Tensor MUSIC in Multidimensional Sparse Arrays

Chun-Lin Liu1 and P. P. Vaidyanathan2

Dept. of Electrical Engineering, MC 136-93
California Institute of Technology,
Pasadena, CA 91125, USA
cl.liu@caltech.edu1, ppvnath@systems.caltech.edu2

Asilomar Conference on Signals, Systems, and Computers, 2015
Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Outline

1 Introduction
 - Motivation
 - Tensors

2 Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3 Numerical Examples

4 Concluding Remarks
Harmonic Retrieval in Planar Array Processing

Ultimate Goal

Estimate source profiles (azimuth, elevation, range, Doppler, etc.) from sensor measurements efficiently and accurately.

Sparse Array Processing2,3

Uniform Linear Arrays (ULAs)

- ULA with N sensors and sensor separation $\lambda/2$.

- Identify at most $N - 1$ sources using N sensors.

\[
\begin{array}{c}
\text{\underbrace{\quad \cdots \quad}} \\
\hline \\
\lambda/2
\end{array}
\]

Linear Sparse Arrays

- Nested array with N_1, N_2 and min. separation $\lambda/2$.

- Identify $O(N^2)$ uncorrelated sources using $O(N)$ sensors.

\[
\begin{array}{c}
\underbrace{\quad \cdots \quad} & \underbrace{\quad \cdot \quad} & \underbrace{\quad \cdot \quad} & \underbrace{\quad \cdot \quad} \\
\hline \\
\lambda/2(N_1 + 1)\lambda/2
\end{array}
\]

Tensor Model4,5, etc.

Motivation

Measurements

Vector Model

\[\mathbf{x} = \]

Spatial/temporal relations are **mixed** \(\times \)

Tensor Model

\[\mathbf{\chi} = \]

Spatial/temporal relations are **separated** \(\checkmark \)

Main Goal of this Work

Proposed Scheme

Input → Sparse arrays → Tensor Models → Tensor MUSIC → Azimuth, Elevation, Doppler, etc.

Related work:

- ULA, tensors, and MUSIC ⇒ DOA and polarization\(^6,\)\(^7\).
- Nested arrays, tensors, and MUSIC ⇒ azimuth, elevation, and polarization\(^8\).

Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Notations

Tensor \mathcal{A}

Outer product $\mathcal{A} \odot \mathcal{B}$

Inner product $\langle \mathcal{A}, \mathcal{B} \rangle$

n-mode product $\mathcal{A} \times_n \mathbf{U}$

Tensor Decomposition10

- **CANDECOMP/PARAFAC (CP) decomposition:**
 \[X \approx \sum_{r=1}^{R} a_r \circ b_r \circ c_r. \]

- **High-order SVD (HOSVD):**
 \[X \approx g \times_1 A \times_2 B \times_3 C. \]

Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Sparse Array Processing

Vector Model:

\[\hat{x}_S(k) \rightarrow \hat{R}_S \rightarrow \hat{x}_D \rightarrow \hat{R} \rightarrow \text{MUSIC} \]

Physical array \(S \) \rightarrow Difference coarray \(D \)

Tensor Model (Proposed):

\[\hat{\chi}_S(k) \rightarrow \hat{R}_S \rightarrow \hat{\chi}_D \rightarrow \hat{R} \rightarrow \text{Tensor MUSIC} \]

Existing \(\rightarrow \) Proposed

Some Discussions on the Coarray Tensor $\tilde{\mathbf{R}}$

Vector model

$$\langle \tilde{\mathbf{R}} \rangle_{p_1, p'_1} = \langle \tilde{\mathbf{x}} \rangle D_{m_1},$$

$$p_1 - p'_1 = m_1.$$

- $\tilde{\mathbf{R}}$ avoids implementing spatial smoothing in tensors.
- $\tilde{\mathbf{R}}$ admits the (tensor) MUSIC algorithm.

Tensor model

$$\langle \tilde{\mathbf{R}} \rangle_{p_1, p_2, \ldots, p_R, p'_1, p'_2, \ldots, p'_R} = \langle \tilde{\mathbf{x}} \rangle D_{m_1, m_2, \ldots, m_R},$$

$$p_r - p'_r = m_r,$$

$$r = 1, 2, \ldots, R.$$

Outline

1 Introduction
 - Motivation
 - Tensors

2 Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3 Numerical Examples

4 Concluding Remarks
Tensor MUSIC

MUSIC

1. **Eigen-decomposition:**
 \[
 \tilde{\mathbf{R}} = \tilde{\mathbf{U}} \Lambda \tilde{\mathbf{U}}^H.
 \]

2. **Signal and noise subspace:**
 \[
 \tilde{\mathbf{U}} = \begin{bmatrix} \tilde{\mathbf{U}}_s & \tilde{\mathbf{U}}_n \end{bmatrix}
 \]

3. **MUSIC spectrum:**
 \[
 P(\bar{\theta}) = \frac{1}{\| \tilde{\mathbf{U}}_n^H \mathbf{v}(\bar{\theta}) \|^2}
 \]
 \[
 \mathbf{v}(\bar{\theta}) : \text{steering vectors.}
 \]

Tensor MUSIC

1. **HOSVD:**
 \[
 \tilde{\mathbf{R}} = \tilde{\mathbf{K}} \times_1 \tilde{\mathbf{U}}_1 \times_2 \tilde{\mathbf{U}}_2 \cdots \times_R \tilde{\mathbf{U}}_R \times_{R+1} \tilde{\mathbf{U}}_1^* \times_{R+2} \tilde{\mathbf{U}}_2^* \cdots \times_{2R} \tilde{\mathbf{U}}_R^*.
 \]

2. **Signal and noise subspace:**
 \[
 \tilde{\mathbf{U}}_r = \begin{bmatrix} \tilde{\mathbf{U}}_{r,s} & \tilde{\mathbf{U}}_{r,n} \end{bmatrix}
 \] is a unitary matrix.

3. **Tensor MUSIC spectrum**
 \[
 P_{HOSVD}(\bar{\mu}) = \frac{1}{\| \mathbf{V}(\bar{\mu}) \times_1 \tilde{\mathbf{U}}_{1,n}^* \tilde{\mathbf{U}}_{1,n}^H \times_R \tilde{\mathbf{U}}_{R,n}^* \tilde{\mathbf{U}}_{R,n}^H \|_F^2}
 \]
 \[
 \mathbf{V}(\bar{\mu}) : \text{steering tensors.}
 \]

Our observation: $P_{\text{HOSVD}}(\bar{\mu})$ is a separable MUSIC spectrum

$$P_{\text{HOSVD}}(\bar{\mu}) = \prod_{r=1}^{R} P_r(\bar{\mu}^{(r)}), \quad P_r(\bar{\mu}^{(r)}) = \frac{1}{\| \tilde{U}_{r,n}^H v_{\tilde{U}^r_r} (\bar{\mu}^{(r)}) \|^2}$$

$P_{\text{HOSVD}}(\bar{\mu})$ has cross-terms

- Actual
- $P_{\text{HOSVD}}(\bar{\mu})$
Proposed Tensor MUSIC spectrum via CP

CP

\[
\tilde{\mathcal{R}} = \sum_{\ell=1}^{D} \tilde{a}_{\ell}^{(1)} \circ \tilde{a}_{\ell}^{(2)} \circ \cdots \circ \tilde{a}_{\ell}^{(R)} \circ \tilde{a}_{\ell}^{(1)*} \circ \tilde{a}_{\ell}^{(2)*} \circ \cdots \circ \tilde{a}_{\ell}^{(R)*} .
\]

Signal and noise subspace

Signal subspace \(\mathcal{S} = \text{span}\{ \tilde{a}_{\ell}^{(1)} \circ \tilde{a}_{\ell}^{(2)} \circ \cdots \circ \tilde{a}_{\ell}^{(R)} \}_{\ell=1}^{D} \),

Noise subspace \(\mathcal{N} = \mathcal{S}^\perp \).

Tensor MUSIC spectrum

\[
P_{\text{CP}} (\bar{\mu}) = \frac{1}{\| \text{proj}_{\mathcal{N}} \mathbf{V}_U^+ (\bar{\mu}) \|_F^2}.
\]
Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Numerical Examples

Tensor Dimension $R = 2$

- 10 sensors (or samples) in each dimension
- Coprime array/sampling with $M = 3$ and $N = 5$
- 1000 snapshots, 0dB SNR, and $D = 5$ equal-power sources.

\[
P_{ULA,HOSVD} (\bar{\mu}) \quad P_{Coprime,HOSVD} (\bar{\mu}) \quad \text{Proposed} \quad P_{Coprime,CP} (\bar{\mu})
\]

Low resolution \(\times\) \quad High resolution \(\checkmark\) \quad High resolution \(\checkmark\)

Cross terms \(\times\) \quad Cross terms \(\times\) \quad No cross terms \(\checkmark\)
Numerical Examples

Tensor Dimension $R = 3$

- 10 sensors (or samples) in each dimension,
- Coprime array/sampling with $M = 3$ and $N = 5$,
- 1000 snapshots, 0dB SNR, and $D = 5$ equal-power sources.

\[
\begin{align*}
P_{ULA,HOSVD} (\bar{\mu}) & \quad P_{Coprime,HOSVD} (\bar{\mu}) \\
\text{Proposed} & \quad P_{Coprime,CP} (\bar{\mu})
\end{align*}
\]

Liu and Vaidyanathan (Caltech)
Outline

1. Introduction
 - Motivation
 - Tensors

2. Contribution: Tensor MUSIC in Multidimensional Sparse Arrays
 - Coarray tensor
 - Tensor MUSIC spectrum

3. Numerical Examples

4. Concluding Remarks
Parameter estimation using
1. Sparse arrays / non-uniform sampling,
2. Tensor models, and
3. MUSIC.

Tensor MUSIC using HOSVD on $\tilde{\mathcal{R}}$:
1. Product of MUSIC spectra
2. Cross-terms

Tensor MUSIC using CP on $\tilde{\mathcal{R}}$:
1. No cross-terms