New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays

Chun-Lin Liu¹ P. P. Vaidyanathan²

^{1,2}Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu¹, ppvnath@systems.caltech.edu²

SAM 2016

1 DOA Estimation using Sparse Arrays

- 2 Cramér-Rao Bounds for Sparse Arrays
- 3 Numerical Examples

1 DOA Estimation using Sparse Arrays

2 Cramér-Rao Bounds for Sparse Arrays

3 Numerical Examples

Direction-of-arrival (DOA) estimation¹

¹Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

ULA and sparse arrays

ULA (not sparse)

- Identify at most N 1 uncorrelated sources, given N sensors.¹
- Can only find fewer sources than sensors.

Sparse arrays

- Minimum redundancy arrays²
- 2 Nested arrays³
- Coprime arrays⁴
- 4 Super nested arrays⁵
 - Identify O(N²) uncorrelated sources with O(N) physical sensors.
 - More sources than sensors!

Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

²Moffet, IEEE Trans. Antennas Propag., 1968.

³Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

⁴Vaidyanathan and Pal, IEEE Trans. Signal Proc., 2011.

⁵Liu and Vaidyanathan, IEEE Trans. Signal Proc., 2016.

Coprime arrays¹

The coprime array with (M, N) = 1 is the union of

1 an N-element ULA with spacing $M\lambda/2$ and

2 a 2M-element ULA with spacing $N\lambda/2$.

¹Vaidyanathan and Pal, *IEEE Trans. Signal Proc.*, 2011.

DOA estimation using sparse arrays

Multiple data vectors in the physical array \mathbb{S} $|\mathbb{S}| = O(N)$

A single correlation vector in the difference array \mathbb{D} $|\mathbb{D}| = O(N^2)$

Step 2: DOA estimation using this single correlation vector.

Spatial smoothing MUSIC (SS MUSIC),¹ to name a few^{2,3}. Empirically, SS MUSIC can identify up to $(|\mathbb{U}| - 1)/2$ uncorrelated sources with sufficient snapshots. Why?

¹ Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2010.

² Abramovich, Spencer, and Gorokhov, IEEE Trans. Signal Proc., 1998, 1999.

³Zhang, Amin, and Himed, IEEE ICASSP, 2013; Pal and Vaidyanathan, IEEE Trans. Signal Proc., 2015;

Liu and Vaidyanathan

CRB for Sparse Arrays

2 Cramér-Rao Bounds for Sparse Arrays

3 Numerical Examples

Fisher Information Matrices and Cramér-Rao Bounds

- **x**: random vectors with distribution $p(\mathbf{x}; \boldsymbol{\alpha})$.
- $\boldsymbol{\alpha}$: Real-valued, unknown, and deterministic parameters.

FIM $\mathcal{I}(\alpha)$, based on $p(\mathbf{x}; \alpha)$ and α . (under some regularity conditions) If $\mathcal{I}(\alpha)$ is nonsingular, then $CRB(\alpha) \triangleq \mathcal{I}^{-1}(\alpha)$.

If $\widehat{\alpha}(\mathbf{x})$ is a unbiased estimator of α , then $\operatorname{Cov}(\widehat{\alpha}(\mathbf{x})) \succeq \operatorname{CRB}(\alpha)$.

- CRB depend only on $p(\mathbf{x}; \boldsymbol{\alpha})$ and $\boldsymbol{\alpha}$, NOT on the estimators $\widehat{\boldsymbol{\alpha}}(\mathbf{x})$.
- CRB pose fundamental limits to the estimation performance of all unbiased estimators.

Related work

- 1 Deterministic CRB¹ assumes $A_i(k)$ are deterministic.
- 2 Stochastic CRB² becomes invalid for D > |S| since $\mathbf{V}_{S}^{H}\mathbf{V}_{S}$ is singular.

$$CRB = \frac{p_n}{2K} Re \left[\mathbf{H} \odot \mathbf{Q}^T \right]^{-1} \mathbf{H} = \mathbf{U}_{\mathbb{S}}^H [\mathbf{I} - \mathbf{V}_{\mathbb{S}} (\mathbf{V}_{\mathbb{S}}^H \mathbf{V}_{\mathbb{S}})^{-1} \mathbf{V}_{\mathbb{S}}^H] \mathbf{U}_{\mathbb{S}}.$$

- 3 Abramovich *et al.*³ plotted the CRB curves numerically.
- 4 Jansson *et al.*'s CRB expressions⁴ are undefined if D = |S|.

$$\mathbf{x}_{\mathbb{S}}(k) = \sum_{i=1}^{D} A_i(k) \mathbf{v}_{\mathbb{S}}(\bar{\theta}_i) + \mathbf{n}_{\mathbb{S}}(k)$$
$$\mathbf{V}_{\mathbb{S}} = [\mathbf{v}_{\mathbb{S}}(\bar{\theta}_i)] \in \mathbb{C}^{|\mathbb{S}| \times D}$$

SS MUSIC

 Sources are stochastic and known to be uncorrelated.

$$(\mathbb{E}[A_{i}(k_{1})A_{j}^{*}(k_{2})] = p_{i}\delta_{i,j}\delta_{k_{1},k_{2}})$$

■ Resolve more sources than sensors (*D* ≥ |S|).

¹ Stoca and Nehorai, IEEE Trans. Acoustics, Speech and Signal Proc., 1989.
² Stoca and Nehorai, IEEE Trans. Acoustics, Speech and Signal Proc., 1990.
³ Abramovich, Gray, Gorokhov, and Spencer, IEEE Trans. Signal Proc., 1998.
⁴ Jansson, Göransson, and Ottersten, IEEE Trans. Signal Proc., 1999.

Augmented Coarray Manifold matrices (*Proposed*)

$$\mathbf{A}_c = \begin{bmatrix} \operatorname{diag}(\mathbb{D})\mathbf{V}_{\mathbb{D}} & \mathbf{V}_{\mathbb{D}} & \mathbf{e}_0 \end{bmatrix}$$

$\mathbb{D} = \{-4, -3, -1, 0, 1, 3, 4\}.$ D = 2 sources $\bar{\theta}_1$ and $\bar{\theta}_2$.

The *proposed* CRB expression for sparse arrays¹

 \mathbf{A}_c has full column rank. (rank(\mathbf{A}_c) = 2D + 1)

FIM is nonsingular. (CRB exists)

$$\operatorname{CRB}(\bar{\boldsymbol{\theta}}) = \operatorname{CRB}(\bar{\theta}_1, \dots, \bar{\theta}_D) = \frac{1}{4\pi^2 K} \left(\mathbf{G}_0^H \mathbf{\Pi}_{\mathbf{M} \mathbf{W}_{\mathbb{D}}}^{\perp} \mathbf{G}_0 \right)^{-1}$$

- $\{\bar{\theta}_i\}_{i=1}^{D}$: normalized DOAs. $\bar{\theta}_i = 0.5 \sin \theta_i \in [-0.5, 0.5].$
- S: The physical array.
- D: The difference coarray.
- *p_i*: The *i*th source power.
- p_n: The noise power.
- K: Number of snapshots.

- $\mathbf{V}_{\mathbb{D}} = [\mathbf{v}_{\mathbb{D}}(\bar{\theta}_1), \dots, \mathbf{v}_{\mathbb{D}}(\bar{\theta}_D)].$
- $\mathbf{W}_{\mathbb{D}} = [\mathbf{V}_{\mathbb{D}}, \mathbf{e}_0].$
- $\bullet \mathbf{P} = \operatorname{diag}(p_1, \ldots, p_D).$
- $\mathbf{G}_0 = \mathbf{M} \mathrm{diag}(\mathbb{D}) \mathbf{V}_{\mathbb{D}} \mathbf{P}.$
- $\label{eq:M} \mathbf{M} = (\mathbf{J}^H (\mathbf{R}^T_{\mathbb{S}} \otimes \mathbf{R}_{\mathbb{S}})^{-1} \mathbf{J})^{1/2} \succ \mathbf{0}.$
- **R**_S = $\sum_{i=1}^{D} p_i \mathbf{v}_{S}(\bar{\theta}_i) \mathbf{v}_{S}^{H}(\bar{\theta}_i) + p_n \mathbf{I}.$

- **J** $\in \{0, 1\}^{|\mathbb{S}|^2 \times |\mathbb{D}|}, \langle \mathbf{J} \rangle_{:,m} = \operatorname{vec}(\mathbf{I}(m)), m \in \mathbb{D}.$
- $\begin{array}{l} & \langle \mathbf{I}(m) \rangle_{n_1,n_2} = \\ \begin{cases} 1, & \text{if } n_1 n_2 = m, \\ 0, & \text{otherwise}, \\ n_1, n_2 \in \mathbb{S}. \end{cases} \end{array}$

Liu and Vaidyanathan

CRB for Sparse Arrays

SAM 2016 12 / 20

¹Liu and Vaidyanathan, Digital Signal Proc., Elsevier, 2016; http://systems.caltech.edu/dsp/students/clliu/CRB.html

Implications drawn from the CRB expressions

ACM matrices depend on

- $\blacksquare The difference coarray \mathbb{D},$
- the normalized DOA $\bar{\boldsymbol{\theta}} = [\bar{\theta}_1, \dots, \bar{\theta}_D]^T$, and
- the number of sources *D*.

These factors influence the existence of CRB.

$$\mathbf{A}_{c} = \begin{bmatrix} \operatorname{diag}(\mathbb{D})\mathbf{V}_{\mathbb{D}} & \mathbf{V}_{\mathbb{D}} & \mathbf{e}_{0} \end{bmatrix}$$
$$\operatorname{CRB}(\bar{\boldsymbol{\theta}}) = \frac{1}{4\pi^{2}K} \left(\mathbf{G}_{0}^{H} \mathbf{\Pi}_{\mathbf{M}\mathbf{W}_{\mathbb{D}}}^{\perp} \mathbf{G}_{0} \right)^{-1}$$

CRB depend on

- The physical array S,
- the normalized DOA $\bar{\boldsymbol{\theta}} = [\bar{\theta}_1, \dots, \bar{\theta}_D]^T$,
- the number of sources D,
- the number of snapshots K, and
- the SNR $p_1/p_n, \ldots, p_D/p_n$.

These parameters control the values of CRB.

If rank $(\mathbf{A}_c) = 2D + 1$, then $\lim_{K \to \infty} \operatorname{CRB}(\overline{\boldsymbol{\theta}}) = \mathbf{0}$.

Asymptotic CRB expressions for large SNR¹

- **1** A_c has full column rank.
- **2** D uncorrelated sources have equal SNR p/p_n .
- 3 Large SNR $(p/p_n \to \infty)$.

These phenomena were observed by Abramovich et al. in 1998, which can be proved using our CRB expressions.

1 DOA Estimation using Sparse Arrays

2 Cramér-Rao Bounds for Sparse Arrays

3 Numerical Examples

CRB vs SNR, fewer sources than sensors (D < |S| = 4)

Liu and Vaidyanathan

CRB for Sparse Arrays

CRB vs SNR, more sources than sensors $(D \ge |S| = 4)$

CRB vs D, coprime array, 10 sensors¹

 $\blacksquare \ M=3, N=5, \mathbb{S}=\{0,3,5,6,9,10,12,15,20,25\}.$

- $\mathbb{D} = \{0, \pm 1, \dots, \pm 17, \pm 19, \pm 20, \pm 22, \pm 25\}.$
- $\bar{\theta}_i = -0.48 + (i-1)/D$ for $i = 1, \dots, D$. 20dB SNR, 500 snapshots.

¹Liu and Vaidyanathan, Digital Signal Proc., Elsevier, 2016; http://systems.caltech.edu/dsp/students/clliu/CRB.html

Liu and Vaidyanathan

CRB for Sparse Arrays

SAM 2016 18 / 20

1 DOA Estimation using Sparse Arrays

2 Cramér-Rao Bounds for Sparse Arrays

3 Numerical Examples

Concluding remarks

- The proposed CRB expressions for sparse arrays explain
 - why more sources than sensors (D > |S|) can be identified, and
 - why the CRB stagnates for large SNR and D > |S|.
- More details can be found in our journal and website.¹
- Other recent papers: Koochakzadeh and Pal² and by Wang and Nehorai³
- Future: study the optimal array geoemtry for CRB.
- Work supported by Office of Naval Research.

Thank you!

¹ Liu and Vaidyanathan, Digital Signal Proc., Elsevier, 2016; http://systems.caltech.edu/dsp/students/clliu/CRB.html ²Koochakzadeh and Pal, IEEE Signal Proc. Letter, 2016.

³Wang and Nehorai, arXiv:1605.03620 [stat.AP], 2016.