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ABSTRACT

One-bit quantization has attracted attention in massive MIMO, radar,
and array processing, due to its simplicity, low cost, and capability
of parameter estimation. Specifically, the shape of the covariance of
the unquantized data can be estimated from the arcsine law and one-
bit data, if the unquantized data is Gaussian. However, in practice,
the Gaussian assumption is not satisfied due to outliers. It is known
from the literature that outliers can be modeled by complex ellip-
tically symmetric (CES) distributions with heavy tails. This paper
shows that the arcsine law remains applicable to CES distributions.
Therefore, the normalized scatter matrix of the unquantized data can
be readily estimated from one-bit samples derived from CES distri-
butions. The proposed estimator is not only computationally fast but
also robust to CES distributions with heavy tails. These attributes
will be demonstrated through numerical examples, in terms of com-
putational time and the estimation error. An application in DOA
estimation with MUSIC spectrum is also presented.

Index Terms— One-bit quantization, complex elliptically sym-
metric distributions, arcsine law, robust statistics, scatter matrices.

1. INTRODUCTION

Signal processing with one-bit quantization has drawn attention
in massive MIMO [1–5], array processing [6–9], and radar [10].
From the hardware perspective, one-bit analog-to-digital convert-
ers (ADCs) feature low cost, low power consumption, and simple
hardware designs, compared to the high-resolution ones [11, 12].
Furthermore, one-bit information can be utilized to estimate in-
formation of interest such as the channel information in massive
MIMO [3, 5], the direction-of-arrival in sensor arrays [6–9], and the
target parameters in radar systems [10].

The advances in this field are partly founded on the relation be-
tween second-order statistics of the unquantized data and the quan-
tized data, such as the arcsine law [13] and the Bussgang theorem
[14]. However, these assume the Gaussianity of the unquantized
data. This assumption has been shown to be a poor fit for models like
radar clutters [15–17] and noise in mobile communications [18, 19].
This phenomenon is due to the presence of outliers, which are sam-
ples significantly deviating from other samples.
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Fig. 1. A one-bit quantization system, where x ∈ CN is the in-
put vector, s ∈ {±1± j}N denotes the sign vector, and y ∈{

(±1± j)/
√

2
}N

represents the one-bit quantized vector.

In the literature, the complex elliptically symmetric (CES) dis-
tributions [20, 21] have been shown to be suitable for modeling out-
liers with heavy-tailed distributions. A CES distribution may be
parametrized by the symmetric center (analogous to the mean vec-
tor), the scatter matrix (analogous to the covariance matrix), and
the density generator, which determines the shape of the probability
density function. Based on these, CES distributions unify complex
Gaussian distributions [22], complex t-distributions [20], and com-
plex generalized Gaussian distributions [23], to name a few [21].
Furthermore, the theory of CES distributions is related to robust esti-
mators for the scatter matrix [24–26]. Interested readers are referred
to the overview article [21] and the references therein.

A notable application of CES distributions is in robust direction-
of-arrival (DOA) estimation in array processing [21, 26]. For CES
distributions with finite second-order moments, the scatter matrix Σ
and the covariance matrix R are related by R = cΣ for some con-
stant c > 0. This property implies that the scatter matrix and the
covariance matrix share the same set of eigenvectors. Therefore, ro-
bust DOA estimation can be done by replacing the covariance matrix
with the scatter matrix in subspace-based DOA estimators [27, 28].

In this paper, we will show that the arcsine law remains applica-
ble to CES distributions. In particular, the normalized scatter matrix
of the unquantized CES samples and the covariance matrix of one-
bit quantized data are related by the arcsine function. This relation
has been known for complex Gaussian distributions [6, 29] and real
elliptically symmetric distributions [30, 31]. The main contribution
of this paper resides in the arcsine law for CES distributions and a
new proof arising from the complex angular central Gaussian dis-
tributions. Owing to the arcsine law, we study the estimation of the
normalized scatter matrix of the input, based on one-bit measure-
ments, and this method will be referred to as CES-COBASL (CES
distributions with complex one-bit arcsine law) in this paper. We
will see that CES-COBASL is more robust to heavy-tailed CES dis-
tribution than the estimator based on sample covariance matrices
(SCM), for the problem of estimating the normalized scatter matrix.
Furthermore, the computational time of CES-COBASL is compara-



ble to that of the method based on SCM.
The outline of this paper is as follows. Section 2 reviews one-

bit quantization and CES distributions. In Section 3, we will prove
that the arcsine law remains applicable to CES distributions, and this
property leads to a low-complexity and robust estimator of the nor-
malized scatter matrix. Section 4 demonstrates the estimation per-
formance of CES-COBASL while Section 5 concludes this paper.

2. PRELIMINARIES

2.1. One-Bit Quantization

Let x , [x1, x2, . . . , xN ]T be a complex vector of length N . The
sign vector s of x is denoted by

s , sgne(x) =

 sgn {Re(x1)}
...

sgn {Re(xN )}

+ j

 sgn {Im(x1)}
...

sgn {Im(xN )}

 , (1)

where the sign function sgn(t) is 1 if t ≥ 0 and −1 if t < 0, and
the notations Re(·) and Im(·) stand for the real and imaginary parts
of a complex number, respectively. The right-hand side of (1) is
denoted by sgne(x), indicating the entrywise sign function on the
real and imaginary parts. Based on (1), the one-bit quantized vector
y is defined as y , Q1(x) = s/

√
2. The scaling factor 1/

√
2 aims

to unify the arcsine law for the real and the complex case [6,29]. For
clarity, the relations among the vectors x, s, and y are illustrated in
Fig. 1.

In what follows, we assume that x, s, and y are random vectors
and the relation among the second-order statistics of x, s, and y will
be reviewed. The traditional arcsine law relates the covariance ma-
trix of x to that of y, assuming x is Gaussian-distributed [6, 13, 29].
To begin with, we define the entrywise sine function sine(A) and
the entrywise arcsine function sine−1(A) for a complex matrix A.
The real and imaginary parts of the (p, q)th entry of A are denoted
by aRp,q and aIp,q , respectively. Then the (p, q)th entries of sine(A)
and sine−1(A) are

[sine(A)]p,q = sin(aRp,q) + j sin(aIp,q), (2)[
sine−1(A)

]
p,q

= sin−1(aRp,q) + j sin−1(aIp,q), (3)

where sin−1(·) is the arcsine function. Furthermore, for a square
matrix M with positive diagonal entries, the normalized version1

of M is defined as M , Q−
1
2 MQ−

1
2 , where Q is diagonal with

[Q]p,p = [M]p,p. Note that [M]p,p = 1. With these notations, the
arcsine law states that [6, 13, 29]

Lemma 1. If x is a circularly-symmetric complex Gaussian
vector with zero mean and covariance Rx (i.e., x ∼ CN (0,Rx))
and y , Q1(x), then the covariance matrix Ry and the normalized
covariance matrix Rx of x satisfy

Ry = (2/π)sine−1 (Rx

)
. (4)

Here are some remarks on Lemma 1. First, the normalized co-
variance Rx of the unquantized samples x can be inferred from one-
bit samples y. Second, the computational complexity based on one-
bit data is low since the one-bit vector y can be obtained from two-
level comparators. This attribute makes it favorable for high-speed
and low-complexity systems.

1In the literature, the normalization of a matrix has various definitions.
For example, a matrix may be normalized subject to a fixed trace [21].
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Fig. 2. The pdf of CES distributions as a function of |x|.

Historically, the arcsine law was first developed for real, scalar,
stationary Gaussian input processes [13]. This relation has been
extended to complex, scalar, stationary Gaussian processes and
other scenarios [6, 29, 32]. Furthermore, for Gaussian input passing
through zero-memory nonlinear devices (rather than one-bit quanti-
zation), Price’s theorem [33] studied the statistics of the input and
the output, which can be treated as a generalization of the arcsine
law.

The arcsine law in Lemma 1 is founded on the Gaussianity of
the input vector x. However, the outliers in real data typically in-
validate this assumption. In what follows, we will review the CES
distribution, which is a popular model for distributions with outliers.

2.2. Complex Elliptically Symmetric Distributions

Assume that x ∈ CN is CES distributed where the probability den-
sity function (pdf) of x exists. Then this pdf can be expressed as [21]

f(x) = CN,g det(Σx)−1g((x− µx)HΣ−1
x (x− µx)), (5)

where g : [0,∞)→ (0,∞) is the density generator and µx ∈ CN is
the symmetric center. The scatter matrix Σx is positive definite. The
normalization factor CN,g = Γ(N)/(πNδN,g), where Γ(·) denotes
the gamma function and δN,g ,

∫∞
0
tN−1g(t)dt < ∞. We write

x ∼ CE(µx,Σx, g) for Equation (5).
The pdf in (5) is a generalization of several well-known dis-

tributions. For instance, if g(t) = e−t, then we have CN,g =
π−N so f(x) becomes the circularly-symmetric complex Gaus-
sian distribution with mean µx and covariance Σx. If g(t) =

(1 + 2t/ν)−(2N+ν)/2 for ν ∈ (0,∞), then (5) simplifies to the
complex t-distribution. Another example is the complex generalized
Gaussian distribution, which corresponds to g(t) = e−t

s/b for
s > 0 and b > 0.

For example, consider the CES distribution CE(0, 1, g) so that
the complex random vector x reduces to a complex random variable
x. In this case, the complex Gaussian distribution corresponds to a
pdf f(x) = 1

π
e−|x|

2

while the complex t-distribution has f(x) =
2Γ(1+ν/2)
πνΓ(ν/2)

(
1 + 2|x|2/ν

)−(1+ν/2). Fig. 2 illustrates the pdfs f(x)

of the complex Gaussian distribution and the complex t-distribution
for ν = 1, 2, 5, with zero mean and unit variance. It can be observed
that the tails of the complex t-distribution for ν = 1, 2, 5 are heavier
(i.e., the tails decay slower) than the complex Gaussian distribution.
Therefore, the complex t-distributions for ν = 1, 2, 5 belong to the
family of heavy-tailed distributions, in which the outliers occur more
frequently than the complex Gaussian distribution. Note that the
complex t-distribution for ν = 1 is also called the complex Cauchy
distribution.



The scatter matrix Σx is a parameter in a CES distribution,
which is not necessarily the covariance matrix. If the second-order
moment of a CES distribution is finite, then Σx is proportional to
the covariance matrix Rx [21]. However, for complex Cauchy dis-
tributions, the scatter matrix Σx exists but its covariance matrix is
undefined.

Next we will review the complex angular central Gaussian dis-
tribution, defined as [21, 34]:

Definition 1. Assume that the random vector x ∼ CN (0,Σx).
Let the random vector xa be x/ ‖x‖. Then xa is said to have the
complex angular central Gaussian (ACG) distribution, denoted by
xa ∼ CAG(0,Σx).

In Definition 1, the case that x = 0 is omitted since Pr [x = 0] =
0. By definition, xa is confined to a unit sphere (‖xa‖ = 1), which is
different from the random vector x ∈ CN in a CES distribution. As
a result, the complex ACG distribution does not belong to the family
of CES distributions. However, according to Definition 1, the pdf of
xa is shown to be f(xa) = Γ(N)

2πN det(Σx)

(
xHa Σ−1

x xa
)−N

[21, 34].
Based on this, it can be shown that the pdfs of CAG(0,Σx) and
CAG(0, cΣx) are identical for a positive constant c.

The CES distribution is associated with the complex ACG dis-
tribution as follows [21]:

Lemma 2. If x ∼ CE(0,Σx, g), then x/ ‖x‖ ∼ CAG(0,Σx).
If the density function g(t) = e−t, then Lemma 2 is consistent

with Definition 1. However, for CES distributions such as complex
t-distributions and complex generalized Gaussian distributions, the
random vector x/‖x‖ still follows the complex ACG distribution.

3. NORMALIZED SCATTER MATRIX ESTIMATION
FROM ONE-BIT DATA

In this section, we will present the arcsine law for CES distributions,
which has similar forms as Lemma 1 for Gaussian distributions. This
property makes it possible to estimate the normalized scatter matrix
from one-bit samples derived from CES distributions. To begin with,
the arcsine law for CES distributions is given by

Theorem 1. Let x ∼ CE(0,Σx, g) and y , Q1(x). Then the
covariance matrix of y satisfies

Ry = (2/π)sine−1 (Σx

)
, (6)

where Σx is the normalized version of the scatter matrix Σx (see
the definition following Eq. (3)).

Proof. Since x ∼ CE(0,Σx, g), we have Pr [x = 0] = 0. Then
with probability 1, the vector y can be expressed as

y = Q1 (‖x‖ · x/‖x‖) = Q1 (x/‖x‖) , (7)

where the last equality results from the identity that Q1(αv) =
Q1(v) for v ∈ CN and α > 0. Due to Lemma 2, x/‖x‖ has
the distribution CAG(0,Σx). This distribution can be represented
by z/‖z‖ where z ∼ CN (0,Σx), due to Definition 1. Based on
these arguments, Equation (7) becomes

y = Q1 (z/‖z‖) = Q1 (z) . (8)

Namely, the vector y can be derived from a multivariate complex
Gaussian vector z. Therefore, due to Lemma 1, the arcsine law be-
tween z and y holds, which proves (6).

Theorem 1 indicates that the arcsine law remains valid if the
input vector follows CES distributions. As a result, for heavy-tailed

Algorithm 1 Normalized scatter matrix estimation from CES distri-
butions and the complex one-bit arcsine law (CES-COBASL)
Require: Input vectors x̃(k) for k = 1, 2, . . . ,K drawn from a

CES distribution.
1: Compute the sign vectors s̃(k) = sgne(x̃(k)).
2: Estimate the covariance of the sign vectors by R̂s =

1
K

∑K
k=1 s̃(k)s̃H(k).

3: Estimate the normalized scatter matrix of the CES distribution
according to the arcsine law Σ̂x = sine

(
π
4
R̂s

)
, where the

entrywise sine function sine(·) is defined in (2).

CES distributions such as the complex Cauchy distribution (exam-
ples shown in Fig. 2), the arcsine law offers a simple and low com-
plexity approach to the estimation of the normalized scatter matrix.

In the literature, the arcsine law for elliptically symmetric dis-
tributions has been reported [30,31] based on different assumptions.
McGraw and Wagner studied the analog of Price’s theorem for bi-
variate real elliptically symmetric distributions [30]. Similar results
were proved for Kendall’s tau [35] and multivariate real elliptically
symmetric distribution [31]. The contribution of Theorem 1 is as
follows. First, the arcsine law holds true for multivariate complex
elliptically symmetric distributions, and second, the proof is based
on complex ACG distributions, which is simpler than the analysis of
orthant probabilities [30, 31].

Due to Theorem 1, the normalized scatter matrix Σx can be es-
timated by using Algorithm 1. In particular, after generating the sign
vectors s̃(k) from the input vectors x̃(k) for k = 1, 2, . . . ,K, the
covariance of the sign vectors is estimated by Step 2. Then utilizing
the relation Ry = Rs/2 and Theorem 1, the normalized scatter ma-
trix can be estimated by Step 3. In the following development, this
method will be referred to as CES-COBASL.

CES-COBASL has low computational complexity, owing to
the following reasons. First, the sign vectors s̃(k) can be ob-
tained from the sign of the entries of x̃(k). Next, since s̃(k) ∈
{±1 ± j}N , the entries of R̂s are of the form (a + jb)/K, where
a, b ∈ {0,±1, . . . ,±2K}. This property makes it possible to rep-
resent R̂s by fixed-point numbers. Furthermore, the entrywise sine
function in Step 3 of Algorithm 1 can be readily realized through
table lookup in hardware. Therefore, CES-COBASL can be imple-
mented with no multiplication.

CES-COBASL is robust to heavy-tailed CES distributions, since
the arcsine law is invariant to the density generator g(t) in CES dis-
tributions (Theorem 1). As a result, for heavy-tailed CES distribu-
tions like complex Cauchy distributions, CES-COBASL could out-
perform methods to estimate the normalized scatter matrix from the
sample covariance matrix (SCM), which are known to be not robust
to heavy-tailed distributions.

There are some works related to CES-COBASL such as com-
plex polarity coincidence correlator [29, 32], and the one-bit DOA
estimator for sparse arrays [9]. However, these works are built on the
Gaussianity of the unquantized data. In this paper, CES-COBASL
has been shown to be functional for CES distributions. Furthermore,
CES-COBASL utilizes the sign vectors to reduce the computational
complexity, which was not considered in [9].

One-bit robust DOA estimation can be achieved through CES-
COBASL. Assume that in array processing, the array outputs fol-
low from a CES distribution with a finite covariance matrix and the
source amplitudes are zero-mean, uncorrelated, and equal-powered
[9]. It can be shown that the covariance matrix, the normalized co-
variance matrix, and the normalized scatter matrix all share the same



Algorithm 2 Normalized scatter matrix estimation from CES distri-
butions and the sample covariance matrix (CES-SCM)
Require: Input vectors x̃(k) for k = 1, 2, . . . ,K drawn from a

CES distribution.
1: Estimate the covariance of the input vectors by R̂x =

1
K

∑K
k=1 x̃(k)x̃H(k).

2: Construct a diagonal matrix Q̂ satisfying [Q̂]i,i = [R̂x]i,i for
i = 1, 2, . . . , N .

3: Infer the normalized scatter matrix by Σ̂x = Q̂−
1
2 R̂xQ̂−

1
2 .

1 2 3 4 5
0

10
20
30
40
50
60
70
80

ν

N
R

M
SE

of
Σ̂

x
(%

)

CES-SCM
CES-COBASL

(a)

101 102 103 104
0

10
20
30
40
50
60
70

K

N
R

M
SE

of
Σ̂

x
(%

)

CES-SCM
CES-COBASL

(b)

Fig. 3. The dependence of the NRMSE in percentage on (a) the pa-
rameter ν in the complex t-distribution and (b) the number of sam-
ples K. It is assumed that (a) K = 1000 and (b) ν = 2. Each data
point is averaged from 1000 Monte-Carlo trials.

eigenvectors. Therefore DOAs can be estimated by the MUSIC al-
gorithm [27] and the normalized scatter matrix in CES-COBASL.

4. NUMERICAL EXAMPLES
In this section, we will compare two approaches to the estimation of
the normalized scatter matrix. One is based on the arcsine law (Al-
gorithm 1) while the other is built on the sample covariance matrix,
as summarized in Algorithm 2. Algorithms 1 and 2 will be denoted
by CES-COBASL and CES-SCM in the discussion. CES-COBASL
relies on one-bit data while the data in CES-SCM is unquantized.

Let x̃(k) ∈ CN for k = 1, 2, . . . ,K be i.i.d. samples drawn
from the complex t-distribution with N = 3 and µ = 0. The true
scatter matrix is assumed to be

Σx =

 1 ρ∗2,1 ρ∗3,1
ρ2,1 1 ρ∗3,2
ρ3,1 ρ3,2 1

 , (9)

where the correlation coefficients are ρ2,1 = 0.5ejπ/4, ρ3,1 =

0.2e−jπ/6, and ρ3,2 = 0.4ejπ/5. The normalized root-mean-square

error is defined as NRMSE , ‖Σ̂x−Σx‖F /‖Σx‖F , where ‖ · ‖F
denotes the Frobenius norm of a matrix.

Fig. 3(a) compares the NRMSE in percentage of CES-SCM
and CES-COBASL with respect to the parameter ν in complex
t-distributions, where there are K = 1000 snapshots and 1000
Monte-Carlo trials for each data point. In this example, it can be
observed that the CES-SCM is not robust to heavy-tailed distribu-
tions (e.g. NRMSE is approximately 70% for ν = 1), because the
estimator R̂x in Step 1 of Algorithm 2 is sensitive to outliers. On the
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Fig. 4. Normalized MUSIC spectra P (θ̄) from CES-SCM and CES-
COBASL. The true normalized DOAs are shown by vertical lines.

other hand, CES-COBASL exhibits similar NRMSE (around 5%)
across various values of ν, so that it is more robust.

The NRMSEs of CES-SCM and CES-COBASL as a function of
K are shown in Fig. 3(b), assuming ν = 2 and 1000 Monte-Carlo
trials. We see that the NRMSE of CES-COBASL decreases faster
than that of CES-SCM as K increases. The reason is that the larger
K is, the more outliers tend to occur. These outliers degrade the
estimation performance of Step 1 in Algorithm 2, causing a slow
decay in the NRMSE of CES-SCM. On the other hand, in CES-
COBASL, the sign information is less sensitive to outliers. As a
result, CES-COBASL tends to exhibit smaller NRMSE than CES-
SCM for large K.

Next the computational time of CES-SCM and CES-COBASL
is measured on a workstation with Intel Core i7-8700 CPU 3.20GHz,
32GB RAM, Ubuntu 16.04.6 LTS, and MATLAB R2018b. ForK =
100 in Fig. 3(b), the computational time for one Monte-Carlo trial
is 2.03× 10−5 second for CES-SCM and 1.869× 10−5 second for
CES-COBASL, averaged from 1000 Monte-Carlo trials. Therefore,
these two methods demonstrate similar computational complexities.
Note that we have not taken advantage of fixed-point representations
and table lookup in this implementation.

Finally, Fig. 4 demonstrates the DOA estimation performance
based on CES-SCM and CES-COBASL. Consider a uniform lin-
ear array with N = 10 sensors. There are D = 5 sources and
K = 1000 snapshots. The array output is modeled as x = As + n.
The source vector s and the noise vector n follow [sT ,nT ]T ∼
CE(0, I, g) with g being the complex t-distribution and ν = 2.
The array manifold matrix is given by A = [ej2πnθ̄i ]n,i ∈ CN×D ,
where n = 0, 1, . . . , N − 1, i = 1, 2, . . . , D, and the true normal-
ized DOAs θ̄i ∈ [−1/2, 1/2] are marked by the vertical lines in Fig.
4. We use the MUSIC algorithm [27] to estimate the normalized
DOAs. We see that the normalized MUSIC spectrum P (θ̄) of CES-
SCM does not have five peaks matching the true θ̄i’s. On the other
hand, the MUSIC spectrum of CES-COBASL exhibits five distin-
guishable peaks consistent with the ground truth. The reason is that
CES-COBASL is more robust to CES distributions than CES-SCM.

5. CONCLUDING REMARKS

This paper shows that the arcsine law remains valid for CES dis-
tributions. The proof was based on the angular Gaussian distribu-
tions. This property has led to an estimator for the normalized scat-
ter matrix based on one-bit data and CES-COBASL. CES-COBASL
not only enjoys low computational complexity but also is robust to
heavy-tailed CES distributions.

In the future, it is of interest to analyze the estimation perfor-
mance of CES-COBASL for CES distributions. Another possible
direction is to estimate the scatter matrix, by using CES-COBASL
and robust estimators of the diagonals of the scatter matrix.
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[7] C. Stöckle, J. Munir, A. Mezghani, and J. A. Nossek, “1-bit di-
rection of arrival estimation based on compressed sensing,” in
2015 IEEE 16th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), June 2015,
pp. 246–250.

[8] M. Stein, K. Barbe, and J. A. Nossek, “DOA parameter es-
timation with 1-bit quantization bounds, methods and the ex-
ponential replacement,” in WSA 2016; 20th International ITG
Workshop on Smart Antennas, March 2016, pp. 1–6.

[9] C.-L. Liu and P. P. Vaidyanathan, “One-bit sparse array DOA
estimation,” in Proc. IEEE Int. Conf. Acoust., Speech, and Sig.
Proc., March 2017, pp. 3126–3130.

[10] A. Ameri, A. Bose, J. Li, and M. Soltanalian, “One-bit radar
processing with time-varying sampling thresholds,” IEEE
Trans. Signal Process., vol. 67, no. 20, pp. 5297–5308, Oct
2019.

[11] R. H. Walden, “Analog-to-digital converter survey and analy-
sis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550,
April 1999.

[12] M. J. Pelgrom, Analog-to-Digital Conversion, Springer-Verlag
New York, 2 edition, 2013.

[13] J. H. Van Vleck and D. Middleton, “The spectrum of clipped
noise,” Proc. IEEE, vol. 54, no. 1, pp. 2–19, Jan. 1966.

[14] J. J. Bussgang, “Cross-correlation function of amplitude-
distorted Gaussian signals,” Tech. Rep. 216, Res. Lab. Elec.,
Mas. Inst. Technol., March 1952.

[15] M. Rangaswamy, “Spherically invariant random processes for
modeling non-Gaussian radar clutter,” in Proc. IEEE Asil.
Conf. on Sig., Sys., and Comp., Nov 1993, pp. 1106–1110
vol.2.

[16] K. Yao, Spherically Invariant Random Processes: Theory and
Applications, pp. 315–331, Springer US, Boston, MA, 2003.

[17] E. Conte, A. De Maio, and C. Galdi, “Statistical analysis of
real clutter at different range resolutions,” IEEE Trans. Aerosp.
Electron. Syst., vol. 40, no. 3, pp. 903–918, July 2004.

[18] D. Middleton, “Man-made noise in urban environments and
transportation systems: Models and measurements,” IEEE
Trans. Commun., vol. 21, no. 11, pp. 1232–1241, November
1973.

[19] D. Middleton, Non-Gaussian Statistical Communication The-
ory, Wiley, may 2012.

[20] P. Krishnaiah and J. Lin, “Complex elliptically symmetric dis-
tributions,” Communications in Statistics - Theory and Meth-
ods, vol. 15, no. 12, pp. 3693–3718, 1986.

[21] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex
elliptically symmetric distributions: Survey, new results and
applications,” IEEE Trans. Signal Process., vol. 60, no. 11, pp.
5597–5625, Nov. 2012.

[22] R. A. Wooding, “The multivariate distribution of complex nor-
mal variables,” Biometrika, vol. 43, no. 1-2, pp. 212–215,
1956.

[23] M. Novey, T. Adali, and A. Roy, “A complex generalized
Gaussian distribution—characterization, generation, and esti-
mation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1427–
1433, March 2010.

[24] P. J. Huber, Robust Statistics (Wiley Series in Probability and
Statistics), Wiley-Interscience, 2003.

[25] D. E. Tyler, “A distribution-free M -estimator of multivariate
scatter,” Ann. Statist., , no. 1, pp. 234–251, 1987.

[26] E. Ollila and V. Koivunen, “Robust antenna array processing
using M -estimators of pseudo-covariance,” in 14th IEEE Pro-
ceedings on Personal, Indoor and Mobile Radio Communica-
tions, 2003. PIMRC 2003., Sep. 2003, vol. 3, pp. 2659–2663
vol.3.

[27] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp.
276–280, March 1986.

[28] R. Roy and T. Kailath, “ESPRIT-estimation of signal parame-
ters via rotational invariance techniques,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 37, no. 7, pp. 984–995, July 1989.

[29] G. Jacovitti and A. Neri, “Estimation of the autocorrelation
function of complex Gaussian stationary processes by ampli-
tude clipped signals,” IEEE Trans. Inf. Theory, vol. 40, no. 1,
pp. 239–245, Jan. 1994.

[30] D. McGraw and J. Wagner, “Elliptically symmetric distribu-
tions,” IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 110–120,
January 1968.

[31] F. Lindskog, A. McNeil, and U. Schmock, “Kendall’s
tau for elliptical distributions,” in Credit Risk, G. Bol,
G. Nakhaeizadeh, S. T. Rachev, T. Ridder, and K.-H. Vollmer,
Eds., Heidelberg, 2003, pp. 149–156, Physica-Verlag HD.

[32] G. Jacovitti, A. Neri, and R. Cusani, “Methods for estimat-
ing the autocorrelation function of complex Gaussian station-
ary processes,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 35, no. 8, pp. 1126–1138, Aug. 1987.

[33] R. Price, “A useful theorem for nonlinear devices having Gaus-
sian inputs,” IRE Trans. Inf. Theory, vol. 4, no. 2, pp. 69–72,
June 1958.

[34] J. T. Kent, “Data analysis for shapes and images,” Journal
of Statistical Planning and Inference, vol. 57, no. 2, pp. 181 –
193, 1997, Robust Statistics and Data Analysis, Part II.

[35] M. G. Kendall, “A new measure of rank correlation,”
Biometrika, vol. 30, no. 1-2, pp. 81–93, 06 1938.


