Optimizing Minimum Redundancy Arrays for Robustness

Chun-Lin Liu* and P. P. Vaidyanathan ${ }^{\dagger}$

*Dept. of Electrical Engineering
Graduate Institute of Communication Engineering National Taiwan University, Taipei, Taiwan 10617
chunlinliu@ntu.edu.tw
\dagger Dept. of Electrical Engineering California Institute of Technology

Pasadena, CA 91125, USA
ppvnath@systems.caltech.edu

Asilomar Conference on Signals, Systems, and Computers
October 29, 2018

Outline

(1) Introduction

2 Review of Sparse Arrays and Robustness
(3) Robust Minimum Redundancy Arrays

4 Concluding Remarks

Outline

(2) Review of Sparse Arrays and Robustness

3 Robust Minimum Redundancy Arrays
4. Concluding Remarks

Direction-Of-Arrival (DOA) Estimation

Wavelength λ

${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

Physical Array and Difference Coarray

Physical array \mathbb{S}

Difference coarray $\mathbb{D} \triangleq\left\{n_{1}-n_{2}: n_{1}, n_{2} \in \mathbb{S}\right\}$ -19
0

${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

Sensor Failures

Array \#3 (1 fails)

Coarray MUSIC is not applicable here!
${ }^{1}$ Liu and Vaidyanathan, IEEE Signal Process. Letters, 2015.
${ }^{2} 100$ snapshots, 0 dB SNR, $D=2$ sources, $\theta_{1}=-0.1, \theta_{2}=0.1$, equal-power, uncorrelated sources.

Outline

(1) Introduction

(2) Review of Sparse Arrays and Robustness

3 Robust Minimum Redundancy Arrays

4. Concluding Remarks

ULA and Sparse Arrays

ULA (not sparse)

- Identify at most $N-1$ uncorrelated sources. ${ }^{1}$
(N is the number of sensors)
- Can only find fewer sources than sensors.

[^0]
Minimum Redundancy Arrays

$$
\mathbb{S}_{\mathrm{MRA}} \triangleq \underset{\mathbb{S}}{\arg \max }|\mathbb{D}| \quad \text { subject to } \quad|\mathbb{S}|=N, \quad \mathbb{D}=\mathbb{U}
$$

- N physical sensors
- Hole-free \mathbb{D}
- No closed-form expressions for $\mathbb{S}_{\mathrm{MRA}}$

$\mathbb{S}_{\text {MRA }}, N$ physical sensors

0

${ }^{1}$ Moffet, IEEE Trans. Antennas Propag., 1968.

The Essentialness Property

The sensor $n \in \mathbb{S}$ is essential with respect to \mathbb{S} if $\overline{\mathbb{D}} \neq \mathbb{D}$.

Physical array	Difference coarray	
	$\times_{-7}{ }_{-7}$	0 is essential
		1 is inessential
		2 is inessential
		7 is inessential

[^1]
The Fragility F : Definition

The fragility $F \triangleq$ \# of essential sensors \# of sensors

$$
\frac{2}{N} \leq F \leq 1, \quad \text { for all } N \geq 4
$$

More robust Less fragile

[^2]
The Fragility F and the Normalized Size of \mathbb{D}

$F \triangleq \frac{\# \text { of essential sensors }}{\# \text { of all sensors }(N)}$

ULA

- More robust
- Less fragile

$$
\mathfrak{D} \triangleq \frac{|\mathbb{D}|}{N^{2}-N+1}
$$

- More sources than sensors
- Higher resolution
${ }^{1}$ Liu and Vaidyanathan, IEEE SAM, 2018.

Outline

(1) Introduction
(2) Review of Sparse Arrays and Robustness
(3) Robust Minimum Redundancy Arrays

4 Concluding Remarks

RMRA: Definition

$$
\begin{align*}
(\mathrm{P} 1): \quad \mathbb{S}_{\mathrm{RMRA}} \triangleq \underset{\mathbb{S}}{\arg \max }|\mathbb{D}| & \text { subject to } \tag{1}\\
|\mathbb{S}| & =N, \tag{2}\\
\mathbb{D} & =\mathbb{U}, \tag{3}\\
F & =\frac{2}{N}, \quad N \geq 4 \tag{4}
\end{align*}
$$

- (2): N physical sensors
- (3): Hole-free \mathbb{D}
- (4): The minimum fragility (the most robust)

RMRA: Array Geometries Found by Direct Searching

N	Array Configuration
4	\#1: $\square_{0} \quad \underbrace{}_{3} \quad \bullet$ Essential \quad Inessential
5	$\# 1:-\square \square \underset{0}{\bullet}$
6	
7	
8	$\text { \#2: }{ }_{0} \square_{3} \times \underset{5}{\times} \times \square_{8} \times \times \square_{12}$
9	
10	

[^3]
RMRA: Properties

$$
\begin{aligned}
(\mathrm{P} 1): \quad \mathbb{S}_{\mathrm{RMRA}} \triangleq \underset{\mathbb{S}}{\arg \max }|\mathbb{D}| & \text { subject to } \\
|\mathbb{S}| & =N, \\
\mathbb{D} & =\mathbb{U}, \\
F & =\frac{2}{N}, \quad N \geq 4
\end{aligned}
$$

- The solution to (P1) exists.
- The solution to (P1) is not unique.
- To the best of our knowledge, closed-form expressions for $\mathbb{S}_{\text {RMRA }}$ is not known.
- The difference coarray of $\mathbb{S}_{\text {RMRA }}$ has size $\mathcal{O}\left(N^{2}\right)$.

Theorem 1: The Size of the Difference Coarray

Theorem
Let $\mathbb{S}_{\text {RMRA }}$ be a solution to (P1) with $N \geq 4$ physical sensors. The aperture of $\mathbb{S}_{\mathrm{RMRA}}$ is denoted by A_{RMRA}. Then

$$
\begin{equation*}
L_{\mathrm{RMRA}} \leq \frac{N^{2}}{A_{\mathrm{RMRA}}}<U_{\mathrm{RMRA}}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\mathrm{RMRA}} \triangleq 4+\frac{4 \sqrt{2}}{3 \pi}, \quad U_{\mathrm{RMRA}} \triangleq 16 \tag{6}
\end{equation*}
$$

The smaller N^{2} / A is, the better the array is (in the sense of large hole-free \mathbb{D}).
${ }^{1}$ Liu and Vaidyanathan, ACSSC, 2018.

Comparison between MRA and RMRA

MRA [ErdösGál 1948, RédeiRényi1948, Leech1956]

For MRA with N sensors,

$$
\begin{equation*}
L_{\mathrm{MRA}} \leq \lim _{N \rightarrow \infty} \frac{N^{2}}{A_{\mathrm{MRA}}} \leq U_{\mathrm{MRA}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{\mathrm{MRA}} \triangleq 2.434 \ldots, \quad U_{\mathrm{MRA}} \triangleq 3.348 \ldots \tag{8}
\end{equation*}
$$

For sufficiently large N, we have

$$
\begin{aligned}
0.2987 N^{2} \leq A_{\mathrm{MRA}} & \leq 0.4108 N^{2} \\
0.0625 N^{2}<A_{\mathrm{RMRA}} & \leq 0.2174 N^{2}
\end{aligned}
$$

Due to the above This talk

[^4]
A Numerical Example of Theorem 1

$L_{\mathrm{RMRA}}=4+\frac{4 \sqrt{2}}{3 \pi} \approx 4.6002, \quad U_{\mathrm{RMRA}}=16, \quad L_{\mathrm{MRA}}=2.434 \ldots, \quad U_{\mathrm{MRA}}=3.348 \ldots$.

Outline

(2) Review of Sparse Arrays and Robustness

3 Robust Minimum Redundancy Arrays

4 Concluding Remarks

Concluding Remarks

- Robust array geometries with large difference coarray
- Robust minimum redundancy array (RMRA) with N sensors
- Minimum fragility ($F=2 / N$)
- Hole-free difference coarray
- $\left|\mathbb{D}_{\text {RMRA }}\right|=\mathcal{O}\left(N^{2}\right)$
- Future work
- Suboptimal solutions to RMRA with large N

Thank you!

[^0]: ${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.
 ${ }^{2}$ Moffet, IEEE Trans. Antennas Propag., 1968.
 ${ }^{3}$ Pal and Vaidyanathan, IEEE Trans. Signal Process., 2010.
 ${ }^{4}$ Vaidyanathan and Pal, IEEE Trans. Signal Process., 2011.
 ${ }^{5}$ Liu and Vaidyanathan, IEEE Trans. Signal Process., 2016.

[^1]: ${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018; \mathbb{D} is the difference coarray of \mathbb{S} and $\overline{\mathbb{D}}$ is the difference coarray of $\mathbb{S} \backslash\{n\}$.

[^2]: ${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018.

[^3]: ${ }^{1}$ Liu and Vaidyanathan, ACSSC, 2018.

[^4]: ${ }^{1}$ Liu and Vaidyanathan, ACSSC, 2018.
 ${ }^{2}$ Erdős and Gál, Indagationes Mathematicae, 1948; Rédei and Rényi, Recueil Mathématique, 1948; Leech, J. London Math. Soc.,1956, Moffet, IEEE Trans. Antennas Propag., 1968.

