of SMHA satisfies w(s2 − s1) =
w(s3 − s1) = · · · = w(sN − s1) = 1, This relation proves
the maximal economy of MHA owing to [9, Lemma 1] and
Definition 9.

Example 2: Consider Fig. 1(b), where the MHA has sensor
locations SMHA = {0, 1, 4, 9, 15, 22, 32, 34}. It can be ob-
served that the weight function satisfies w(1−0) = w(4−0) =
w(9−0) = w(15−0) = w(22−0) = w(32−0) = w(34−0) =
1. As a result, the MHA with 8 sensors is maximally economic.

C. Nested Arrays with N2 ≥ 2

A downside for MRA and MHA is the lack of computa-
tionally efficient algorithms or closed-form solutions for the
sensor locations [2], [10]. By contrast, the sensor locations of
nested arrays are expressed in closed-form [3]:

Definition 12: Assume that N1 and N2 are positive integers.
The nested array with N1 and N2 is specified by the set
Snested , T1 ∪ T2, where T1 and T2 are defined as

T1 = {1, 2, . . . , N1}, (11)
T2 = {n(N1 + 1) : n = 1, 2, . . . , N2}. (12)

Here T1 denotes a dense ULA with interelement spacing 1
(in unit of half of the wavelength) while T2 represents a sparse
ULA with spacing N1+1. For instance, in Fig. 1(c), the nested
array has T1 = {1, 2, 3, 4} and T2 = {5, 10, 15, 20}.

Nested arrays possess hole-free difference coarrays [3].
Furthermore, if N1 and N2 are approximately N/2, then the
size of the difference coarray of the nested array becomes
O(N2), which is as many as that of MRA and MHA [2],
[3], [10]. For brevity, other properties of the nested array are
skipped in this paper and interested readers are referred to [3]
and the references therein.

Next, as one of the contributions of this paper, the maximal
economy of nested arrays with N2 ≥ 2 will be proved. As a
remark, if N2 = 1, then the nested array becomes the ULA
with N1 + 1 elements, which is, in general, not maximally
economic, as we will show in Theorem 2.

Proof of the maximal economy of nested arrays with
N2 ≥ 2: First, the weight function for Snested is denoted
by wnested(m). Then, we invoke the following two lemmas,
whose proofs can be found at the end of this subsection.

Lemma 2: Assume that N2 ≥ 2. If n1 = N2(N1 + 1) and
n2 ∈ T1, then wnested(n1 − n2) = 1.

Lemma 3: If n1 ∈ T2 and n2 = 1, then wnested(n1−n2)=1.
Finally, combining [9, Lemma 1], Lemma 2, Lemma 3, and
Definition 9 proves the maximal economy of the nested array
with N2 ≥ 2.

Example 3: Let us verify Lemmas 2 and 3 using the nested
array with N1 = N2 = 4 in Fig. 1(c). Assume that n1 =
N2(N1 + 1) = 20 and n2 = 3 ∈ T1. Due to Fig. 1(c), the
weight function of the nested array satisfies w(n1 − n2) =
w(17) = 1, which confirms Lemma 2. Next, suppose that
n1 = 15 ∈ T2 and n2 = 1. We obtain w(n1−n2) = w(14) =
1 based on Fig. 1(c). The above example is also consistent
with Lemma 3.

Finally, the proofs of Lemmas 2 and 3 are given as follows:
Proof of Lemma 2: In this case, we have n1 − n2 ≥

N2(N1 + 1) − N1. Assume that there exist n′1, n
′
2 ∈ Snested

such that the pair (n′1, n
′
2) 6= (n1, n2) and n′1−n′2 = n1−n2.

If n′1 is not the rightmost element in Snested, namely, n′1 6=
N2(N1 + 1), then n′1 ≤ (N2 − 1)(N1 + 1), because N2 ≥
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2. Furthermore, since n′2 ≥ 1, we have n′1 − n′2 ≤ (N2 −
1)(N1 + 1) − 1 = N2(N1 + 1) − N1 − 2, which disagrees
with n′1 − n′2 = n1 − n2 ≥ N2(N1 + 1) − N1. Therefore
n′1 = n1 = N2(N1 + 1), n′2 = n2, and wnested(n1 − n2) = 1.

Proof of Lemma 3: Since n1 ∈ T2 and n2 = 1, we have

n1 − n2 ≡ N1 mod (N1 + 1), (13)
n1 − n2 ≥ N1, (14)

where mod N denotes the modulo-N operation. Suppose that
there exist n′1, n

′
2 ∈ Snested such that the pair (n1, n2) 6=

(n′1, n
′
2) and n′1 − n′2 = n1 − n2. The parameters n′1 and n′2

can be divided into four cases. If n′1, n
′
2 ∈ T1, then |n′1−n′2| ≤

N1 − 1, which contradicts (14). If n′1, n
′
2 ∈ T2, then n′1 − n′2

is divisible by N1 + 1, which violates (13). If n′1 ∈ T1 and
n′2 ∈ T2, then n′1 − n′2 ≤ −1, which disagrees with (14).
Finally, if n′1 ∈ T2 and n′2 ∈ T1, then we obtain

n′2 = n′1 − (n1 − n2) ≡ 1 mod (N1 + 1),

due to (13) and n′1 ∈ T2. Therefore n′2 = n2 = 1 and n′1 = n1,
which proves this lemma.

D. Cantor Arrays

In this subsection, we will concentrate on Cantor arrays,
which first appeared in the context of fractal array design
[11], [22], [23]. These arrays originated from the Cantor set
in fractal theory [24], [25]. Previous research on Cantor ar-
rays was mainly conducted towards the relationships between
fractal geometries and the beampatterns of the arrays [11],
[22], [23]. A recent study focused on the difference coarray
of Cantor arrays [12], including the weight function, the size
and the structure of the difference coarray, and its maximal
economy, as we will present next.

First, the definition of the Cantor array Sr is parame-
terized by a nonnegative integer r. The translated array of
Sr is defined as Tr , {n + Dr : ∀n ∈ Sr}, where
Dr , 2Ar + 1, with Ar denoting the aperture of Sr, that is,
Ar , max(Sr) −min(Sr). With this, we are ready to define
a Cantor array:

Definition 13: The Cantor array Sr is defined as

Sr ,

{
{0} if r = 0,
Sr−1 ∪ Tr−1, if r ≥ 1.

(15)

Notice that Sr has N = 2r sensors. So, Cantor arrays are
defined only for the case that the number of sensors is a power
of two. Furthermore, it was shown in [12] that Cantor arrays
are symmetric arrays, i.e. n ∈ Sr if and only if Ar − n ∈ Sr.

For instance, let us consider the Cantor arrays for r =
0, 1, 2, 3. According to Definition 13, these arrays become

S0 = {0}, A0 = 0, D0 = 1, (16)
S1 = {0, 1}, A1 = 1, D1 = 3, (17)
S2 = {0, 1, 3, 4}, A2 = 4, D2 = 9 (18)
S3 = {0, 1, 3, 4, 9, 10, 12, 13}, A3 = 13, D3 = 27, (19)

where (19) is depicted in Fig. 1(d). It can also be deduced
from Fig. 1(d) that S3 is symmetric.

The arrays in Definition 13 are equivalent to the Cantor
array proposed in [11], [22], [23], with proper amount of
translation and scaling. The Cantor arrays in [11], [22], [23]
are built upon the Cantor sets in fractal theory [26], [27].
But here we start with a different definition (Definition 13),
which will facilitate the discussion on its coarray properties.
We begin by proving:

Lemma 4: For the Cantor array (15) with parameter r ≥ 1
in Definition 13, the weight function wr(m) satisfies

wr(m) =


2wr−1(m), if |m| ≤ Ar−1,

wr−1(m±Dr−1), if |m±Dr−1| ≤ Ar−1,

0, otherwise,
(20)

where Ar and Dr are defined as in Definition 13.
Proof: The weight function wr(m) can be expressed as

wr(m) =
∣∣{(n1, n2) ∈ S2r : n1 − n2 = m

}∣∣
=
∣∣{(n1, n2) ∈ S2r−1 : n1 − n2 = m

}∣∣
+
∣∣{(n1, n2) ∈ T2

r−1 : n1 − n2 = m
}∣∣

+ |{(n1, n2) ∈ Sr−1 × Tr−1 : n1 − n2 = m}|
+ |{(n1, n2) ∈ Tr−1 × Sr−1 : n1 − n2 = m}| , (21)

which is due to Sr = Sr−1 ∪Tr−1 for r ≥ 1 in Definition 13.
Since every element in Tr−1 can be expressed as n′ +Dr−1,
where n′ ∈ Sr−1, (21) can be written as

wr(m) =
∣∣{(n1, n2) ∈ S2r−1 : n1 − n2 = m

}∣∣
+
∣∣{(n′1, n

′
2) ∈ S2r−1 : n′1 − n′2 = m

}∣∣
+
∣∣{(n1, n

′
2) ∈ S2r−1 : n1 − n′2 = m+Dr−1

}∣∣
+
∣∣{(n′1, n2) ∈ S2r−1 : n′1 − n2 = m−Dr−1

}∣∣
= 2wr−1(m) + wr−1(m+Dr−1)

+ wr−1(m−Dr−1). (22)

Equation (22) simplifies to (20) in the following cases:
1) Suppose that |m| ≤ Ar−1, which is equivalent to the

condition that −Ar−1 ≤ m ≤ Ar−1. Since Dr−1 =
2Ar−1 + 1, we have

|m+Dr−1| ≥ −Ar−1 +Dr−1 = Ar−1 + 1 > Ar−1,

|m−Dr−1| ≥ |Ar−1 −Dr−1| = Ar−1 + 1 > Ar−1.

Since the aperture of the Cantor array with parameter
r− 1 is Ar−1, we have, by definition, wr−1(p) = 0 for
any |p| > Ar−1. This property indicates that wr−1(m±
Dr−1) = 0 if we set p = m ± Dr−1. Therefore, (22)
becomes wr(m) = 2wr−1(m) in this case.

2) Assume that |m+Dr−1| ≤ Ar−1. This condition can be
rewritten as −Ar−1 ≤ m+Dr−1 ≤ Ar−1 so −3Ar−1−
1 ≤ m ≤ −Ar−1 − 1. As a result, |m| and |m−Dr−1|
satisfy

|m| ≥ Ar−1 + 1 > Ar−1, (23)
|m−Dr−1| ≥ | −Ar−1 − 1−Dr−1| > Ar−1. (24)

Therefore, we have wr−1(m) = 0 and wr−1(m −
Dr−1) = 0. Using (22), we obtain that wr(m) =
wr−1(m+Dr−1) in this case.
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3) If |m −Dr−1| ≤ Ar−1, then due to similar arguments
as the case of |m+Dr−1| ≤ Ar−1, we have wr(m) =
wr−1(m−Dr−1).

Lemma 4 shows that the weight function for the Cantor
array Sr can be recursively constructed from the weight
function for Sr−1. To give some feelings for Lemma 4, the
following numerical example is considered. Due to Lemma
4 and (16) to (19), the weight function becomes w3(6) =
w2(6−D2) = w2(3) = w1(3−D1) = 2w0(0) = 2, which is
consistent with the weight function in Fig. 1(d).

Furthermore, based on Lemma 4, it can be proved that
Cantor arrays have hole-free difference coarrays of size
O(|S|log2 3) ≈ O(|S|1.585). This result is distinct from the
MRA (hole-free difference coarray of size O(|S|2)) and the
ULA (hole-free difference coarray of size O(|S|)). The de-
tailed proofs are skipped here and can be found in [12].

Proof of the maximal economy of Cantor arrays: Finally
the maximal economy of Cantor arrays will be proved at the
end of this subsection. First we prove:

Lemma 5: Let the Cantor array with parameter r be denoted
by Sr = {s1, s2, . . . , sN}, where 0 = s1 < s2 < · · · <
sN and N = 2r. Then the weight function of Sr satisfies
wr(sN+1−k − sk) = 1 for all k = 1, 2, . . . , N .

Proof: First, if r = 0, then S0 = {0} and w0(0) = 1,
which holds trivially. Assume wr(sN+1−k − sk) = 1 holds
true for all k = 1, 2, . . . , N . Then the sensor locations for
Sr+1 are given by

Sr+1 = {s1, s2, . . . , sN , s1 +Dr, s2 +Dr, . . . , sN +Dr}.

It can be shown that sN < s1 +Dr < s2 +Dr < · · · < sN +
Dr. Due to Lemma 4, the weight function of Sr+1 satisfies
wr+1((sN+1−k +Dr)− sk) = wr(sN+1−k − sk) = 1 for all
k = 1, 2, . . . , N . Furthermore, the symmetry of the difference
coarray shows that wr+1(sk − (sN+1−k + Dr)) = 1. These
arguments complete the proof.

Due to [9, Lemma 1] and Lemma 5, sk and sN+1−k are both
essential for all k = 1, 2, . . . , N , which proves the maximal
economy of Cantor arrays.

For clarity, Fig. 1(d) demonstrates the weight function of S3,
where w(13− 0) = w(12− 1) = w(10− 3) = w(9− 4) = 1.
Due to [9, Lemma 1], this result implies that the sensors at
13, 0, 12, 1, 10, 3, 9, and 4 are all essential, which confirms
the maximal economy of S3.

IV. UNIFORM LINEAR ARRAYS

In what follows, two commonly used array geometries, the
ULA and the coprime array, will be discussed in Sections IV
and V, respectively. Among the arrays considered in this paper,
it will be shown that the most robust arrays are ULA, followed
by coprime arrays, and finally MESA.

The ULA with N physical elements is defined as [1]:

SULA , {0, 1, . . . , N − 1}. (25)

It can be shown that the difference coarray of the ULA is
{0,±1, . . . ,±(N − 1)}, whose size is 2N − 1. This property
indicates that the ULA resolves at most N − 1 uncorrelated
sources, unlike sparse arrays such as MRA or nested arrays

0 1 2 3 4 5 6 7 8 9

E ′1 = {{0}, {9}},
E ′2 = {{1, 8}},
E ′3 = {{1, 2, 7}, {2, 7, 8}}.

Essential

Inessential

Fig. 2. The ULA with N = 10 elements and the k-essential Sperner family
E ′1, E ′2, and E ′3.

(O(N2) uncorrelated sources) [3]. However, in the past, ULA
are regarded as more robust than sparse arrays. In this section,
this observation will be confirmed using the theory in the
companion paper [9]. Using (25) and Definition 8, the k-
essential Sperner family of the ULA can be shown to have
the following closed-form expressions:

Theorem 2: The k-essential Sperner family of SULA satisfies

E ′1 =

{
S1,ULA, if 1 ≤ N ≤ 3,

{{0}, {N − 1}}, if N ≥ 4,
(26)

E ′2 =



∅, if 1 ≤ N ≤ 3,

{{1, 2}}, if N = 4,

{{1, 2}, {1, 3}, {2, 3}}, if N = 5,

{{1, 4}, {2, 3}}, if N = 6,

{{1, N − 2}}, if N ≥ 7,

(27)

E ′3 =



∅, if N ≤ 6,

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4},
{2, 4, 5}, {3, 4, 5}}, if N = 7,

{{1, 2, 5}, {2, 3, 4},
{2, 5, 6}, {3, 4, 5}}, if N = 8,

{{1, 2, 6}, {2, 6, 7}, {3, 4, 5}}, if N = 9,

{{1, 2, N − 3},
{2, N − 3, N − 2}}, if N ≥ 10.

(28)

Here S1,ULA , {{n} : n ∈ SULA} denotes all the subarrays
of size 1 over SULA.

The derivation of the expressions in Theorem 2 is quite
involved, and it can be found in Section IV-A. Next the expres-
sions in Theorem 2 are demonstrated through the following
numerical example:

Example 4: Consider the ULA with N = 10 elements. Fig.
2 depicts the k-essential Sperner family E ′1, E ′2, and E ′3. Since
N ≥ 3k + 1 for k = 1, 2, 3, the last equations in (26) to
(28) are used. First, some of the subarrays in E ′k are mirror
images of each other, with respect to the center of SULA,
like {1, 2, 7} and {2, 7, 8}. This phenomenon is because the
difference coarray is invariant to the reversal of the array
configuration [12]. Second, using Fig. 2, given any subarray
of size k ≤ 3, its k-essentialness property can be readily
examined by the contents of E ′k, as presented in the companion
paper [9, Section V]. For instance, since {1, 2, 8} is a superset
of {1, 8} ∈ E ′2, we have {1, 2, 8} ∈ E3, so removing {1, 2, 8}
from SULA alters the difference coarray, as depicted later in
Fig. 3(c). As another example, deleting {3, 5, 8} from SULA

preserves the difference coarray, as illustrated later in Fig. 3(d).
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This observation is consistent with Fig. 2 since {3, 5, 8} is not
a superset of any elements in E ′k for k = 1, 2, 3 and hence
{3, 5, 8} 6∈ E3.

Theorem 2 also shows that the elements at both ends of
SULA are more important than others. It was reported in [28]
that for the ULA with 6 elements (SULA = {0, 1, 2, 3, 4, 5}),
the elements at 0 and 5 are the most important ones while
the elements 1, 2, 3, 4 are less important. On the other hand,
as presented in Theorem 2, for SULA = {0, 1, 2, 3, 4, 5}, the
elements 0 and 5 are essential while the elements 1, 2, 3, 4 are
inessential, which is in accordance with [28]. Our contribution
here is to utilize the essentialness property as another notion
of the importance of elements in arrays. Unlike the previous
work [28], our approach depends purely on the array geometry,
rather than other factors such as source directions and source
powers.

Next, the closed-form expressions of the k-fragility for the
ULA will be derived based on Theorem 2. The main focus
would be F1, F2, and F3, for N ≥ 4, N ≥ 7, and N ≥ 10,
respectively. If N ≥ 4, then |E ′1| = |E1| = 2 so F1 = 2/N .
If N ≥ 7, then due to [9, Lemma 5], the cardinality of E2
can be computed as |E2| = |{{0, n}, {n,N − 1}, {0, N −
1}, {1, N − 2} : 1 ≤ n ≤ N − 2}| = 2(N − 1). Hence
F2 = 2(N − 1)/

(
N
2

)
= 4/N . Finally, the 3-essential family

for the ULA with N ≥ 10 is given by

E3 = {A ∈ S3,ULA : 0 ∈ A}︸ ︷︷ ︸
G1

∪ {A ∈ S3,ULA : N − 1 ∈ A}︸ ︷︷ ︸
G2

∪ {A ∈ S3,ULA : {1, N − 2} ⊂ A}︸ ︷︷ ︸
G3

∪ E ′3, (29)

where S3,ULA , {A ⊆ SULA : |A| = 3} represents all the
subarrays of size 3 over SULA. Substituting |G1| = |G2| =(
N−1
2

)
, |G3| = |G1 ∩ G2| = N − 2, |G1 ∩ G3| = |G2 ∩ G3| =

1, and |G1 ∩ E ′3| = |G2 ∩ E ′3| = |G3 ∩ E ′3| = 0, into (29)
leads to |E3| = (N − 1)(N − 2) so that fragility F3 = 6/N .
Summarizing, the k-fragility Fk for the ULA with N elements
satisfies

ULA: F1 =
2

N
, F2 =

4

N
, F3 =

6

N
, (30)

where these expressions are valid for N ≥ 4, N ≥ 7, and
N ≥ 10, respectively. For instance, for the ULA with N = 16
elements, (30) leads to F1 = 0.125, F2 = 0.25, and F3 =
0.375, which are consistent with the numerical example in [9,
Fig. 8].

Failure probabilities. Finally, here are some remarks on the
probability that the difference coarray changes, Pc, for ULA.
Even though Pc has closed-form expressions associated with
the fragility Fk, as in [9, (33)], it remains challenging to derive
closed-form expressions of Pc for ULA, due to the lack of
closed forms of E ′k and Fk, for all k. Even so, Pc for the
ULA can still be analyzed either numerically using [9, (33)],
or analytically using the bounds of Pc, as in the companion
paper [9, Theorem 3]. For instance, as discussed in [9, Section
VI], if the probability of element failure p is sufficiently small,
then Pc is approximately |E1|p. This approximation indicates
that, for ULA with N ≥ 4 elements, Pc has an asymptotic
expression of 2p. Namely, the probability that the difference

(a)
Physical array

0 9

Difference coarray

−9 0 9

(b)
0 6

−6 0 6

(c)
0 3 7 9 −9 0 7 9−7

(d)
0 2 4 6 7 9 −9 0 9

13 elements

Fig. 3. (a) The ULA with 10 physical elements SULA and its difference coar-
ray. The physical array (left) and the difference coarray (right) after removing
(b) {7, 8, 9}, (c) {1, 2, 8}, and (d) {3, 5, 8}, from SULA, respectively. Here
bullets denote elements and crosses represent empty space. It can be observed
that the difference coarrays of (b), (c), and (d) contain {0,±1, . . . ,±6}.

coarray changes is around 2p. This is the smallest among all
possible array configurations with fixed N , due to [9, Lemma
2].

A. Derivation of the Expressions in Theorem 2

Before deriving the expressions in Theorem 2, we first
invoke Lemma 6 to describe the difference coarray after
removing k physical sensors.

Lemma 6: Let A ⊆ SULA satisfy |A| = k. Assume that
S , SULA\A and its difference coarray is denoted by D. If
N ≥ 3k + 1, then {0,±1, . . . ,±(N − k − 1)} ⊆ D.

Lemma 6 implies that, if N is sufficiently large, then even
though k elements are removed from SULA, the difference
coarray D still possesses a central ULA segment of at least
2(N − k − 1) + 1 elements. The detailed proof of Lemma 6
will be given after Example 5:

Example 5: Fig. 3 demonstrates an example of Lemma 6.
We consider the ULA with N = 10 elements and its difference
coarray, as depicted in Fig. 3(a). In Figs. 3(b), (c), and (d), we
remove k = 3 physical elements from SULA and evaluate their
difference coarrays. Regardless of the locations of the removed
elements, all these difference coarrays possess a central ULA
segment, whose size is at least 2(N − k − 1) + 1 = 13, as
claimed by Lemma 6.

Proof of Lemma 6: First let us consider several useful
results for the proof [13]:

Definition 14: Let S be an integer set. The discrete sequence
c(n) is 1 if n ∈ S and 0 otherwise.

Proposition 1: Let c(n) and w(m) be the discrete sequence
and the weight function for S, respectively. Then w(m)
satisfies

w(m) =

∞∑
n=−∞

c(n+m)c(n), (31)

for any integer m.
Furthermore, the difference coarray can be expressed as the

support of the weight function. Namely, D = {m : w(m) 6=
0}.

Next it will be proved that {0,±1,±2, . . . ,±(N−k−1)} ⊆
D. It suffices to consider the nonnegative part of the set, due
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to the symmetry of the difference coarray. Assume that there
exists some m̂ ∈ {0, 1, 2, . . . , N − k − 1} such that m̂ /∈ D.
The discrete sequence and the weight function of S , SULA\A
are denoted by c(n) and w(m), respectively. Since m̂ /∈ D,
we have w(m̂) = 0, implying that

c(n+ m̂)c(n) = 0, (32)

for all n = 0, 1, . . . , N−m̂−1, due to Definition 14 and (31).
Eq. (32) indicates that, n + m̂ ∈ A or n ∈ A. This condition
implies

(A− m̂) ∪ A ⊇ O , {0, 1, . . . , N − m̂− 1}. (33)

Here the notation A± m̂ , {a± m̂ : a ∈ A}.
According to (33), the size of O satisfies

|O| = |((A− m̂) ∪ A) ∩O| = |((A− m̂) ∩O) ∪ (A ∩O)|
≤ |(A− m̂) ∩O|+ |A ∩O| = |A ∩ (O + m̂)|+ |A ∩O| ,

(34)

where the inequality is due to the union bound between sets.
In what follows, (34) will be analyzed in detail. First, the set
SULA is partitioned into three subsets L1,L2,L3:

L1 = {0, 1, . . . , P − 1}, (35)
L2 = {P, P + 1, . . . , N − P − 1}, (36)
L3 = {N − P, N − P + 1, . . . , N − 1}, (37)

where P , min{m̂,N − m̂}. We also define A` , A ∩ L`

and k` , |A`| for ` = 1, 2, 3. It can be shown that

k = k1 + k2 + k3, 0 ≤ k` ≤ min{k, |L`|}, (38)

for ` = 1, 2, 3.
According to m̂, Eq. (34) can be analyzed in two cases:
1) If m̂ ≤ N/2, then we obtain P = m̂. The sets O and

O+ m̂ can be expressed as O = L1 ∪L2 and O+ m̂ =
L2 ∪L3, respectively. Combining (34) and (38) leads to

N − m̂ ≤ (k2 + k3) + (k1 + k2) = k + k2. (39)

Now let us consider the upper bounds of k+k2 for two
cases of m̂. First, if 0 ≤ m̂ ≤ N/3, then using (38) and
N ≥ 3k+ 1, we obtain k+k2 ≤ 2k < 2k+ 2

3 ≤
2
3N ≤

N − m̂. Therefore k + k2 < N − m̂, which contradicts
(39). On the other hand, if N/3 < m̂ ≤ N/2, then we
have m̂ > N/3 ≥ k + 1

3 so k − m̂ < 0. In addition,
the size of L2 is given by N − 2P = N − 2m̂. In this
case, we have k + k2 ≤ k + |L2| = k + (N − 2m̂) =
(N − m̂) + (k − m̂) < N − m̂, disagreeing with (39).

2) If N/2 < m̂ ≤ N − k − 1, then P = N − m̂. In this
case, we have O = L1 and O + m̂ = L3. Hence (34)
becomes

N − m̂ ≤ k3 + k1 = k − k2. (40)

However, the right-hand side of (40) satisfies k − k2 ≤
k ≤ N − m̂− 1, due to (38) and m̂ ≤ N − k − 1. This
result contradicts (40).

These arguments complete the proof of Lemma 6.
Next, the expressions in Theorem 2 will be derived. Here

we will skip the expressions of E ′k for N ≤ 3k and k =

1, 2, 3, since they can be readily verified by enumerating all
subarrays with size k. The main focus here would be the case
of N ≥ 3k + 1. In what follows, the sensor locations, the
difference coarray, the discrete sequence (Definition 14), and
the weight function after the removal of k elements will be
denoted by S, D, c(n), and w(m), respectively. We will study
the circumstances under which the difference coarray changes,
namely D 6= DULA, where DULA is the difference coarray of
SULA.

1) E ′1 for N ≥ 4: Due to Lemma 6, the difference coarray
D contains {0,±1,±2, . . . ,±(N − 2)} for k = 1. If
D 6= DULA, then w(N − 1) = 0. This implies

w(N − 1) = c(N − 1)c(0) = 0, (41)

due to Proposition 1. Eq. (41) shows that removing either
0 or N−1 leads to D 6= DULA. Hence E ′1 = {{0}, {N−
1}} for N ≥ 4.

2) E ′2 for N ≥ 7: Lemma 6 indicates that it suffices to
consider (a) w(N − 1) = 0 and (b) w(N − 2) = 0.
Let A be a subarray of size 2 over SULA. First, assume
that w(N − 1) = 0. The argument of (41) shows that
0 ∈ A or N − 1 ∈ A. Therefore A does not belong to
E ′2. Second, if w(N − 2) = 0, then we obtain

w(N − 2) = c(N − 2)c(0) + c(N − 1)c(1) = 0. (42)

There are four choices of A satisfying (42): {0, 1},
{0, N − 1}, {N − 1, N − 2}, and {1, N − 2}. Since
the first three subarrays contain either 0 or N − 1, we
have E ′2 = {{1, N − 2}} for N ≥ 7.

3) E ′3 for N ≥ 10: The arguments in E ′2 indicates that, it
suffices to consider w(N − 3) = 0 in this case. Hence
we have

c(N − 3)c(0) + c(N − 2)c(1) + c(N − 1)c(2) = 0.

Since the the elements in E ′3 do not contain 0 or N − 1,
we have E ′3 = {{1, 2, N−3}, {2, N−3, N−2}}, which
proves Theorem 2.

V. COPRIME ARRAYS

In this section, we will move on to coprime arrays, which
have recently attracted considerable attention in sparse array
signal processing [4], [5], [14], [15]. These arrays are defined
as:

Definition 15: Let M and N be a coprime pair of positive
integers. A coprime array Scoprime with parameters M and N
can be defined as

Scoprime = {0} ∪ P1 ∪ P2 ∪ {MN} ∪ P3, (43)

where the sets P1, P2, and P3 are given by

P1 = {p1M : 1 ≤ p1 ≤ N − 1}, (44)
P2 = {p2N : 1 ≤ p2 ≤M − 1}, (45)
P3 = {p3N : M + 1 ≤ p3 ≤ 2M − 1}. (46)

Coprime arrays are composed of two sparse ULAs. The
first sparse ULA ({0}∪P1) has N elements with interelement
spacing M (in unit of half of the wavelength) while the
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0 4 8 12 16

0 5 10 15 20 25 30 35

(a)

E ′2 = {5, 15} P1 P2 P3

0 5 10 15

0 4 8 12 16 20 24 28 32 36

(b)

E ′2 = {{4, 16}, {8, 12}}

Essential Inessential Empty

Fig. 4. An illustration for the k-essential Sperner family of the coprime
arrays with (a) M = 4, N = 5 and (b) M = 5, N = 4. In these figures, the
coprime arrays are split into two sparse ULAs for clarity.

second sparse ULA ({0} ∪ P2 ∪ {MN} ∪ P3) owns 2M
elements with separation N . It can be shown that the difference
coarray of Scoprime has a central ULA segment Ucoprime =
{0,±1, . . . ,±(MN + M − 1)} and holes at ±(MN + M)
[4], [5].

Example 6: Fig. 4(a) demonstrates the geometry of coprime
arrays. For clarity, the first ULA with separation M is depicted
on the top while on the bottom is shown the second ULA with
separation N . The physical sensors are denoted by diamonds
or rectangles and the empty space is marked by crosses. If
M = 4 and N = 5, then we have P1 = {4, 8, 12, 16}, P2 =
{5, 10, 15}, and P3 = {25, 30, 35}, which are also illustrated
in Fig. 4(a).

In the following development, the robustness of coprime ar-
rays will be investigated based on the theory in the companion
paper [9]. To begin with, the closed-form expressions of E ′k for
coprime arrays will be presented in Theorem 3, whose proof
can be found in Section V-C.

Theorem 3: Let Scoprime be a coprime array with a coprime
pair of integers M and N , as defined in Definition 15. Assume
that M,N ≥ 2. Then the k-essential Sperner family can be
expressed as

E ′1 =

{
A ∪ B, if M is odd,
A ∪ B ∪ {{MN/2}}, if M is even,

(47)

E ′2 =


∅, if M = 2,

{{N, 2N}, {2N, 3N}}, if M = 3,

C, otherwise,
(48)

E ′k = ∅, 3 ≤ k ≤ |S|, (49)

where A, B, and C are given by

A , {{nM} : 0 ≤ n ≤ N − 1}, (50)

B , {{mN} : M + 1 ≤ m ≤ 2M − 1}, (51)

C , {{mN, (M −m)N} : 1 ≤ m ≤ b(M − 1)/2c}. (52)

Example 7: The implications of Theorem 3 are exemplified
by Fig. 4, where the essential sensors (diamonds in Fig. 4),
the inessential sensors (rectangles in Fig. 4), and E ′2, are
enumerated. Here the coprime arrays have parameters (a)
M = 4, N = 5 and (b) M = 5, N = 4. In Fig. 4(a), the
essential elements 0, 4, 8, 12, 16 are associated with A, as in
(50), or {0}∪P1, as in (44), while the elements 25, 30, 35 are

related to B in (51), or equivalently P3 in (46). Furthermore,
in Fig. 4(a), the element MN/2 = 10 is also essential, which
is consistent with (47). The sets in E ′2 are also depicted in
Fig. 4. For instance, in Fig. 4(b), both {8, 12} and {4, 16}
belong to E ′2, as described in (48) and (52). Note that the
elements in these sets are symmetric with respect to the
location MN/2 = 10. Another interesting observation is that,
among the inessential sensors in Fig. 4(b), some are related to
E ′2, such as 4 and 8, but the inessential sensor MN = 20 does
not belong to any elements in E ′k for all k. In fact, if M ≥ 4
and N ≥ 2, it can be shown that MN does not belong to the
elements in E ′k for all k, due to Theorem 3.

Theorem 3 can be interpreted as a generalization of the
thinned coprime array [16]. For sufficiently large M and N ,
it was shown in [16] that removing the elements at (bM/2c+
1)N, (bM/2c + 2)N, . . . ,MN in a coprime array preserves
the difference coarray and the new array geometry is called the
thinned coprime array. The above statement is equivalent to
the condition that {(bM/2c+1)N, (bM/2c+2)N, . . . ,MN}
is not dM/2e-essential with respect to Scoprime. For instance,
in Fig. 4(a), removing {15, 20} from Scoprime does not alter
the difference coarray, since {15, 20} is not 2-essential. Fur-
thermore, Theorem 3 makes it possible to create other arrays
than thinned coprime arrays but with the same difference
coarray. For example, in Fig. 4(b), deleting either {8, 16, 20},
{4, 8, 20}, or {4, 12, 20} from Scoprime does not alter the
difference coarray, while none of them is identical to thinned
coprime arrays.

A. The k-Fragility of Coprime Arrays

In the following development, closed-from expressions for
the k-fragility of the coprime array will be derived. It is first
assumed that M is an even number and M ≥ 4. In this case,
we have |E1| = |E ′1| = M + N so the fragility F1 = (N +
M)/(N+2M−1). Next, due to [9, Lemma 5], the 2-essential
family E2 can be expressed as

E2 = {{n1, n2} : {n1} ∈ E ′1, {n2} 6∈ E ′1, n2 ∈ Scoprime}︸ ︷︷ ︸
H1

∪ {{n1, n2} : {n1}, {n2} ∈ E ′1}︸ ︷︷ ︸
H2

∪ E ′2.

Since H1, H2, and E ′2 are disjoint, the size of E2 is given by
|E2| = |H1| + |H2| + |E ′2| = (N + M)(M − 1) +

(
N+M

2

)
+

(M/2−1) so that fragility F2 becomes F2 = (3M2+4MN−
2M+N2−3N−2)/((N+2M−1)(N+2M−2)). Repeating
similar arguments for odd M leads to these expressions

F1 =

{
N+M−1
N+2M−1 , if M is odd,

N+M
N+2M−1 , if M is even,

(53)

F2 =


3M2+4MN−4M+N2−3N+1

(N+2M−1)(N+2M−2) , if M is odd,
3M2+4MN−2M+N2−3N−2

(N+2M−1)(N+2M−2) , if M is even,
(54)

where M ≥ 4.
As k increases, the closed-form expressions of Fk can be

derived but the details become more involved. Here these ex-
pressions are omitted in this paper. However, if k is sufficiently
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large, then Fk can still be characterized by the following
proposition:

Proposition 2: For the coprime array with a coprime pair
of integers M ≥ 4 and N ≥ 2, the k-fragility satisfies Fk = 1
for all dM/2e+ 1 ≤ k ≤ N + 2M − 1.

Proof: It follows from Item 3d in Section V-C (before
Section VI).

For example, let M = 4 and N = 9. Using (53), (54), and
Proposition 2, it can be shown that F1 = 0.8125, F2 = 0.9833,
and Fk = 1 for all 3 ≤ k ≤ 16. These results are in accordance
with the numerical values in the companion paper [9, Fig. 8].

B. The Probability that the Difference Coarray Changes

In this subsection, the closed-form expressions of Pc for the
coprime array are characterized by the following theorem:

Theorem 4: Let Scoprime be the coprime array with a
coprime pair of integers M,N , as in Definition 15. Assume
that M,N ≥ 2. Then the probability that the difference
coarray changes is

Pc =

{
1− (1− p)|E′1|(1− 2p2 + p3), if M = 3,

1− (1− p)|E′1|(1− p2)|E
′
2|, otherwise.

(55)

Here E ′1 and E ′2 are the k-essential Sperner family of Scoprime,
whose expressions are given in Theorem 3.

Proof: According to the proof of [9, Theorem 3],
the probability Pc can be expressed as 1 − Pr(Gc

1) +
Pr(Gc

1)Pr(G2), where Gc
1 denotes the complement of the

event G1. The events G1 and G2 are defined as

G1 ,
⋃

A1∈E′1

F(A1), G2 ,
|S|⋃
k=2

⋃
Ak∈E′k

F(Ak). (56)

Here F(Ak) , ∩n∈Ak
(n fails) denotes the event in which

all the elements in Ak fail. It was proved in [9, (39)] that
Pr(Gc

1) = (1 − p)|E1| for any array geometry. Next we will
simplify Pr(G2). If M = 2, then Pr(G2) = Pr(F(∅)) = 0.
If M = 3, then we obtain

Pr(G2) = Pr(F({N, 2N}) ∪ F({2N, 3N}))
= Pr(F({N, 2N})) + Pr(F({2N, 3N}))

− Pr(F({N, 2N, 3N}))
= 2p2 − p3. (57)

If M ≥ 4, then Pr(G2) can be simplified as

Pr(G2) = 1− Pr(Gc
2) = 1− Pr

( ⋂
A2∈E′2

(F(A2))c

)
. (58)

Due to (48), all the elements in E ′2 are disjoint, so all the
events F(A2) are mutually independent. Hence (58) becomes

Pr(G2) = 1−
∏

A2∈E′2

Pr((F(A2))c) = 1−
∏

A2∈E′2

(1− p2)

= 1− (1− p2)|E
′
2|. (59)

Substituting (57), (59), and Pr(Gc
1) = (1 − p)|E1|, into Pc =

1− Pr(Gc
1) + Pr(Gc

1)Pr(G2) proves this theorem.

The closed-form expressions of Pc for MESA (6) and
coprime arrays (55) can be validated by Monte-Carlo simula-
tions, as in [9, Fig. 12]. It is also deduced from [9, Fig. 12]
that the smallest Pc is exhibited by the ULA, followed by the
coprime array, and finally the nested array. This observation
is also consistent with the conclusion drawn from the fragility
Fk of these arrays.

C. Derivation of the Expressions in Theorem 3
Example 8: To begin with, let us demonstrate the main

concept of the derivation. Fig. 5(a) shows the coprime array
with M = 7, N = 8 and its nonnegative part of the
difference coarray. Here the elements are depicted in dots
while empty space is denoted by crosses. The elements
0, 7, 14, 21, 28, 35, 42, 49, 64, 72, 80, 88, 96, 104 can be shown
to be essential ([9, Lemma 2] and Lemma 8). Therefore, for the
elements in E ′k and k ≥ 2, it suffices to consider the subarrays
A ⊆ {8, 16, 24, 32, 40, 48, 56}, as marked in Fig. 5(a). The
remaining part of the derivation is to identify the constraints
on A such that D (the difference coarray after the removal of
A from Scoprime) is distinct from D (the difference coarray
of Scoprime). To identify these constraints, we will state and
prove three lemmas in this section (Lemmas 10 to 12). The
brief implications of these lemmas are as follows

Lemma 10: |A| ≤M − 2 ⇒ D1 = D1,

Lemma 11: A and AR are disjoint ⇔ D3 = D3,

Lemma 12: D1 = D1 and D3 = D3 ⇔ D = D,

where D1 D1, D3, D3, and AR will be defined shortly. These
results can be applied to Fig. 5(b), where A = {16, 32, 56},
AR = {0, 24, 40}, and |A| = 3. It can be readily shown that
D = D using Lemmas 10 to 12 without actually computing
D. As a result, A does not belong to E ′3.

Next we will proceed to the rigorous derivation of the
expressions in Theorem 3. In what follows, it is assumed
that the coprime array, as defined in Definition 15, satisfies
M,N ≥ 2. The self difference of a set S is denoted by
SD(S) , {n−n′ : n, n′ ∈ S} and the cross difference between
S1 and S2 are given by CD(S1,S2) , {±(n1 − n2) : n1 ∈
S1, n2 ∈ S2}. The following lemmas are useful in proving
Theorem 3:

Lemma 7: Assume that n1, n2 ∈ Scoprime and 1 ≤ u ≤ N−
1 and 1 ≤ v ≤M −1. Then n1−n2 = uM −vN if and only
if the pair (n1, n2) is (uM, vN) or ((M − v)N, (N − u)M).

Proof: The proof consists of four cases of n1 and n2:
1) n1, n2 ∈ {0} ∪ P1: Let n1 = q1M and n2 = q2M for

0 ≤ q1, q2 ≤ N − 1. The equation n1−n2 = uM − vN
can be rearranged as (u − q1 + q2)M = vN . Since M
and N are coprime, v is an integer multiple of M , which
contradicts 1 ≤ v ≤M − 1.

2) n1, n2 ∈ P2 ∪{MN}∪P3: Assume that n1 = q1N and
n2 = q2N for 1 ≤ q1, q2 ≤ 2M − 1. Then n1 − n2 =
uM − vN gives (v + q1 − q2)N = uM . Hence u is
divisible by N , which disagrees with 1 ≤ u ≤ N − 1.

3) n1 ∈ {0} ∪ P1 and n2 ∈ P2 ∪ {MN} ∪ P3: Suppose
n1 = q1M and n2 = q2N for 0 ≤ q1 ≤ N − 1 and
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(a)

Scoprime,M = 7, N = 8
0 7 14 21 28 35 42 49

0 8 16 24 32 40 48 56 64 72 80 88 96 104

P2 ∪ {MN} = {8, 16, 24, 32, 40, 48, 56}

Nonnegative part of D
0 62 69 76 83 90 97 104

(b)

S = Scoprime\A
0 7 14 21 28 35 42 49

0 8 24 40 48 64 72 80 88 96 10416 32 56

A = {16, 32, 56}, AR = {0, 24, 40}, |A| = 3

Nonnegative part of D
0 62 69 76 83 90 97 104

Fig. 5. (a) the coprime array Scoprime with M = 7, N = 8 and the nonnegative part of the difference coarray D. (b) The array S, where the elements in
A = {16, 32, 56} are removed from Scoprime, and the nonnegative part of its difference coarray D.

1 ≤ q2 ≤ 2M − 1. Rearranging n1 − n2 = uM − vN
leads to (u− q1)M = (v − q2)N . Since M and N are
coprime and −N + 2 ≤ u − q1 ≤ N − 1, we obtain
q1 = u and q2 = v. Hence (n1, n2) = (uM, vN).

4) n1 ∈ P2 ∪ {MN} ∪ P3 and n2 ∈ {0} ∪ P1: Consider
n1 = q1N and n2 = q2M for 1 ≤ q1 ≤ 2M − 1 and
0 ≤ q2 ≤ N − 1. The equation n1 − n2 = uM − vN
can be rearranged as (u+ q2)M = (v+ q1)N . Then we
obtain u + q2 = N and v + q1 = M because M and
N are coprime and 1 ≤ u + q2 ≤ 2N − 2. Therefore
(n1, n2) = ((M − v)N, (N − u)M).

Lemma 8: If n ∈ P1 or n ∈ P3, then n is essential with
respect to Scoprime.

Proof: Due to [9, Lemma 1], it suffices to show that, if
n1 = p1M ∈ P1 and n3 = p3N ∈ P3, then w(n1 − n3) =
1. Namely, (n1, n3) is the only sensor pair of Scoprime with
difference n1 − n3.

Assume that there exists another pair (s1, s2) ∈ S2coprime

such that (s1, s2) 6= (n1, n3), and s1−s2 = n1−n3. According
to (s1, s2), we have the following cases:

1) s1, s2 ∈ {0} ∪ P1: Assume that s1 = q1M and s2 =
q2M for 0 ≤ q1, q2 ≤ N − 1. The condition s1 − s2 =
n1 − n3 can be rearranged as (p1 − q1 + q2)M = p3N .
Since M and N are coprime, the parameter p3 is an
integer multiple of M , which contradicts (46).

2) s1, s2 ∈ P2∪{MN}∪P3: Let s1 = q1N and s2 = q2N
for 1 ≤ q1, q2 ≤ 2M − 1. The condition s1 − s2 =
n1 − n3 becomes (p3 + q1 − q2)N = p1M . Due to the
coprimeness of M and N , the parameter p1 is divisible
by N , causing a contradiction with (44).

3) s1 ∈ {0} ∪ P1 and s2 ∈ P2 ∪ {MN} ∪ P3: Suppose
that s1 = q1M and s2 = q2N for 0 ≤ q1 ≤ N − 1
and 1 ≤ q2 ≤ 2M − 1. If s1 − s2 = n1 − n3, then
(p1 − q1)M = (p3 − q2)N . The coprimeness of M and
N indicates that N divides p1 − q1. Since −N + 2 ≤
p1 − q1 ≤ N − 1, we have p1 = q1, s1 = n1, and
s2 = n3, which contradicts (s1, s2) 6= (n1, n3).

4) s1 ∈ P2∪{MN}∪P3 and s2 ∈ {0}∪P1: We assume that
s1 = q1N and s2 = q2M for 1 ≤ q1 ≤ 2M−1 and 0 ≤
q2 ≤ N − 1. The condition s1 − s2 = n1 − n3 becomes
(p3+q1)N = (p1+q2)M . We have p1+q2 = N because

M and N are coprime and 1 ≤ p1+q2 ≤ 2N−2. Hence
p3 + q1 = M , which contradicts the range of p3 + q1
(M + 2 ≤ p3 + q1 ≤ 4M − 2).

Lemma 9: SD({0}∪P1)∪CD(P1, {MN}) = SD({0}∪P1).
Proof: The elements in CD(P1, {MN}) can be expressed

as ±(MN − p1M) for 1 ≤ p1 ≤ N − 1, which is equivalent
to ±((N − p1)M − 0). Since 1 ≤ N − p1 ≤ N − 1, we have
±(MN − p1M) ∈ SD({0} ∪ P1).

Next we move on to the main argument. Due to [9,
Lemma 2] and Lemma 8, the family E ′1 contains A and B.
For the remaining elements in Scoprime, it is assumed that
A ⊆ P2 ∪ {MN} and |A| = k. Let S be Scoprime\A and D
be the difference coarray of S. The sets D1, D2, and D3 are
defined as

D1 , SD(({0} ∪ P2 ∪ {MN} ∪ P3)\A), (60)

D2 , CD(P1, (P2 ∪ {MN})\A), (61)

D3 , CD(P1,P2\A). (62)

Furthermore, the sets D1 , SD({0} ∪ P2 ∪ {MN} ∪ P3),
D2 , CD(P1,P2 ∪ {MN}), and D3 , CD(P1,P2). Under
these assumptions, D can be expressed as

D = SD({0} ∪ P1) ∪ SD(({0} ∪ P2 ∪ {MN} ∪ P3)\A)

∪ CD({0} ∪ P1, ({0} ∪ P2 ∪ {MN} ∪ P3)\A) (63)

= SD({0} ∪ P1) ∪ D1 ∪ D2 ∪ CD(P1,P3). (64)

The term {0} in the cross difference of (63) can be removed
since CD(B, {0}) is a subset of SD({0} ∪ B) for any set B.
According to the relation between MN and A, the set D2 can
be expressed as

D2 =

{
D3, if MN ∈ A,
CD(P1, {MN}) ∪ D3, if MN 6∈ A,

(65)

where D3 is given by (62). Substituting (65) into (64) and
using Lemma 9 result in

D = SD({0} ∪ P1) ∪ D1 ∪ D3 ∪ CD(P1,P3). (66)

The following lemmas characterize the difference coarray
D in terms of D1 and D3. Here D is the difference coarray of
the coprime array Scoprime.
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Lemma 10: Assume that A ⊆ P2 ∪ {MN}. If |A| = k ≤
M − 2, then D1 = D1.

Proof: First, it can be shown that SD({0} ∪ P3) =
D1\{±(M−1)N,±MN}. It suffices to show that (M−1)N
and MN belong to D1 if k ≤ M − 2. In this case, since
|(P2 ∪ {MN})\A| = M − k ≥ 2, there exists n = qN ∈
(P2 ∪ {MN})\A such that 2 ≤ q ≤ M , If q = M ,
then the differences (M − 1)N and MN reside in D1 since
(M − 1)N = (2M − 1)N −MN and MN = MN − 0. If
2 ≤ q ≤ M − 1, then the differences (M − 1)N and MN
live in D1 since (M − 1)N = (M − 1 + q)N − qN,MN =
(M + q)N − qN , and (M − 1 + q)N, (M + q)N ∈ P3.

Lemma 11: Let A ⊆ P2 ∪ {MN} and AR , {MN − a :
a ∈ A}. Then D3 = D3 if and only if A and AR are disjoint.

Proof: First, it is assumed that MN does not belong to
A. We have D3 = CD(P1,P2) = CD(P1,P2\A)∪CD(P1,A).
Therefore, the statement that D3 = D3 is equivalent to
CD(P1,A) ⊆ D3.

If A and AR are disjoint, then for every n ∈ A, the location
MN − n ∈ P2\A. Due to Lemma 7, we have CD(P1,A) ⊆
CD(P1,P2\A) = D3. If A and AR are not disjoint, then there
exists 1 ≤ v ≤M − 1 such that {vN, (M − v)N} ⊆ A. As a
result, vN 6∈ P2\A and (M − v)N 6∈ P2\A. Due to Lemma
7, for some 1 ≤ u ≤ N − 1, the difference uM − vN ∈ D3

is related to the pair (uM, vN) or ((M − v)N, (N − u)M).
These pairs cannot be found in the cross difference between
P1 and P2\A. Hence D3 6= D3.

Second, let us consider the case of MN ∈ A. The set B and
BR are defined as B , A\{MN} ⊆ P2 and BR , {MN−b :
b ∈ B} ⊆ P2, respectively. Due to the first part of the proof,
we have D3 = D3 if and only if B and BR are disjoint. Since
0 6∈ B and MN 6∈ BR, B and BR being disjoint is equivalent
to A and AR being disjoint, which completes the proof.

Lemma 12: D = D if and only if D1 = D1 and D3 = D3.
Proof: The sufficiency part of Lemma 12 is trivial using

(66). The following shows the necessity part.
Let m ∈ D1 but m 6∈ D1. We denote m = rN for −(2M −

1) ≤ r ≤ 2M − 1. We will show that the union of SD({0} ∪
P1), D3, and CD(P1,P3), does not contain m, implying that
D 6= D. If m ∈ SD({0} ∪ P1), then there exists −(N − 1) ≤
s ≤ N−1 such that rN = sM . Due to the coprimeness of M
and N , the parameter s is an integer multiple of N , implying
s = 0 and m = 0. But 0 ∈ D1, which contradicts m 6∈ D1.
If m ∈ D3, then there exists a sensor pair in {0} ∪ P2 ∪
{MN}∪P3 (because m ∈ D1) whose difference is uM−vN
for 1 ≤ u ≤ N−1 and 1 ≤ v ≤M−1 (since m ∈ D3 ⊆ D3).
This result contradicts Lemma 7. If m ∈ CD(P1,P3), then
there exist 1 ≤ p1 ≤ N − 1 and M + 1 ≤ p3 ≤ 2M − 1
such that rN = p1M − p3N , implying (r + p3)N = p1M .
Since M and N are coprime, we have that p1 is divisible by
N , which violates 1 ≤ p1 ≤ N − 1.

If m ∈ D3 but m 6∈ D3, then m can be expressed as uM −
vN for 1 ≤ u ≤ N − 1 and 1 ≤ v ≤ M − 1. Lemma 7
indicates that, such difference can only be found in the cross
difference between P1 and P2. Therefore, m does not belong
to the union of SD({0} ∪ P1), D1, and CD(P1,P3). These
arguments complete the proof.

Now let us consider how the subarray A ⊆ P2 ∪ {MN}
influences the difference coarray D. Based on the parameter
M , we have the following cases:

1) M = 2: In this case, we have A ⊆ P2 ∪ {MN} =
{N, 2N}. Due to Theorem 2, Lemma 11, and Lemma
12, it can be shown that D 6= D for A = {N} and
D = D for A = {2N}. Therefore, N is essential but
2N is inessential. If A = {N, 2N}, then A contains
the essential element N , implying that A 6∈ E ′2. These
arguments prove (47) to (49) for M = 2.

2) M = 3: This case leads to A ⊆ P2 ∪ {MN} =
{N, 2N, 3N}. If A = {N}, {2N}, or {3N}, then it
can be shown that D = D, due to Lemmas 10 to 12.
Hence these elements are inessential. If A = {N, 2N},
then A = AR, so D 6= D, due to Lemmas 11 and 12.
Similarly, it can be shown that {2N, 3N} is 2-essential,
due to D1 6= D1, while {N, 3N} is not 2-essential. If
A = {N, 2N, 3N}, then it is a superset of {N, 2N},
which is 2-essential. Therefore A 6∈ E ′3. As a result, we
prove (47) to (49) for M = 3.

3) M ≥ 4: According to the value of k, we have the
following cases:

a) k = 1: Due to Lemma 10, we have D1 = D1.
Therefore, based on Lemmas 11 and 12, we have
D 6= D if and only if A and AR are not disjoint.
For the essential sensors, since |A| = 1, we have
A = AR, implying that n = MN − n for some
n ∈ P2. If M is an odd number, then n is not an
integer and n 6∈ P2. If M is an even number, then
this essential sensor becomes n = MN/2, which
proves (47).

b) k = 2: Similar to the case of M ≥ 4 and k = 1,
we have D 6= D if and only if A and AR are not
disjoint, due to Lemmas 10 to 12. This result means
that, all the subarrays of the form {n,MN − n}
for n ∈ P2 belongs to E ′2, which proves (48).

c) 3 ≤ k ≤ dM/2e: In this case, we have k ≤
dM/2e ≤ M − 2, which implies D1 = D1 due
to Lemma 10. Next, according to the set A, we
have two cases. If A and AR are disjoint, then
D3 = D3, due to Lemma 11. Therefore, D = D
and A 6∈ E ′k. On the other hand, if A and AR are
not disjoint, then there exists {n,MN − n} ⊆ A
for some n ∈ P2. Since {n,MN − n} ∈ E ′2, we
have A 6∈ E ′k. These arguments show that E ′k is
empty.

d) k ≥ dM/2e + 1: For any choice of A, it can
be shown that there exists n ∈ P2 such that
{n,MN − n} is a subset of A. Hence A ∈ Ek
but A 6∈ E ′k, implying that E ′k is empty. All these
arguments proves Theorem 3.

VI. NUMERICAL EXAMPLES

In this section, we will study the DOA estimation perfor-
mance of arrays in the presence of random sensor failure,
through several numerical examples.



13

0 1 3 6 13 20 27 31 3536
(d)

1 2 3 4 5 6 12 18 24 30
(c)

0 3 5 6 910 12 15 20 25
(b)

0 1 2 3 4 5 6 7 8 9
(a) Essential

Inessential
Empty

Fig. 6. The array configurations for (a) ULA with 10 elements, (b) the
coprime array with M = 3, N = 5, (c) the nested array with N1 = N2 = 5,
and (d) the MRA with 10 elements.

TABLE I
THE ARRAY PROFILES IN SECTION VI-A

Array Description |S| |D| |U| F1

(a) ULA 10 19 19 0.2

(b) Coprime array
M = 3, N = 5

10 43 35 0.7

(c) Nested array
N1 = 5, N2 = 5

10 59 59 1

(d) MRA 10 73 73 1

A. Comparison of ULA, MRA, Nested Arrays, and Coprime
Arrays

Fig. 6 depicts (a) the ULA, (b) the coprime array with
M = 3, N = 5, (c) the nested array with N1 = N2 = 5, and
(d) the MRA. All these arrays have 10 physical sensors. Here
the essential sensors and the inessential sensors are denoted
by diamonds and rectangles, respectively. It can be shown
that the difference coarrays are {0,±1, . . . ,±9} for the ULA,
{0,±1, . . . ,±17,±19,±20,±22,±25} for the coprime array,
{0,±1, . . . ,±29} for the nested array, and {0,±1, . . . ,±36}
for the MRA. Details such as the size of the difference coarray
|D|, the size of the central ULA segment |U|, and the fragility
F1 are summarized in Table I.

In Fig. 7, the DOA estimation is done by the coarray
MUSIC algorithm. The reason why the MHA and the Cantor
array with 10 sensors are not included is two-fold. First,
coarray MUSIC is usually not deployed for MHAs, since they
do not necessarily own a large central ULA segment in the
difference coarray. Second, the Cantor array is defined only for

10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

Probability of failure for each sensor, p

R
M

SE

(a) ULA
(b) Coprime
(c) Nested
(d) MRA

(I) (II) (III)

(a)

(b)
(c)

(d) (b)

(a)

(b)

(c)
(d)

Fig. 7. The dependence of RMSE on the element failure probability p for the
array configurations in Fig. 6. There are 10 sensors. The number of snapshots
is 100 and the SNR is 0dB. There is one source (D = 1) with θ̄1 = 0.25.
Each data point is averaged over 106 independent Monte-Carlo runs.

|S| = 2r sensors, where r is a nonnegative integer. Therefore
we cannot obtain the Cantor array for 10 sensors.

1) One Source: Fig. 7 plots the DOA estimation perfor-
mance of these arrays as a function of the sensor failure
probability p, in the range from 10−4 to 0.3.1 Here the number
of snapshots is 100 and the signal-to-noise ratio (SNR) is
0dB. There is one source (D = 1) at θ̄1 = 0.25. In each
run, each sensor fails independently with probability p and
the array output is generated based on [9, (1)], from which
coarray MUSIC [29] computes the estimated source direction̂̄θi. For all 106 Monte-Carlo runs, we only collect the instances
where coarray MUSIC works, from which the root-mean-
square error (RMSE = (

∑D
i=1 (θ̄i − ̂̄θi)/D)1/2) is calculated

and averaged.
In this example, coarray MUSIC works for almost all Monte

Carlo runs, when p is sufficiently small. In particular, if p =
0.1, then the coarray MUSIC is operational in 99.994% of the
instances for ULA, in 96.386% of those for the coprime array,
in 99.635% of those for the nested array, and in 96.391% of
those for the MRA.

Fig. 7 can be divided into three regions:
• Region (I): The MRA owns the smallest RMSE, which

is mainly governed by the size of the difference coarray.
• Region (II): Neither the MRA nor the ULA has the

smallest RMSE.
• Region (III): The ULA has the least RMSE, which is

primarily controlled by the robustness of the array.
In Region (I), the best performance is enjoyed by the MRA,

followed by the nested array, then the coprime array, and
finally the ULA. This is because for sufficiently small p, all the
sensors tend to be operational and the performance of coarray
MUSIC is dominated by the size of the difference coarray [18].
Note that, as p goes to zero, the RMSE does not approach zero
due to finite snapshots and nonzero noise (0dB SNR) [18].

In Region (III), it can be deduced that the RMSE is in
accordance with the robustness of these arrays. This is since
for large p, it is very likely to have multiple faulty elements and
the ULA has the least probability that the difference coarray
changes. Another observation is that, empirically, for large
p, the nested array has smaller RMSE than the MRA, even
though they are both maximally economic. The is because the
k-essentialness property only characterizes the integrity of the
difference coarray, instead of the central ULA segment of the
difference coarray. It is known that the latter has significant
influence on the applicability of coarray MUSIC [18], [29].

Another remark is on Region (II). It is observed in Table
I that the coprime array does not have the largest difference
coarray, nor does it have the smallest fragility F1, but it has
the least RMSE in most of Region (II) in Fig. 7. This result
shows the existence of sparse arrays that strike a balance
between the size and the robustness of the difference coarray.
Future research can be directed towards designing such array
geometries, which work the best in Region (II).

1Based on the exponential distribution, the sensor failure probability can be
modeled as p = 1− e−λt, where λ is the failure rate and t is time duration
[6, Section 2.6.3]. For instance, if λ = 100 failures per million hours (0.876
failures per year) and t = 5 hours, then p ≈ 5 × 10−4. Interested readers
are referred to [6], [7] and the references therein.
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Fig. 8. The dependence of RMSE on the element failure probability p for
the array configurations in Fig. 6. The number of snapshots is 100 and the
SNR is −10dB. There is one source (D = 1) with θ̄1 = 0.25. Each data
point is average over 106 independent Monte-Carlo runs.
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Fig. 9. The dependence of RMSE on the element failure probability p for the
array configurations in Fig. 6. The number of snapshots is 100 and the SNR
is 0dB. There are five sources (D = 5) with θ̄i = −0.25 + 0.125(i− 1) for
i = 1, 2, . . . , 5. Each data point is average over 106 independent Monte-Carlo
runs.

Next we will investigate an example with low SNR, namely
−10dB. Fig. 8 shows the estimation performance of the arrays
in Table I under sensor failure. The number of snapshots is 100
and the only source has θ̄1 = 0.25. Several observations can be
drawn from Figs. 7 and 8. First, since Fig. 8 has lower SNR,
the RMSEs in Fig. 8 are larger than those in Fig. 7. Second, the
ranges of the three regions in Fig. 8 are different from those
in Fig. 7. Region (I) is now approximately 10−4 < p < 1.2×
10−3, Region (II) has around 1.2 × 10−3 < p < 2.8 × 10−2,
and Region (III) corresponds to p > 2.8×10−2. Furthermore,
in Fig. 8, the nested array has smaller RMSE than the coprime
array in Region (II).

2) Multiple Sources: Fig. 9 demonstrates the RMSE of the
array geometries in Fig. 6. We consider D = 5 sources with
θ̄i = −0.25+0.125(i−1) for i = 1, 2, . . . , 5. The SNR is 0dB
and the number of snapshots is 100. It can be deduced that the
RMSEs increase when there are multiple sources, compared
with the case of one source in Fig. 7. Furthermore, in Fig.
8, Region (I) becomes 10−4 < p < 1.1 × 10−3, Region (II)
corresponds to 1.1×10−3 < p < 7.8×10−2, and Region (III)
is p > 7.8 × 10−2. Among all the array configurations, the
nested array has the least RMSE around p = 5× 10−3 while
the coprime array owns the smallest RMSE near p = 5×10−2.

TABLE II
THE ARRAY PROFILES IN SECTION VI-B

Array Description |S| |D| |U| F1

(N1) Nested array
N1 = 8, N2 = 8

16 143 143 1

(N2) Nested array
N1 = 9, N2 = 7

16 139 139 1

(N3) Nested array
N1 = 10, N2 = 6

16 131 131 1

(C1) Coprime array
M = 4, N = 9

16 103 79 0.8125

(C2) Coprime array
M = 5, N = 7

16 103 79 0.6875

(C3) Coprime array
M = 6, N = 5

16 91 71 0.6875
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(N1) Nested array N1 = 8, N2 = 8

(N2) Nested array N1 = 9, N2 = 7

(N3) Nested array N1 = 10, N2 = 6

Fig. 10. The dependence of RMSE on the element failure probability p for
the nested arrays in Table II. The number of snapshots is 100 and the SNR
is 0dB. There is one source with θ̄1 = 0.25. Each data point is average over
106 independent Monte-Carlo runs.

B. Comparison of Different Possible Configurations of Nested
and Coprime Arrays

For a fixed number of sensors, there are several ways to
configure a nested array, and similarly for a coprime array. In
this section, we compare the performance of these different
configurations under sensor failure. We assume the number of
sensors is 16. We select three possible nested arrays, denoted
by (N1), (N2), and (N3), as well as three coprime arrays,
denoted by (C1), (C2), and (C3), according to Definitions 12
and 15. Table II lists the size of the difference coarray |D|,
the size of the central ULA segment of the difference coarray
|U|, and the 1-fragility F1 for these array configurations. In this
example, for these nested arrays, |D| decreases monotonically
as the parameter N1 increases, but F1 remains unity. For the
coprime arrays, all of |D|, |U|, and F1 are monotonically
decreasing when the parameter M grows.

Fig. 10 shows the dependence of RMSE on the element
failure probability p for the nested arrays. We consider 100
snapshots, 0dB SNR, and 106 Monte-Carlo runs. There is one
source at θ̄1 = 0.25. For p ≈ 2 × 10−4, the smallest RMSE
is exhibited by (N1), followed by (N2), and finally (N3). This
is because the size of the difference coarray is ordered by
(N1) (largest), (N2), and (N3) (smallest). For p ≈ 10−1, the
smallest RMSE is given by (N3), (N2), and finally (N1). This
result cannot be explained by examining F1, since F1 = 1



15

10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

Probability of failure for each sensor, p

R
M

SE

(C1) Coprime array M = 4, N = 9

(C2) Coprime array M = 5, N = 7

(C3) Coprime array M = 6, N = 5

Fig. 11. The dependence of RMSE on the element failure probability p for
the coprime arrays in Table II. The number of snapshots is 100 and the SNR
is 0dB. There is one source with θ̄1 = 0.25. Each data point is average over
106 independent Monte-Carlo runs.

for all these nested arrays. It is possible that this phenomenon
can be explained by the robustness of the ULA segment in the
difference coarray, on which the coarray MUSIC relies. This
requires further thought.

Next let us move on to coprime arrays, whose profiles are
listed in Table II and the DOA estimation performance is
plotted in Fig. 11. For p ≈ 2 × 10−4, the smallest RMSE
is exhibited by (C2), then (C1), and finally (C3). This result
can be explained as follows.

1) Since p ≈ 2 × 10−4 is relatively small, the DOA
estimation performance is primarily governed by the size
of U. Table II shows that, (C1) and (C2) have the same
|U| while (C3) owns the smallest |U|. This is roughly
consistent with the RMSE for p ≈ 2× 10−4 in Fig. 11.

2) It is also observed that the RMSE of (C2) is slightly
smaller than that of (C1) for p ≈ 2× 10−4. The reason
is that (a) (C1) and (C2) have the same |U|, and (b) F1

of (C2) is smaller than that of (C1), implying that (C2)
is more robust than (C1).

For the coprime arrays with p > 10−2, (C2) has the smallest
RMSE, followed by (C3), and finally (C1). This phenomenon
is due to the following.

1) Since p is relatively large, we can first compare the
robustness of these arrays. Table II indicates that F1 of
(C1) is the largest and the remaining are identical. As a
result, the RMSE of (C1) is the largest in this region.

2) Since (C2) and (C3) have the same fragility, the sizes
of U should be compared to get more insight. We have
that |U| of (C2) is larger than that of (C3). Therefore
the RMSE of (C3) is smaller than that of (C2).

VII. CONCLUDING REMARKS

In this paper, we studied the robustness of the difference
coarrays for MRA, MHA, nested arrays, Cantor arrays, ULA,
and coprime arrays, with respect to sensor failures, through
the theory presented in the companion paper [9]. The proposed
closed-form expressions for the k-essential Sperner family not
only indicate the importance of elements in these arrays, but
also provide many insights into the reliability and the DOA
estimation performance based on these arrays.

Future research will be directed towards designing novel
sparse array geometries that strike a balance between per-
formance and robustness [30], [31]. For instance, it could
be possible to robustify a given array geometry by adding
or redistributing the elements in the array. Another future
direction is to focus on the robustness of the central ULA
segment in the difference coarray, which has an impact on the
applicability of coarray MUSIC.
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