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ABSTRACT

In array processing, minimum redundancy arrays (MRA) can iden-
tify up toO(N2) uncorrelated sources (theO(N2) property) withN
physical sensors, but this property is susceptible to sensor failures.
On the other hand, uniform linear arrays (ULA) are robust, but they
resolve only O(N) sources. Recently, the robust MRA (RMRA)
was shown to possess the O(N2) property and to be as robust as
ULA. But finding RMRA is computationally difficult for large N .
This paper proposes a novel array geometry called the composite
Singer array, which is related to a classic paper by Singer in 1938,
and to other results in number theory. For largeN , composite Singer
arrays could own theO(N2) property and are as robust as ULA. Fur-
thermore, the sensor locations for the composite Singer array can be
readily computed by the proposed recursive procedure. These prop-
erties will also be demonstrated by using numerical examples.

Index Terms— Sparse arrays, difference coarrays, robustness,
Singer arrays, composite arrays.

1. INTRODUCTION

Sparse arrays have drawn attention in array signal processing due
to their capability of identifying O(N2) uncorrelated sources with
N physical sensors, in particular, more sources than sensors [1–4].
This O(N2) property is in contrast to uniform linear arrays (ULA),
which distinguish at most N − 1 uncorrelated sources [5]. The
O(N2) property is because the difference coarray of sparse arrays,
defined as the set of differences between sensor locations, has a cen-
tral ULA segment of size O(N2) [3, 4]. In particular, sparse ar-
rays with the O(N2) property include minimum redundancy arrays
(MRA) [6], nested arrays [3], and coprime arrays [4], to name a
few [7]. However, it was empirically observed that the structure of
the difference coarray of MRA is not robust to sensor failures [8].
This phenomenon could lead to degradation of the estimation per-
formance.

In early work, array robustness was studied based on array man-
ifold [9], or in terms of peak sidelobe level [10]. In this paper, we
focus on the theory of the essentialness property and the fragility,
since they are closely related to difference coarrays [8]. A sensor
at n in an array is essential if the deletion of that sensor (with all
other sensors intact) modifies the difference coarray. The fragility is
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defined as the ratio of the number of essential sensors to the num-
ber of all sensors. It can be shown that the fragility is bounded
between 2/N (the most robust) and 1 (the least robust). In partic-
ular, the ULA achieves the fragility 2/N while the MRA reaches the
fragility 1 [8]. With these tools, the robust MRA (RMRA) was de-
fined through an integer program such that RMRA enjoys a hole-free
difference coarray with size O(N2) and minimum fragility 2/N at
the same time [11]. Nevertheless, solving for the sensor locations of
RMRA is computationally expensive when N is large.

This paper continues to investigate novel array geometries other
than RMRA, that own a hole-free difference coarray with size
O(N2) as well as minimum fragility 2/N . This is done by the fol-
lowing steps. First, the composite array is constructed according to
two array configurations S1 and S2 such that the difference coarray
of the composite array has a larger size than the coarray of each of
S1 and S2. Similar techniques can be found in earlier works [12–16].
We show that the composite array reduces the fragility, but it does
not necessary achieve minimum fragility. Next, by combining
Singer arrays [17], the newly proposed supplementary array, and
the composite array, we obtain the composite Singer array, which
owns a hole-free difference coarray, minimum fragility 2/N , and
a simple and recursive formulation for large N . The above design
steps will be elaborated in detail.

Paper outline: Section 2 reviews the difference coarray and the
Singer array, and introduces the composite array. Section 3 first stud-
ies the fragility of the composite array and then presents the supple-
mentary array. It will also be shown that the composite Singer array
enjoys a hole-free difference coarray with size O(N2) and fragility
2/N . Section 4 demonstrates numerical examples of the composite
Singer array while Section 5 concludes this paper.

2. PRELIMINARIES

2.1. The Difference Coarray

Consider a linear array of sensors located at nλ/2, where n belongs
to an integer-valued set S and λ is the wavelength of the incom-
ing far-field and monochromatic sources. The direction-of-arrivial
(DOA) of the ith source is denoted by θi ∈ [−π/2, π/2]. Under the
assumption of uncorrelateness of the source amplitudes and the ad-
ditive noise term and other mild assumptions, the estimation of the
DOA based on the physical array S can be converted into the esti-
mation of the DOA based on the difference coarray D [1–4]. The
difference coarray D is defined as

Definition 1. The difference coarray of the sensor array S is
defined as D , {n1 − n2 : n1, n2 ∈ S}.



Array processing on D enjoys several advantages over that on
S. First, it was shown in [1, 3, 4] that exsiting DOA estimators on
S, such as the MUSIC algorithm, can be readily adapted to the au-
tocorrelation vector on D. Second, for some arrays with N physical
sensors, their difference coarrays own O(N2) degrees of freedom,
which is much larger than N . This property admits to resolve more
uncorrelated sources than sensors based on D [1–4]. Finally, it was
demonstrated that processing on D typically has higher spatial reso-
lution than that on the ULA with the same N [1, 3, 4].

In what follows, we will review some quantities related to the
difference coarray. First, the central ULA segment is defined as
U , {0,±1, . . . ,±m}, where m is the largest number such that
{0,±1, . . . ,±m} ⊆ D. A hole h ∈ Z in the difference coarray
is defined such that min(D) ≤ h ≤ max(D) but h /∈ D. An ar-
ray has a hole-free difference coarray if there are no holes in D, or
equivalently D = U.

Definition 2. The weight function w(m) of an array S is de-
fined as the number of sensor pairs with coarray location m. That is,
w(m) =

∣∣{(n1, n2) ∈ S2 : n1 − n2 = m}
∣∣.

Next we will introduce the essentialness of sensors, which is
fundamental to the robustness of arrays [8, 18].

Definition 3. Let S be a sensor array and D be its difference
coarray. A sensor at n ∈ S is essential (or n is essential) if its re-
moval from S changes the difference coarray. Namely, n is essential
if D 6= D, where D is the difference coarray of S , S\{n}.

Based on Definition 3, we say that n ∈ S is inessential if n is
not essential [8]. An array S is maximally economic if all the sensors
in S are essential [18]. The fragility of an array is defined based on
the essentialness of sensors [8]:

Definition 4. The fragility F of an array S is defined as the ratio
of the number of essential sensors in S to the total number of sensors
in S.

Conceptually, the fragility quantifies the robustness of S. For a
fixed number of sensors, largeF implies that there are more essential
sensors so the difference coarray tends to change in the presence of
sensor failures. Therefore the difference coarray is less robust to
sensors failures. In particular, if the number of sensors N ≥ 4, then
2/N ≤ F ≤ 1 [8]. The ULA achieves F = 2/N for N ≥ 4, while
maximally economic sparse arrays, such as minimum redundancy
arrays (MRA) [6], minimum hole arrays (MHA) [19], and nested
arrays [3], own F = 1.

Example 1. Consider the array S = {0, 1, 3, 4, 5, 6}. Accord-
ing to Definition 1, the difference coarray is D = {0,±1, . . . ,±6}.
It is clear that D = U so the difference coarray is hole-free. The
weight function w(4) is 2 since there exist two sensor pairs (4, 0)
and (5, 1) with separation 4. It can be shown that the sensors at 0
and 6 are essential and the remaining sensors are inessential. There-
fore, the fragility F = 2/6 = 1/3.

It was demonstrated in [20] that for the same number of sen-
sors N , larger difference coarrays usually make them less robust to
sensor failures, but there are exceptions. Given two arrays with the
same N and the same difference coarray, one could be much more
robust than the other. It is possible to design novel sparse arrays that
strike a balance between the size and the robustness of the difference
coarray. These arrays would be useful in applications where the es-
timation performance is controlled both by the size of the difference
coarrays and by robustness properties.

The robust minimum redundancy array (RMRA) was recently
proposed to have the largest hole-free difference coarray (like MRA)
and minimum fragility F = 2/N (like ULA), where N is the num-
ber of sensors [11]. At the same time the RMRA was proved to
ownO(N2) degrees of freedom in the difference coarray, like MRA.
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Fig. 1. (Top) The weight function w(m) of the Singer array with
q = 22 and M = q2 + q+1 = 21 and (bottom) the weight function
wM (mM ) after the modulo-M operation.

However, for largeN , it is computationally expensive to find the sen-
sor locations of RMRA, because a combinatorial search is needed.

2.2. The Singer Array

The Singer array is a family of array geometries that are built on the
following theorem in number theory [17, 21, 22]:

Theorem 1. Let q be a power of a prime number. Assume that
M = q2 + q + 1. Then there exist q + 1 integers d1, d2, . . . , dq+1

such that

1. 0 = d1 < d2 < · · · < dq+1 < M and

2. The set of pairwise differences between di and dj for i 6=
j is equivalent to {1, 2, . . . ,M − 1}, under the modulo-M
operation. That is,

{((di − dj))M : i 6= j, i, j = 1, 2, . . . , q + 1}
= {1, 2, . . . , M − 1}, (1)

where ((a))b denotes the remainder of a divided by b.

The property in (1) is analogous to the hole-free property of the
difference coarray [3, 6], but (1) is with respect to the modulo-M
operation. Using Theorem 1, the Singer array is defined as [17, 22]

Definition 5. A Singer array with the parameter q (a power of a
prime) is defined as the set {d1, d2, . . . , dq+1},where the numbers
d1, d2, . . . , dq+1 are given in Theorem 1.

Example 2. Let q = 22 = 4. Then M = q2 + q + 1 = 21 and
the Singer array is given by S = {0, 1, 4, 14, 16}, as listed in [17,
22]. The geometry of the Singer array is depicted on the top of Fig.
1, where dots and crosses denote physical sensors and empty space.
According to Definition 2, the weight function w(m) is illustrated
on the top of Fig. 1. It can be observed that the difference coarray of
the Singer array has holes at ±5,±6,±7,±8,±9,±11. However,
under the modulo-M operation, we define

mM , ((m))M ,

wM (mM ) ,
∣∣{(n1, n2) ∈ S2 : ((n1 − n2))M = mM}

∣∣ .
Here mM denotes the differences folded within the range from 0
to M − 1 and wM (mM ) represents the number of sensor pairs with
separationmM modulo-M . The bottom of Fig. 1 shows the function
wM (mM ) for the Singer array. It is deduced that each mM > 0
corresponds to exactly one sensor pair, which is in accordance with
Theorem 1.

The Singer array was applied to the proof of theO(N2) property
of MRA [13, 14] and has been used in active sensing as well [22].



Furthermore, the Singer arrays can be constructed using the methods
in [17]. For other details and extensions of the Singer array, the
interested readers are referred to [21].

2.3. The Composite Array

In this paper we will adapt the technique of duplicating a certain
array geometry based on the geometry of another array, to form a
composite array. This technique has in the past been used in prov-
ing the O(N2) property of MRA [12, 14], and in constructing large
MRAs [15] and generalized nested subarrays (GNSA) [16]. In this
paper, we will reformulate this concept into a unified definition,
called the composite array.

Definition 6. Suppose α is a positive integer. Let S1 and S2

denote two sensor arrays with min(S1) = min(S2) = 0. Then the
(α, S1, S2)-composite array Sc is defined as

Sc , αS1 + S2 = {αn1 + n2 : n1 ∈ S1, n2 ∈ S2}, (2)

where α > max(S2).
Several existing array geometries are special cases of (2). For

instance, in the proof of the O(N2) property of MRA, the authors
selected S1 to be the MRA, S2 to be the Singer array with parameter
q, and α = q2 + q + 1 [13, 14]. As another example, the GNSA
considers all the combinations of ULA, MRA, and nested arrays for
S1 and S2 and the parameter α is chosen according to S2.

Using Definition 6, the difference coarray of Sc is characterized
by the following corollary [16, Proposition 1]:

Corollary 1. Let Sc be a (α, S1, S2)-composite array. Suppose
the difference coarrays of Sc, S1, and S2 are denoted by Dc, D1, and
D2, respectively. Then Dc = αD1 + D2.

Example 3. Let us consider a numerical example of the com-
posite array. If α = 9, S1 = {0, 1} and S2 = {0, 1, 3, 4}, then
according to Definition 6, the (α, S1, S2)-composite array Sc =
{0, 1, 3, 4, 9, 10, 12, 13}. The difference coarray of Sc is given by
{0,±1, . . . ,±13}, which is hole-free and satisfies Corollary 1.

3. COMPOSITE SINGER ARRAYS FOR ROBUSTNESS

The earlier work related to the composite array, such as [13–16],
focused on generating difference coarrays with large central ULA
segments. In this paper, we will show that this technique can also
make the array more robust to sensor failures, but minimum fragility
is not necessary achieved. To overcome this issue, the supplementary
array will be proposed in addition to the composite array so that their
union could lead to a hole-free difference coarray with minimum
fragility, as we shall elaborate later.

First, we have the following proposition for the fragility of a
(α, S1, S2)-composite array.

Proposition 1. Assume that Sc is a (α, S1, S2)-composite array.
Then F (Sc) ≤ F (S1), where F (S) denotes the fragility of S.

Proof. First we will invoke the following property:

1. If n1 ∈ S1 is inessential with respect to S1, then αn1 + n2 is
inessential with respect to Sc for all n2 ∈ S2.

The proof of Property 1 is as follows. Since n1 is inessential with
respect to S1, the difference coarray D1 of S1 , S1\{n} is identical
to D1. Let us consider the (α, S1, S2)-composite array Sc with dif-
ference coarray Dc. Due to Corollary 1, we have Dc = αD1+D2 =
αD1+D2 = Dc. Therefore removing αn1+n2 from Sc for n2 ∈ S2

does not modify the difference coarray, which proves this property.

Suppose the number of essential sensors and inessential sensors
in S are denoted by E(S) and I(S), respectively. We have E(S) +
I(S) = |S|. Therefore, the fragility of Sc becomes

F (Sc) =
E(Sc)

|Sc|
= 1− I(Sc)

|Sc|
≤ 1− I(S1)|S2|

|Sc|
, (3)

where the inequality is because each inessential sensor in S1 corre-
sponds to |S2| sensors in Sc (Property 1), and all these sensor lo-
cations do not overlap (α > max(S2)). Next using the relation
|Sc| = |S1||S2| leads to F (Sc) ≤ 1− I(S1)/|S1| = F (S1).

Proposition 1 indicates that the (α, S1, S2)-composite array Sc

tends to be more robust than S1. However the fragility of Sc might
not achieve the minimum 2/|Sc|. In order to make the array ge-
ometry as robust as ULA, we introduce the supplementary array as
follows:

Definition 7. Let P and Q be positive integers satisfying Q >
2P (P − 1). The supplementary array Ssupp with parameters P and
Q is defined as

Ssupp = {u, uP, Q− u, Q− uP :

u = 0, 1, . . . , P − 1} . (4)

According to (4), the supplementary array Ssupp is the union
of four ULAs with separations 1, P , 1, and P , respectively. Ssupp

can also be divided into two parts {u,Q − uP} and {uP,Q − u}.
The latter is a reversed version of the former, where the reversed
version of S is defined as {max(S) + min(S) − n : n ∈ S} [18].
Furthermore, the part of {u,Q− uP} was utilized in [12, 14] to fill
missing numbers in the differences. Even though the supplementary
array is related to these earlier works, the novelty here is that we
would like not only to fill the holes but also to achieve minimum
fragility.

Using Definition 7, the supplementary array can be shown to
have these properties, where the proof technique is analogous to
those in [11, 14] and the details can be found in [23].

Proposition 2. Let Ssupp be the supplementary array with pa-
rameters P and Q. Let Dsupp be the difference coarray of Ssupp.
Define the new set

L , {1, 2, 3, . . . , P 2 − P, (5)

Q− 1, Q− 2, Q− 3, . . . , Q− (P 2 − 1)}. (6)

Then the following properties hold

1. |Ssupp| = 4P − 2.

2. L ⊆ Dsupp.

3. Let n ∈ Ssupp\{0, Q}. Denote the difference coarray of
Ssupp , Ssupp\{n} by Dsupp. Then L ⊆ Dsupp.

The third property in Proposition 2 indicates that the part of L
in Dsupp is invariant to one sensor failure (except for those on the
boundaries) in Ssupp, which can be utilized to reduce the fragility of
the composite array. This property motivates us to define the com-
posite Singer array based on a composite array, a Singer array, and
a supplementary array.

Definition 8. Let Sc and Ssupp be defined in Definitions 6 and
7, respectively. We define the composite Singer array as Scs , Sc ∪
Ssupp. The important items involved in the design are

1. S1, which is a sensor array with F (S1) = 2/|S1| and owning
a hole-free difference coarray. The number of sensors in S1

is at least 4.

2. S2 = {d1, d2, . . . , dq+1}, which is is a Singer array with the
parameter q, as in Definition 5.
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Fig. 2. The array configurations and the weight functions of (a) the (α, S1, S2)-composite array Sc and (b) the composite Singer array Scs. In
the array configurations, red diamonds, green squares, and crosses represent essential sensors, inessential sensors, and empty space.

3. α = q2 + q + 1.

4. P =
⌈√

2dq+1 + 1
⌉

.

5. Q = αA1 + dq+1, where A1 is the aperture of S1.

In addition, P and Q satisfy Q > 2P (P − 1).

Using Definition 8, it can be shown that the composite Singer
array has the following property [23].

Theorem 2. Suppose Scs is a composite Singer array, as in
Definition 8, whose difference coarray is denoted by Dcs. Then Dcs

is hole-free and F (Scs) = 2/|Scs|.
The proof of Theorem 2 is based on Theorem 1, Corollary 1, and

Proposition 2.

Remark 1: Definition 8 can be viewed as a recursive procedure
that starts with an array S1 having minimum fragility and a hole-
free difference coarray, to generate another array Scs with similar
attributes. This concept can be applied repeatedly by substituting
Scs for S1 in Definition 8 to obtain another array S′

cs.

Remark 2: LetN1 be the number of sensors in S1. Suppose that
S1 has theO(N2) property. Then for sufficiently large q andN1, the
O(N2) property holds for the composite Singer array. In particular,
if 1) qN1 is much larger than N1 and q and 2) |D1| = O(N2

1 ), then
|Dcs| = O(|Scs|2). This is because according to Definition 8, |Scs|
is bounded between |Sc| and |Sc|+ |Ssupp|, which can be simplified
as

|Sc| = |S1||S2| = (q + 1)N1 = O(qN1). (7)
|Sc|+ |Ssupp| = (q + 1)N1 + (4P − 2) = O(qN1). (8)

Eq. (8) is because the parameter P ≈
√

2dq+1 + 1 = O(q) [13,14].
Therefore |Scs| = O(qN1). Next, due to Theorem 2, the differ-
ence coarray Dcs is given by {0,±1, . . . ,±(αmax(D1) + dq+1)}.
Since the parameters α = O(q2), max(D1) = O(N2

1 ), and dq+1 =
O(q2), we have

|Dcs| = 2(αmax(D1) + dq+1) + 1 = O(q2N2
1 ) = O(|Scs|2).

Therefore, the composite Singer array has the O(N2) property.

4. NUMERICAL EXAMPLES

In this example, we will first construct a composite array Sc based on
the Singer array. We select S1 = {0, 1, 2, 3, 5, 6} (the RMRA with
6 sensors [11]), S2 as in Fig. 1, and α = 21. The array geometry and
the weight function are illustrated in Fig. 2(a), where red diamonds
and green squares denote essential sensors and inessential sensors,
respectively. The number of sensors in Sc is 30 and the aperture of
Sc is 142. It can be deduced from Fig. 2(a) that the fragility of Sc

is 10/30 and the fragility of S1 is 2/6, which confirm Proposition
1. The difference coarray Dc of Sc contains a central ULA segment
up to 130 and there are holes at 131, 132, 133, 134, 135, 137. As a
result, Dc has a large central ULA segment, but Dc has holes and the
fragility F (Sc) is not minimum.

Next let us consider the composite Singer array Scs. Definition
8 leads to P = 6 and Q = 142, which satisfy the constraint that
Q > 2P (P −1) in Definitions 7 and 8. Fig. 2(b) illustrates the array
geometry and the weight function of the composite Singer array Scs.
It is observed that the number of sensors in Scs becomes 46 but the
aperture remains 142. It can be deduced from Fig. 2(b) that the
difference coarray of Scs is now hole-free and the fragility F (Scs) =
2/|Scs|, achieving the minimum. These results confirm Theorem 2.

5. CONCLUDING REMARKS

This paper proposed the composite Singer array, which owns a hole-
free difference coarray (like MRA) and minimum fragility (like
ULA). Unlike the RMRA, this array can be readily defined in terms
of three arrays: (a) one array with a hole-free difference coarray
and minimum fragility, (b) a Singer array, and (c) a supplementary
array. Furthermore, the composite Singer array enjoys the O(N2)
property for large number of sensors.

In the future, it is of interest to study other array configurations
with minimum fragility and hole-free difference coarrays. For in-
stance, designing the parameters α, S1, and S2 properly could lead
to a composite array Sc with fewer sensors than the composite Singer
array, and satisfying the above-mentioned design criteria.

Another future direction is to extend this topic to other scenarios
such as correlated sources or two-dimensional arrays.
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