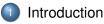
Composite Singer Arrays with Hole-Free Coarrays and Enhanced Robustness

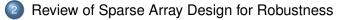
Chun-Lin Liu¹ and P. P. Vaidyanathan²

¹Dept. of Electrical Engineering ¹Graduate Institute of Communication Engineering National Taiwan University, Taipei, Taiwan 10617 chunlinliu@ntu.edu.tw¹

²Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA ppvnath@systems.caltech.edu²

ICASSP 2019

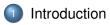




Composite Singer Arrays (Proposed)

A Numerical Example of Composite Singer Arrays

Concluding Remarks

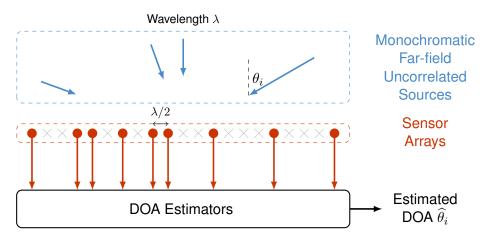


2) Review of Sparse Array Design for Robustness

- 3 Composite Singer Arrays (Proposed)
- 4 A Numerical Example of Composite Singer Arrays

5 Concluding Remarks

Direction-Of-Arrival (DOA) Estimation

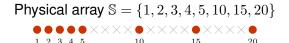


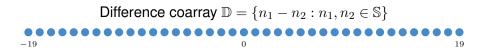
Liu and Vaidyanathan

Composite Singer Arrays

¹Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

Physical Array and Difference Coarray





Liu and Vaidyanathan

Composite Singer Arrays

¹ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002; Pillai, Bar-Ness, and Haber, Proc. IEEE, 1985; Abramovich, Gray, Gorokhov, and Spencer, IEEE Trans. Signal Process., 1998; Pal and Vaidyanathan, IEEE Trans. Signal Process., 2010; Vaidyanathan and Pal IEEE Trans. Signal Process., 2011.

Review of Sparse Array Design for Robustness

- 3 Composite Singer Arrays (Proposed)
- 4 A Numerical Example of Composite Singer Arrays

5 Concluding Remarks

ULA and Sparse Arrays

ULA (Not Sparse)

- Identify at most N 1 uncorrelated sources¹
 (N is the number of sensors)
- Can only find fewer sources than sensors
- Robust to sensor failures

Linear Sparse Arrays

- Minimum redundancy arrays
- Output Particular Internation Internation International Internation International Internation Inter
- Coprime arrays
- Super nested arrays
 - Identify O(N²) uncorrelated sources since the difference coarray has size O(N²)
 - More sources than sensors!

²Moffet, IEEE Trans. Antennas Propag., 1968. (MRA)

- ³Pal and Vaidyanathan, IEEE Trans. Signal Process., 2010. (Nested arrays)
- ⁴Vaidyanathan and Pal, IEEE Trans. Signal Process., 2011. (Coprime arrays)
- ⁵Liu and Vaidyanathan, IEEE Trans. Signal Process., 2016. (Super nested arrays)

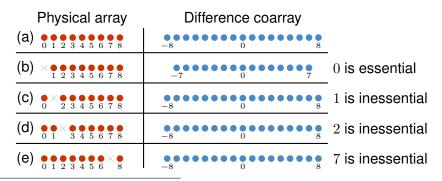
Liu and Vaidyanathan

Composite Singer Arrays

¹Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

The Essentialness Property

The sensor $n \in \mathbb{S}$ is essential with respect to \mathbb{S} if $\overline{\mathbb{D}} \neq \mathbb{D}$.



¹Liu and Vaidyanathan, IEEE ICASSP, 2018; IEEE Trans. Signal Process., 2019.

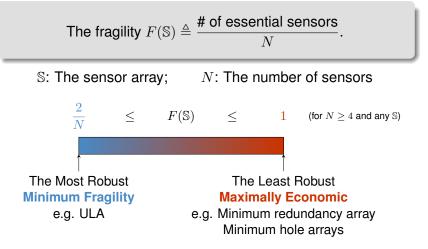
 ${}^{2}\mathbb{D}$ is the difference coarray of \mathbb{S} and $\overline{\mathbb{D}}$ is the difference coarray of $\mathbb{S}\setminus\{n\}$.

Liu and Vaidyanathan

Composite Singer Arrays

8

The Fragility of an Array S



Composite Singer Arrays

9

¹Liu and Vaidyanathan, IEEE ICASSP, 2018; IEEE Trans. Signal Process., 2019.

Sparse Arrays with Minimum Fragility

Main Idea

We would like to study an array configuration $\ensuremath{\mathbb{S}}$ such that

- **2** S is as robust as ULA with the same number of sensors N (In particular, F(S) = 2/N)

Known Solutions: Robust Minimum Redundancy Arrays (RMRA)

- Hole-free difference coarrays of size $\mathcal{O}(N^2)$
- Minimum fragility ($F(\mathbb{S}) = 2/N$)
- No closed-form solutions

¹Liu and Vaidyanathan, Proc. of the 52th Asilomar Conference on Signals, Systems, and Computers, 2018.

The Focus of This Talk

Main Idea

We would like to study an array configuration $\ensuremath{\mathbb{S}}$ such that

- **()** S owns hole-free difference coarrays of size $\mathcal{O}(N^2)$
- **2** S is as robust as ULA with the same number of sensors N (In particular, F(S) = 2/N)

Solutions to the above problem

whose sensor locations can be found easily

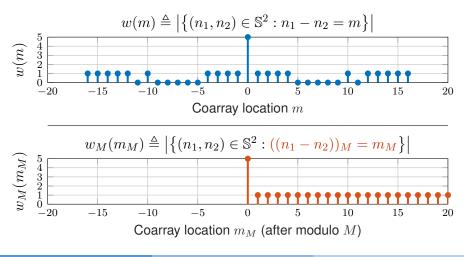
¹Liu and Vaidyanathan, IEEE ICASSP, 2019.

Composite Singer Arrays (Proposed)

4 A Numerical Example of Composite Singer Arrays

5 Concluding Remarks

An Example of the Singer Array (q = 4, M = 21)Singer Array S: $\overset{0}{\bullet} \overset{1}{\bullet} \times \overset{4}{\bullet} \times \times \times \times \times \times \overset{14}{\bullet} \overset{16}{\bullet} \overset{14}{\bullet}$



Liu and Vaidyanathan

Singer Arrays

Theorem (Rephrase from [1])

Let *q* be a power of a prime number. Assume that $M = q^2 + q + 1$. Then there exist q + 1 integers $d_1, d_2, \ldots, d_{q+1}$ such that

 $0 = d_1 < d_2 < \cdots < d_{q+1} < M$ and

2 The set of pairwise differences between d_i and d_j for $i \neq j$ is equivalent to $\{1, 2, ..., M - 1\}$, under the modulo-M operation. That is,

$$\{((d_i - d_j))_M : i \neq j, \quad i, j = 1, 2, \dots, q+1\} \\= \{1, 2, \dots, M-1\},\$$

where $((a))_b$ denotes the remainder of a divided by b.

Definition: Singer Arrays

A Singer array with the parameter q (a power of a prime) is defined as the set $\{d_1, d_2, \ldots, d_{q+1}\}$, where $d_1, d_2, \ldots, d_{q+1}$ are given in the above theorem.

¹J. Singer, Trans. Amer. Math. Soc., 1938.

Composite Arrays

Definition: $(\alpha, \mathbb{S}_1, \mathbb{S}_2)$ -composite array (Rephrase from [1])

Suppose α is a positive integer. Let S_1 and S_2 denote two sensor arrays with $\min(S_1) = \min(S_2) = 0$. Then the (α, S_1, S_2) -composite array S_c is defined as

$$\mathbb{S}_{c} \triangleq \alpha \mathbb{S}_{1} + \mathbb{S}_{2} = \{ \alpha n_{1} + n_{2} : n_{1} \in \mathbb{S}_{1}, n_{2} \in \mathbb{S}_{2} \},\$$

where $\alpha > \max(\mathbb{S}_2)$.

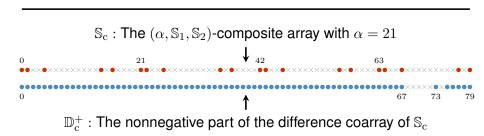
 This technique was used in the literature to generate arrays with large difference coarrays¹.

¹Erdős and Gál, Indagationes Mathematicae, 1948; Leech, J. London Math. Soc., 1956; Ishiguro, Radio Science, 1980; Yang, Haimovich, Yuan, Sun, and Chen, IEEE Access, 2018.

An Example of Singer Arrays and Composite Arrays

 $\leftarrow \mathbb{S}_1$: The ULA with 4 sensors

 $\leftarrow \mathbb{S}_2$: The Singer array with q = 4



- D_c has a large central ULA segment.
- S_c is as robust as S_1 ($F(S_1) = 1/2$ and $F(S_c) = 1/2$).

1416

0123

The Focus of This Talk

Main Idea

We would like to study an array configuration $\ensuremath{\mathbb{S}}$ such that

- **()** S owns hole-free difference coarrays of size $\mathcal{O}(N^2)$
- **2** S is as robust as ULA with the same number of sensors N (In particular, F(S) = 2/N)

Solutions to the above problem

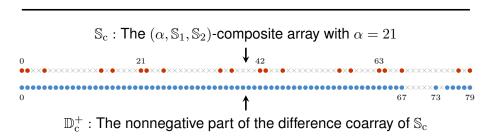
whose sensor locations can be found easily

¹Liu and Vaidyanathan, IEEE ICASSP, 2019.

Problems with Composite Arrays plus Singer Arrays

 $\leftarrow \mathbb{S}_1$: The ULA with 4 sensors

 $\leftarrow \mathbb{S}_2$: The Singer array with q = 4



$\bullet \ \mathbb{D}_{\mathrm{c}}$ has holes

 $14\,16$

0123

01

• \mathbb{S}_{c} DO NOT have minimum fragility $(F(\mathbb{S}_{c}) \neq \frac{2}{N})$

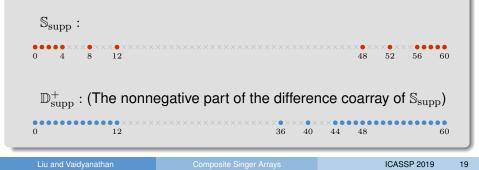
Supplementary Arrays (Proposed)

Definition: Supplementary Arrays

Let *P* and *Q* be positive integers satisfying Q > 2P(P-1). The supplementary array \mathbb{S}_{supp} with parameters *P* and *Q* is defined as

$$\mathbb{S}_{supp} = \{u, uP, Q-u, Q-uP : u = 0, 1, \dots, P-1\}.$$

The Supplementary Array with P = 4 and Q = 60



Properties of Supplementary Arrays

Let \mathbb{S}_{supp} be the supplementary array with parameters P and Q. Let \mathbb{D}_{supp} be the difference coarray of \mathbb{S}_{supp} . Define the new set

$$\mathbb{L} \triangleq \{1, 2, 3, \dots, P^2 - P, \\ Q - 1, Q - 2, Q - 3, \dots, Q - (P^2 - 1)\}.$$

Then the following properties hold

$\mathbb{S}_{\mathrm{supp}}$ helps to fill the holes and increase the robustness

Liu and Vaidyanathan

Composite Singer Arrays $\mathbb{S}_{\rm cs}$

$$\mathbb{S}_{cs} = \mathbb{S}_{c} \cup \mathbb{S}_{supp}$$

The $(\alpha, \mathbb{S}_1, \mathbb{S}_2)$ -Composite Array

The Supplementary Array

• $P = \left| \sqrt{2d_{q+1} + 1} \right|.$

•
$$\mathbb{S}_1$$
:

- F(S₁) = 2/|S₁|
 Hole-free coarray
- S₂: A Singer array with the parameter q
 (S₂ = {d₁, d₂,..., d_{q+1}})
 α = q² + q + 1.

• $Q = \alpha A_1 + d_{q+1}$, where A_1 is the aperture of \mathbb{S}_1 .

•
$$Q > 2P(P-1)$$

- 2 Review of Sparse Array Design for Robustness
- 3 Composite Singer Arrays (Proposed)

4 Numerical Example of Composite Singer Arrays

5) Concluding Remarks

Design Parameters

- $S_1 = \{0, 1, 2, 3, 5, 6\}$: Robust MRA with 6 sensors¹
 - $F(S_1) = 2/6$
 - The difference coarray of $\mathbb{S}_1 \colon \mathbb{D}_1 = \{0, \pm 1, \pm 2, \dots, \pm 6\}$
- $S_2 = \{0, 1, 4, 14, 16\}$: The Singer array with q = 4

•
$$\alpha = q^2 + q + 1 = 21$$

•
$$P = \left\lceil \sqrt{2 \times 16 + 1} \right\rceil = 6$$

•
$$Q = 21 \times 6 + 16 = 142$$

¹Liu and Vaidyanathan, ACSSC, 2018.

Array Configurations

....×

......

 $\leftarrow \mathbb{S}_1 = \{0, 1, 2, 3, 5, 6\} : \mathsf{RMRA} \text{ with } 6 \text{ sensors}$

 $\leftarrow \mathbb{S}_2 = \{0, 1, 4, 14, 16\}$: The Singer array with q = 4

 $63, 64, 67, 77, 79, 105, 106, 109, 112, 118, 119, 121, 124, 126, 127, 130, 136, 137, 138, 139, 140, 141, 142\}$

Essential sensors (red): 0, 142 The composite Singer array (46 sensors)

 \mathbb{D}_{cs}^+ : The nonnegative part of the difference coarray of \mathbb{S}_c $\mathbb{D}_{cs}^+ = \{0, 1, \dots, 142\}$

Introduction

- 2) Review of Sparse Array Design for Robustness
- 3 Composite Singer Arrays (Proposed)
- 4 A Numerical Example of Composite Singer Arrays

Concluding Remarks

Concluding Remarks

- Composite Singer arrays
 - Singer arrays, composite arrays, supplementary arrays
- Future work
 - New arrays with hole-free difference coarrays and minimum fragility
 - Two-dimensional arrays
- This work is supported by
 - Office of Naval Research
 - National Science Foundation
 - California Institute of Technology
 - Ministry of Education Republic of China (Taiwan)
 - National Taiwan University

Thank you!