Composite Singer Arrays with Hole-Free Coarrays and Enhanced Robustness

Chun-Lin Liu ${ }^{1}$ and P. P. Vaidyanathan ${ }^{2}$

${ }^{1}$ Dept. of Electrical Engineering
${ }^{1}$ Graduate Institute of Communication Engineering
National Taiwan University, Taipei, Taiwan 10617
chunlinliu@ntu.edu.tw ${ }^{1}$
${ }^{2}$ Dept. of Electrical Engineering, MC 136-93
California Institute of Technology, Pasadena, CA 91125, USA
ppvnath@systems.caltech.edu ${ }^{2}$

ICASSP 2019

Outline

(1) Introduction
(2) Review of Sparse Array Design for Robustness
(3) Composite Singer Arrays (Proposed)
4. A Numerical Example of Composite Singer Arrays
(5) Concluding Remarks

Outline

(1) Introduction

(2) Review of Sparse Array Design for Robustness
(3) Composite Singer Arrays (Proposed)

4 A Numerical Example of Composite Singer Arrays
(5) Concluding Remarks

Direction-Of-Arrival (DOA) Estimation

Wavelength λ

Monochromatic Far-field Uncorrelated Sources

Sensor Arrays

Estimated
 DOA $\widehat{\theta}_{i}$

${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

Physical Array and Difference Coarray

Difference coarray $\mathbb{D}=\left\{n_{1}-n_{2}: n_{1}, n_{2} \in \mathbb{S}\right\}$

-19

0

19

[^0]
Outline

(1) Introduction

(2) Review of Sparse Array Design for Robustness
(3) Composite Singer Arrays (Proposed)

4 A Numerical Example of Composite Singer Arrays
(5) Concluding Remarks

ULA and Sparse Arrays

ULA (Not Sparse)

- Identify at most $N-1$ uncorrelated sources ${ }^{1}$
(N is the number of sensors)
- Can only find fewer sources than sensors
- Robust to sensor failures

Linear Sparse Arrays

- Minimum redundancy arrays
© Nested arrays
- Coprime arrays
- Super nested arrays
- Identify $\mathcal{O}\left(N^{2}\right)$ uncorrelated sources since the difference coarray has size $\mathcal{O}\left(N^{2}\right)$
- More sources than sensors!

[^1]
The Essentialness Property

The sensor $n \in \mathbb{S}$ is essential with respect to \mathbb{S} if $\overline{\mathbb{D}} \neq \mathbb{D}$.

Physical array	Difference coarray	
		0 is essential
		1 is inessential
	$\stackrel{-8}{ }$ - ${ }_{-}$	2 is inessential
(e) $\underset{0}{\bullet}$		7 is inessential

${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018; IEEE Trans. Signal Process., 2019.
${ }^{2} \mathbb{D}$ is the difference coarray of \mathbb{S} and $\overline{\mathbb{D}}$ is the difference coarray of $\mathbb{S} \backslash\{n\}$.

The Fragility of an Array \mathbb{S}

$$
\text { The fragility } F(\mathbb{S}) \triangleq \frac{\# \text { of essential sensors }}{N}
$$

\mathbb{S} : The sensor array; $\quad N$: The number of sensors

${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2018; IEEE Trans. Signal Process., 2019.

Sparse Arrays with Minimum Fragility

Main Idea

We would like to study an array configuration \mathbb{S} such that
(1) \mathbb{S} owns hole-free difference coarrays of size $\mathcal{O}\left(N^{2}\right)$
(2) \mathbb{S} is as robust as ULA with the same number of sensors N (In particular, $F(\mathbb{S})=2 / N$)

Known Solutions: Robust Minimum Redundancy Arrays (RMRA)

- Hole-free difference coarrays of size $\mathcal{O}\left(N^{2}\right)$
- Minimum fragility $(F(\mathbb{S})=2 / N)$
- No closed-form solutions
${ }^{1}$ Liu and Vaidyanathan, Proc. of the 52th Asilomar Conference on Signals, Systems, and Computers, 2018.

The Focus of This Talk

Main Idea

We would like to study an array configuration \mathbb{S} such that
(1) \mathbb{S} owns hole-free difference coarrays of size $\mathcal{O}\left(N^{2}\right)$
(2) \mathbb{S} is as robust as ULA with the same number of sensors N
(In particular, $F(\mathbb{S})=2 / N$)

Solutions to the above problem

 whose sensor locations can be found easily${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2019.

Outline

(1) Introduction

(2) Review of Sparse Array Design for Robustness
(3) Composite Singer Arrays (Proposed)

4 A Numerical Example of Composite Singer Arrays
(5) Concluding Remarks

An Example of the Singer Array $(q=4, M=21)$

Singer Array \mathbb{S} :
 $0 \quad 1$
 4
 $14 \quad 16$

Singer Arrays

Theorem (Rephrase from [1])

Let q be a power of a prime number. Assume that $M=q^{2}+q+1$. Then there exist $q+1$ integers $d_{1}, d_{2}, \ldots, d_{q+1}$ such that
(1) $0=d_{1}<d_{2}<\cdots<d_{q+1}<M$ and
(2) The set of pairwise differences between d_{i} and d_{j} for $i \neq j$ is equivalent to $\{1,2, \ldots, M-1\}$, under the modulo- M operation. That is,

$$
\begin{aligned}
& \left\{\left(\left(d_{i}-d_{j}\right)\right)_{M}: i \neq j, \quad i, j=1,2, \ldots, q+1\right\} \\
& =\{1,2, \ldots, M-1\},
\end{aligned}
$$

where $((a))_{b}$ denotes the remainder of a divided by b.

Definition: Singer Arrays

A Singer array with the parameter q (a power of a prime) is defined as the set $\left\{d_{1}, d_{2}, \ldots, d_{q+1}\right\}$, where $d_{1}, d_{2}, \ldots, d_{q+1}$ are given in the above theorem.

[^2]
Composite Arrays

Definition: $\left(\alpha, \mathbb{S}_{1}, \mathbb{S}_{2}\right)$-composite array (Rephrase from [1])

Suppose α is a positive integer. Let \mathbb{S}_{1} and \mathbb{S}_{2} denote two sensor arrays with $\min \left(\mathbb{S}_{1}\right)=\min \left(\mathbb{S}_{2}\right)=0$. Then the $\left(\alpha, \mathbb{S}_{1}, \mathbb{S}_{2}\right)$-composite array \mathbb{S}_{C} is defined as

$$
\mathbb{S}_{\mathrm{c}} \triangleq \alpha \mathbb{S}_{1}+\mathbb{S}_{2}=\left\{\alpha n_{1}+n_{2}: n_{1} \in \mathbb{S}_{1}, n_{2} \in \mathbb{S}_{2}\right\}
$$

where $\alpha>\max \left(\mathbb{S}_{2}\right)$.

- This technique was used in the literature to generate arrays with large difference coarrays ${ }^{1}$.

[^3]
An Example of Singer Arrays and Composite Arrays

0123

- \bullet -

01	4
$\bullet \times \times \times \times \times \times \times \times \times \times$	

1416
$\leftarrow \mathbb{S}_{1}$: The ULA with 4 sensors
$\leftarrow \mathbb{S}_{2}:$ The Singer array with $q=4$
$\mathbb{S}_{\mathrm{c}}:$ The $\left(\alpha, \mathbb{S}_{1}, \mathbb{S}_{2}\right)$-composite array with $\alpha=21$

\mathbb{D}_{c}^{+}: The nonnegative part of the difference coarray of \mathbb{S}_{c}

- \mathbb{D}_{c} has a large central ULA segment.
- \mathbb{S}_{c} is as robust as $\mathbb{S}_{1}\left(F\left(\mathbb{S}_{1}\right)=1 / 2\right.$ and $\left.F\left(\mathbb{S}_{\mathrm{c}}\right)=1 / 2\right)$.

The Focus of This Talk

Main Idea

We would like to study an array configuration \mathbb{S} such that
(1) \mathbb{S} owns hole-free difference coarrays of size $\mathcal{O}\left(N^{2}\right)$
(2) \mathbb{S} is as robust as ULA with the same number of sensors N
(In particular, $F(\mathbb{S})=2 / N$)

Solutions to the above problem

 whose sensor locations can be found easily${ }^{1}$ Liu and Vaidyanathan, IEEE ICASSP, 2019.

Problems with Composite Arrays plus Singer Arrays

${ }^{0123}$		
		$\leftarrow \mathbb{S}_{1}$: The ULA with 4 sensors
$\begin{array}{cc} 01 & 4 \\ \bullet \bullet \bullet \end{array}$	${ }^{4} \times \times \times x \times \times \times \times \times \times \bullet$	$\leftarrow \mathbb{S}_{2}$: The Singer array with $q=4$

$\mathbb{S}_{\mathrm{c}}:$ The $\left(\alpha, \mathbb{S}_{1}, \mathbb{S}_{2}\right)$-composite array with $\alpha=21$

\mathbb{D}_{c}^{+}: The nonnegative part of the difference coarray of \mathbb{S}_{c}

- \mathbb{D}_{c} has holes
- \mathbb{S}_{c} DO NOT have minimum fragility $\left(F\left(\mathbb{S}_{\mathrm{c}}\right) \neq \frac{2}{N}\right)$

Supplementary Arrays (Proposed)

Definition: Supplementary Arrays
Let P and Q be positive integers satisfying $Q>2 P(P-1)$. The supplementary array $\mathbb{S}_{\text {supp }}$ with parameters P and Q is defined as

$$
\mathbb{S}_{\text {supp }}=\{u, u P, Q-u, Q-u P: u=0,1, \ldots, P-1\}
$$

The Supplementary Array with $P=4$ and $Q=60$

$\mathbb{D}_{\text {supp }}^{+}$: (The nonnegative part of the difference coarray of $\mathbb{S}_{\text {supp }}$)

Properties of Supplementary Arrays

Let $\mathbb{S}_{\text {supp }}$ be the supplementary array with parameters P and Q. Let $\mathbb{D}_{\text {supp }}$ be the difference coarray of $\mathbb{S}_{\text {supp }}$. Define the new set

$$
\begin{aligned}
\mathbb{L} \triangleq & \left\{1,2,3, \ldots, P^{2}-P,\right. \\
& \left.Q-1, Q-2, Q-3, \ldots, Q-\left(P^{2}-1\right)\right\} .
\end{aligned}
$$

Then the following properties hold
(- $\left|\mathbb{S}_{\text {supp }}\right|=4 P-2$.
(2) $\mathbb{L} \subseteq \mathbb{D}_{\text {supp }}$.
(0) Let $n \in \mathbb{S}_{\text {supp }} \backslash\{0, Q\}$. Denote the difference coarray of $\bar{S}_{\text {supp }} \triangleq \mathbb{S}_{\text {supp }} \backslash\{n\}$ by $\overline{\mathbb{D}}_{\text {supp }}$. Then $\mathbb{L} \subseteq \overline{\mathbb{D}}_{\text {supp }}$.

$\mathbb{S}_{\text {supp }}$ helps to fill the holes and increase the robustness

Composite Singer Arrays $\mathbb{S}_{\text {cs }}$

$$
\mathbb{S}_{\mathrm{cs}}=\mathbb{S}_{\mathrm{c}} \cup \mathbb{S}_{\text {supp }}
$$

The ($\alpha, \mathbb{S}_{1}, \mathbb{S}_{2}$)-Composite Array

- \mathbb{S}_{1} :
- $F\left(\mathbb{S}_{1}\right)=2 /\left|\mathbb{S}_{1}\right|$
- Hole-free coarray
- \mathbb{S}_{2} : A Singer array with the parameter q
$\left(\mathbb{S}_{2}=\left\{d_{1}, d_{2}, \ldots, d_{q+1}\right\}\right)$
- $\alpha=q^{2}+q+1$.

The Supplementary Array

- $P=\left\lceil\sqrt{2 d_{q+1}+1}\right\rceil$.
- $Q=\alpha A_{1}+d_{q+1}$, where A_{1} is the aperture of \mathbb{S}_{1}.
- $Q>2 P(P-1)$

Outline

(1) Introduction

2 Review of Sparse Array Design for Robustness
(3) Composite Singer Arrays (Proposed)
(4) A Numerical Example of Composite Singer Arrays
(5) Concluding Remarks

Design Parameters

- $\mathbb{S}_{1}=\{0,1,2,3,5,6\}$: Robust MRA with 6 sensors ${ }^{1}$
- $F\left(\mathbb{S}_{1}\right)=2 / 6$
- The difference coarray of $\mathbb{S}_{1}: \mathbb{D}_{1}=\{0, \pm 1, \pm 2, \ldots, \pm 6\}$
- $\mathbb{S}_{2}=\{0,1,4,14,16\}:$ The Singer array with $q=4$
- $\alpha=q^{2}+q+1=21$
- $P=\lceil\sqrt{2 \times 16+1}\rceil=6$
- $Q=21 \times 6+16=142$
${ }^{1}$ Liu and Vaidyanathan, ACSSC, 2018.

Array Configurations

-ee* \times e
$\leftarrow \mathbb{S}_{1}=\{0,1,2,3,5,6\}:$ RMRA with 6 sensors
$\leftarrow \mathbb{S}_{2}=\{0,1,4,14,16\}:$ The Singer array with $q=4$
$\mathbb{S}_{\mathrm{CS}}=\{0,1,2,3,4,5,6,12,14,16,18,21,22,24,25,30,35,37,42,43,46,56,58$, $63,64,67,77,79,105,106,109,112,118,119,121,124,126,127,130,136,137,138,139,140,141,142\}$

Essential sensors (red): 0, 142
The composite Singer array (46 sensors)

\downarrow

$\mathbb{D}_{\mathrm{cs}}^{+}$: The nonnegative part of the difference coarray of \mathbb{S}_{c}

$$
\mathbb{D}_{\mathrm{cs}}^{+}=\{0,1, \ldots, 142\}
$$

Outline

(1) Introduction

(2) Review of Sparse Array Design for Robustness
(3) Composite Singer Arrays (Proposed)

4 A Numerical Example of Composite Singer Arrays
(5) Concluding Remarks

Concluding Remarks

- Composite Singer arrays
- Singer arrays, composite arrays, supplementary arrays
- Future work
- New arrays with hole-free difference coarrays and minimum fragility
- Two-dimensional arrays
- This work is supported by
- Office of Naval Research
- National Science Foundation
- California Institute of Technology
- Ministry of Education Republic of China (Taiwan)
- National Taiwan University

Thank you!

[^0]: ${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002; Pillai, Bar-Ness, and Haber, Proc. IEEE, 1985; Abramovich, Gray, Gorokhov, and Spencer, IEEE Trans. Signal Process., 1998; Pal and Vaidyanathan, IEEE Trans. Signal Process., 2010; Vaidyanathan and Pal IEEE Trans. Signal Process., 2011.

[^1]: ${ }^{1}$ Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.
 ${ }^{2}$ Moffet, IEEE Trans. Antennas Propag., 1968. (MRA)
 ${ }^{3} \mathrm{Pal}$ and Vaidyanathan, IEEE Trans. Signal Process., 2010. (Nested arrays)
 ${ }^{4}$ Vaidyanathan and Pal, IEEE Trans. Signal Process., 2011. (Coprime arrays)
 ${ }^{5}$ Liu and Vaidyanathan, IEEE Trans. Signal Process., 2016. (Super nested arrays)

[^2]: ${ }^{1}$ J. Singer, Trans. Amer. Math. Soc., 1938.

[^3]: ${ }^{1}$ Erdös and Gál, Indagationes Mathematicae, 1948; Leech, J. London Math. Soc., 1956; Ishiguro, Radio Science, 1980; Yang, Haimovich, Yuan, Sun, and Chen, IEEE Access, 2018.

