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ABSTRACT

This paper extends the use of coprime arrays and samplers for the
case of moving sources. Space-time adaptive processing (STAP)
plays an important role in estimating direction-of-arrivals (DOAs)
and radial velocities of emitting sources. However, the detection
performance is fundamentally limited by the array geometry and
the temporal samplers at each sensor. Coprime arrays and coprime
samplers offer an enhanced degree of freedom of O(MN) using
only O(M + N) physical sensors or samples. In this paper, we
propose coprime joint angle-Doppler estimation (coprime JADE),
which incorporates both coprime arrays and coprime samplers with
the STAP framework. Nonuniform time samples at different sensors
can be used to generate a sampled autocorrelation matrix, from
which we compute a spatial smoothed matrix. It will be proved that
spatial smoothed matrices can be used in the MUSIC algorithm for
parameter estimation. With sufficient snapshots, coprime JADE dis-
tinguishes O(M1N1M2N2) independent sources if it corresponds
to coprime arrays and coprime samplers with coprime integers
(M1, N1) and (M2, N2), respectively. It is verified through simu-
lations that coprime JADE resolves the angle-Doppler information
better compared to other conventional algorithms.

Index Terms— Coprime arrays, coprime samplers, joint angle-
Doppler estimation, the MUSIC algorithm.

1. INTRODUCTION

Space-time adaptive processing (STAP) is a standardized technique
in airbone MTI radar signal processing [1, 2]. From time samples at
different sensors, adaptive weightings are applied to these data to de-
rive a 2D beamformer for direction-of-arrivals (DOAs) and Doppler
frequencies. Estimators based on power spectrum density (PSD) [1],
minimum variance distortionless response (MVDR) [3], MUSIC al-
gorithms [4], ESPRIT algorithms [5], time-space-time MUSIC [6],
and compressive joint angular-frequency power spectrum estima-
tion [7] are also popular in extracting the angle-Doppler information.

Coprime arrays have received attention in DOA estimation since
they can resolve more sources than the number of sensors [8]. Con-
sisting of two uniform linear arrays (ULAs) whose interelement
spacings are Md and Nd, coprime arrays provide an enhanced de-
gree of freedom of O(MN) using O(M + N) sensors, assuming
M and N are coprime integers . This property facilitates superreso-
lution applications in DOA estimation [9, 10], spectrum sensing [8],
and other applications.

In this paper, we propose a novel joint angle-Doppler estimation
framework using coprime arrays for sensors and coprime samplers at

This work was supported in parts by the ONR grant N00014-11-1-0676,
and the California Institute of Technology.

the output of each sensor. This will be called coprime JADE in this
paper. Designing coprime arrays with coprime integers M1 and N1

in the spatial domain and coprime samplers with coprime integers
M2 andN2 in the time domain enables superresolution on the angle-
Doppler plane. By using coprime arrays and samplers, it will be
proved that coprime JADE can identify O(M1N1M2N2) distinct
sources.

This paper is organized as follows. In Section 2, the data model
is briefly reviewed. In Section 3, coprime JADE is introduced in de-
tail. In Section 4, we propose identifiability guarantees for coprime
JADE, which are verified by simulations in Section 5 before Section
6 concludes this paper.

2. THE DATA MODEL

ConsiderD sources emitting electromagnetic wave in the space. Our
array receives the emitted signals at sensor locations nd in space, and
then takes samples at time instant mT in time, where d = λ/2 de-
notes the minimum spacing between sensors and T is the minimum
sampling interval. Each source is characterized by its DOA θi and
its radial velocity vi. The received signal X (n,m) can be modelled
as a random variable defined by

X (n,m) =

D∑
i=1

Aie
j2πθ̄inej2πf̄im +N (n,m) , (1)

where {Ai}Di=1 are zero-mean random variables with the uncorre-
lated property E [A∗iAj ] = σ2

i δi,j . Here θ̄i and f̄i are normalized
DOAs and normalized Doppler frequencies defined by

θ̄i =
d

λ
sin θi, f̄i =

T

λ
vi,

where θ̄i, f̄i ∈ [−1/2, 1/2). N(n,m) stand for additive white noise
with E [N∗ (n,m)N (n′,m′)] = σ2δn,n′δm,m′ . Noise is assumed
uncorrelated with the sources {Ai}Di=1.

Eq. (1) can be reformulated using matrices. Defining a random
matrix X = [X(n,m)], Eq. (1) becomes

X =

D∑
i=1

Aivs
(
θ̄i
)
vTt
(
f̄i
)

+ N, (2)

where vs
(
θ̄i
)

denote spatial steering vectors corresponding to θ̄i,
and vt

(
f̄i
)

are temporal steering vectors with respect to normalized
Doppler frequencies f̄i. The superscript T stands for matrix trans-
pose operation and N = [N(n,m)]. Vectorizing (2) leads to the
following expression

x =

D∑
i=1

Aivs,t
(
θ̄i, f̄i

)
+ n, (3)
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Fig. 1. A system diagram of coprime JADE.

where x = vec (X) ,n = vec (N), and

vs,t
(
θ̄i, f̄i

)
= vt

(
f̄i
)
⊗ vs

(
θ̄i
)

(4)

represents space-time steering vector related to the angle-Doppler
frequency pair

(
θ̄i, f̄i

)
. Here ⊗ is the Kronecker product between

matrices.
In practice, multiple snapshots are taken to estimate second or-

der statistics if sources are stationary within these snapshots. As-
sume these multiple measurements are written as x (k), where k =
1, 2, . . . ,K. The autocorrelation matrix of x can be estimated as

R̂x =
1

K

K∑
k=1

x(k)xH(k), (5)

where the superscript H stands for transpose-conjugate of matrices.
The estimated autocorrelation matrix can then be applied to beam-
formers, MUSIC algorithms, or coprime arrays/samplers.

3. JOINT ANGLE-DOPPLER ESTIMATION

In this section, we present a novel JADE setting using coprime ar-
rays and coprime samplers to achieve much higher degree of free-
dom. From the coprime samples, the autocorrelation matrix is first
estimated. Based on the difference set pertaining to coprime ar-
rays and coprime samplers, the spatial smoothing method is applied
to the sampled autocorrelation matrix, yielding a larger-size spatial
smoothed matrix. Then the MUSIC algorithm is applied to estimate
the angle-Doppler information.

Fig. 1 depicts the system diagram of coprime JADE. The co-
prime array is composed of two uniform linear arrays with interele-
ment spacingM1d andN1d, whereM1 andN1 are coprime integers.
The sensor locations are explicitly defined over the grid nd, where

n ∈ {0,M1, . . . , (N1 − 1)M1, N1, 2N1, . . . , (2M1 − 1)N1} .

There are N1 + 2M1 − 1 sensors in total. At each sensor, two
samplers operate at sampling rates M2T and N2T in parallel to ob-
tain coprime samples, where M2 and N2 are also coprime integers.
These time-domain samples are defined at time instant mT , where

m ∈ {0,M2, . . . , (N2 − 1)M2, N2, 2N2, . . . , (2M2 − 1)N2} .

Each sampler takes N2 + 2M2 − 1 samples per sensor in one snap-
shot.

Next, the autocorrelation matrix of x is studied. From (3), the
ideal autocorrelation matrix of x is found to be

E
[
xxH

]
=

D∑
i=1

σ2
i vs,t

(
θ̄i, f̄i

)
vHs,t

(
θ̄i, f̄i

)
+ σ2I.
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Fig. 2. Relationships between Z and its submatrix Zp,q .

The term vs,t
(
θ̄i, f̄i

)
vHs,t

(
θ̄i, f̄i

)
can be rewritten as follows(

vt
(
f̄i
)
vHt
(
f̄i
))
⊗
(
vs
(
θ̄i
)
vHs
(
θ̄i
))
,

which is because of (4) and the property (A⊗B) (C⊗D) =
(AC) ⊗ (BD). Note that the entries in vs

(
θ̄i
)
vHs
(
θ̄i
)

are in
the form of ej2πθ̄iñ, where the range set of ñ contains all in-
tegers from −M1N1 to M1N1 [9]. Hence, there exists an ar-
rangement that converts vs

(
θ̄i
)
vHs
(
θ̄i
)

to a new steering vec-

tor ws

(
θ̄i
)

=
[
ej2πθ̄iñ

]
, where ñ = −M1N1, . . . ,M1N1.

ws

(
θ̄i
)

can be also regarded as steering vectors corresponding
to a (2M1N1 + 1)-element ULA in coarray domain. The same
argument holds true in the time domain, where a new steering vec-
tor wt

(
f̄i
)

is viewed as the collection of 2M2N2 + 1 uniform
samples. According to the equivalence of (2) and (3), a matrix
Z ∈ C(2M1N1+1)×(2M2N2+1) is constructed from E

[
xxH

]
such

that

Z =

D∑
i=1

σ2
iws

(
θ̄i
)
wT
t

(
f̄i
)

+ σ2e1e
T
2 , (6)

where ei = [δ`,MiNi+1]2MiNi+1
`=1 for i = 1, 2. Eq. (6) can be in-

terpreted as a sum of D coherent sources in 2D. Then, for coherent
sources, spatial smoothing [11–13] is a technique for estimating the
autocorrelation matrix of Z, from which the MUSIC algorithm [4]
can resolve the DOA and the Doppler frequency information.

To apply spatial smoothing, the submatrix of Z is defined as
Zp,q ∈ C(M1N1+1)×(M2N2+1), which is depicted in Fig. 2,

Zp,q =

D∑
i=1

σ2
i e
−j2π(θ̄ip+f̄iq)w̃s

(
θ̄i
)
w̃T
t

(
f̄i
)

+ σ2e1,pe
T
2,q,



where w̃s

(
θ̄i
)
∈ CM1N1+1 and w̃t

(
f̄i
)
∈ CM2N2+1 are space and

time steering vectors of an ULA and uniform sampling starting with
0, respectively. e1,p is a subvector constructed from the (M1N1 +
1 − p)th entry to the (2M1N1 + 1 − p)th entry of e1. Here p ∈
{0, 1, . . . ,M1N1}, q ∈ {0, 1, . . . ,M2N2}.

We then define the spatial smoothed matrix Rss as

Rss =
1

(M1N1 + 1)(M2N2 + 1)

M1N1∑
p=0

M2N2∑
q=0

zp,qz
H
p,q, (7)

where zp,q = vec (Zp,q). It follows from (7) that Rss is a Hermi-
tian, positive semidefinite matrix of size (M1N1 + 1)(M2N2 + 1)-
by-(M1N1 + 1)(M2N2 + 1).

Theorem 1. The spatial smoothed matrix Rss can be expressed as

Rss = C2

(
D∑
i=1

σ2
i w̃s,t

(
θ̄i, f̄i

)
w̃H
s,t

(
θ̄i, f̄i

)
+ σ2I

)2

, (8)

where w̃s,t

(
θ̄i, f̄i

)
= w̃t

(
f̄i
)
⊗ w̃s

(
θ̄i
)

are space-time steering
vectors, and C = ((M1N1 + 1)(M2N2 + 1))−1/2.

Proof. The proof is sketched as follows. Analogous to (2) and (3),
zp,q = vec (Zp,q) can be written in terms of w̃s,t

(
θ̄i, f̄i

)
. Then,

putting zp,q into (7) leads to an expression in terms of summations
over p, q, i1, i2, where i1 and i2 are indices which run over all
sources. The cross terms in Rss are replaced with steering vectors,

w̃H
s

(
θ̄i1
)
w̃s

(
θ̄i2
)

=

M1N1∑
p=0

e−j2πθ̄i1pej2πθ̄i2p,

w̃H
t

(
f̄i1
)
w̃t

(
f̄i2
)

=

M2N2∑
q=0

e−j2πf̄i1qej2πf̄i2q,

w̃t

(
f̄i2
)
⊗ w̃s

(
θ̄i2
)

=

M1N1∑
p=0

M2N2∑
q=0

ej2π(θ̄i2p+f̄i2q) (e2,q ⊗ e1,p).

Then Rss/C
2 can be expressed as

D∑
i1=1

D∑
i2=1

[
σ2
i1σ

2
i2

(
w̃t

(
f̄i1
)
w̃H
t

(
f̄i1
)
w̃t

(
f̄i2
)
w̃H
t

(
f̄i2
))

⊗
(
w̃s

(
θ̄i1
)
w̃H
s

(
θ̄i1
)
w̃s

(
θ̄i2
)
w̃H
s

(
θ̄i2
))]

+ 2

D∑
i=1

σ2
i σ

2w̃s,t

(
θ̄i, f̄i

)
w̃H
s,t

(
θ̄i, f̄i

)
+ σ4I. (9)

Rearranging (9) proves this theorem.

Note that the theorems similar to Theorem 1 have already been
proposed in the context of 1D coprime arrays [9], 1D nested ar-
rays [13], and 2D nested arrays [14]. It is also observed that The-
orem 1 resembles Theorem 3 of [14] because coprime JADE fol-
lows the same formulation as coprime arrays in two dimensions [15]
and nested arrays in two dimensions [14]. In other words, our work
bridges the gap between STAP and two dimensional array process-
ing. The former estimates the DOA and the Doppler frequency while
the latter seeks the azimuth and the elevation in two dimensions.

However, coprime JADE and coprime arrays in 2D are related
to different design problems. In coprime JADE, sensor locations
are fixed and the same sampling pattern is applied to each sensor,

yielding separable samples in the space-time domain. In coprime
arrays in 2D, sensors can be arbitrarily placed over nonseparable
sampling lattices. Coprime JADE transforms separable samples to
the angle-Doppler plane, which is nonseparable since

(
θ̄i, f̄i

)
can be

placed anywhere on the angle-Doppler plane. Coprime arrays in 2D
convert their nonseparable inputs to the azimuth-elevation domain,
which is also nonseparable.

Theorem 1 suggests that Rss can be utilized in MUSIC algo-
rithms to estimate

(
θ̄i, f̄i

)
. It is because Rss shares the same eigen-

vectors as the term between the parentheses in (8). Assume the sig-
nal subspace of Rss is represented as Us, and let Un denote the
noise subspace of Rss. Following the definition of MUSIC spec-
tra [4], the MUSIC spectrum for coprime JADE is then defined as

PMUSIC

(
θ̄, f̄
)

=
1∥∥UH

n w̃s,t

(
θ̄, f̄
)∥∥2

2

,

where θ̄, f̄ ∈ [−1/2, 1/2) and ‖·‖2 denotes Euclidean norms of vec-
tors. Then, the DOAs and the Doppler frequencies can be estimated
by detecting the peaks in PMUSIC

(
θ̄, f̄
)
.

4. HOW MANY SOURCES CAN COPRIME JADE
IDENTIFY?

The number of identifiable sources for coprime JADE will be dis-
cussed in this section. Under some conditions, the MUSIC spec-
trum PMUSIC

(
θ̄, f̄
)

can identify up toM1N1M2N2 correct angle-
Doppler pairs.

It was shown in Section 3 that coprime JADE is closely related
to nested arrays or coprime arrays in two dimensions. In 2D, identi-
fiability issues become difficult and can be categorized into almost-
sure identifiability [16] and exact identifiabilty [14]. In this paper,
we propose the following theorem on exact identifiability, based on
the theoretical results on identifiability properties given in [14],

Theorem 2. Consider distinct sources S =
{(
θ̄i, f̄i

)}D
i=1

where

D ≤ M1N1M2N2. Assume that a) the set
{
θ̄i
}D
i=1

takes at most

M1N1 distinct values and b)
{
f̄i
}D
i=1

contains at most M2N2 dis-
tinct values. Then, PMUSIC

(
θ̄, f̄
)

has a singularity if and only if(
θ̄, f̄
)
∈ S.

Proof. According to Theorem 4 in [14], letting M = M1N1 + 1
and N = M2N2 + 1, we obtain that PMUSIC

(
θ̄, f̄
)

has a singular-
ity if and only if w̃s,t

(
θ̄, f̄
)

= w̃s,t

(
θ̄i, f̄i

)
for some 1 ≤ i ≤ D.

Provided with w̃s,t

(
θ̄, f̄
)
, w̃s

(
θ̄
)

is the first M1N1 + 1 entries of
w̃s,t

(
θ̄, f̄
)

and w̃t

(
f̄
)

corresponds to the (1 + (M1N1 + 1)`)th
entries of w̃s,t

(
θ̄, f̄
)
, ` = 0, 1, . . . ,M2N2. Hence w̃s,t

(
θ̄, f̄
)

=

w̃s,t

(
θ̄i, f̄i

)
is equivalent to w̃s

(
θ̄
)

= w̃s

(
θ̄i
)

and w̃t

(
f̄
)

=

w̃t

(
f̄i
)

for some 1 ≤ i ≤ D. Since w̃s

(
θ̄
)

and w̃t

(
f̄
)

correspond
to ULAs and uniform sampling, respectively, applying Theorem 1
in [17] twice implies that w̃s

(
θ̄
)

and w̃t

(
f̄
)

are invertible. Hence,
for some 1 ≤ i ≤ D, θ̄ = θ̄i and f̄ = f̄i, which complete the
proof.

Theorem 2 indicates the maximum number of identifiable
sources is M1N1M2N2. This result can be interpreted as a combi-
nation of coprime arrays and coprime samplers. Theories in coprime
arrays proved that up to M1N1 DOAs can be detected [9]. Coprime
samplers have up to M2N2 degrees of freedom [9]. If the D sources
exhibit M1N1 distinct values projected onto θ̄ and M2N2 distinct
values onto f̄i, then these values are distinguishable using coprime
arrays and coprime samplers.
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Fig. 3. Angle-Doppler pattern using different methods and different sources. (a) 121 uniform sources, (b) 400 uniform sources, and (c) 20
random sources. x axes stand for normalized DOAs θ̄ while y axes represent normalized Doppler frequencies f̄ . The color is reversed (black
shows larger values) to enhance the contrast.

5. NUMERICAL RESULTS

The performance of different algorithms is compared in this section.
We compare Fourier-based power spectrum density (PSD) [1], Min-
imum variance distortionless response (MVDR) [3], MUSIC algo-
rithm with ULAs [4], and coprime JADE. The former three methods
use ULAs plus uniform time samples at each sensor. In these simu-
lations, M1 = M2 = 4 and N1 = N2 = 5 so that the number of
sensors and the number of samples per sensor are exactly 12 in all
methods. According to (5), the autocorrelation matrix of x is esti-
mated from 1000 snapshots. The input signal is mixed with additive
white Gaussian noise with 0 dB SNR. Simulation results are shown
in Fig. 3.

In the first simulation, 112 = 121 sources are placed uniformly
on the angle-Doppler plane. This example hits the limit of ULA and
uniform sampling since there are only 12 sensors and 12 samples at
each sensor. PSD and MVDR fail to separate all 121 sources but
MUSIC-based methods show similar patterns as the ideal case.

In the second simulation, the number of sources is increased
to 202 = 400, which is the maximum number of distinguishable
sources for coprime JADE. The first three methods cannot detect all
400 sources. ULA MUSIC method cannot resolve the spectrum due
to its rank deficiency. However, coprime JADE still works in this
extreme case.

Our third example selects 20 random sources. PSD and MVDR
still cannot resolve these sources while ULA MUSIC and coprime
JADE work. However, as seen from the circled parts in these figures,

ULA MUSIC produces more blurry spectrum than coprime JADE,
for closely spaced sources. Therefore, coprime JADE has higher
resolution and is suitable for closely spaced sources.

6. CONCLUDING REMARKS

In this paper, we have formulated coprime JADE as a novel approach
to angle-Doppler estimation, inspired by the concept of coprime ar-
rays and coprime samplers. From the input samples, it was realized
by constructing a matrix as a sum of 2D complex sinusoids, from
which a spatial smoothed matrix was established. Theorem 1 on
the spatial smoothed matrices allowed a definition of the MUSIC
spectrum over the angle-Doppler plane. Coprime JADE exhibited
unique identifiability up to M1N1M2N2 distinct sources as long
as these sources satisfy some conditions. These results were veri-
fied through simulations and coprime JADE resolved closely spaced
sources much better than some conventional approaches.

Further research will be directed toward the connection between
coprime JADE and coprime arrays in high dimensions [14, 15]. Co-
prime JADE takes the same number of samples at each sensor, which
follows the same formulation as separable coprime arrays in two di-
mensions. It could be possible to design different sampling schemes
at different sensors such that the number of samplers is reduced but
the performance is unchanged.
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