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Abstract

The Cramér-Rao bound (CRB) offers a lower bound on the variances of unbiased estimates of parameters, e.g., directions
of arrival (DOA) in array processing. While there exist landmark papers on the study of the CRB in the context of array
processing, the closed-form expressions available in the literature are not easy to use in the context of sparse arrays (such
as minimum redundancy arrays (MRAs), nested arrays, or coprime arrays) for which the number of identifiable sources
D exceeds the number of sensors N . Under such situations, the existing literature does not spell out the conditions under
which the Fisher information matrix is nonsingular, or the condition under which specific closed-form expressions for the
CRB remain valid. This paper derives a new expression for the CRB to fill this gap. The conditions for validity of this
expression are expressed as the rank condition of a matrix defined based on the difference coarray. The rank condition
and the closed-form expression lead to a number of new insights. For example, it is possible to prove the previously
known experimental observation that, when there are more sources than sensors, the CRB stagnates to a constant value
as the SNR tends to infinity. It is also possible to precisely specify the relation between the number of sensors and the
number of uncorrelated sources such that these conditions are valid. In particular, for nested arrays, coprime arrays, and
MRAs, the new expressions remain valid for D = O(N2), the precise detail depending on the specific array geometry.
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1. Introduction

The celebrated Cramér-Rao bound (CRB), which has in-
fluenced our thinking for many decades of statistical signal
processing, has found significant use in direction-of-arrival
(DOA) problems, among others [20, 42, 59, 78, 102]. The
DOA problem is of great importance in passive array pro-
cessing [102], radar [26, 43, 87], digital communications
[25], and radio astronomy [33], to name a few [34, 46, 95].
The CRB offers a lower bound on the variances of unbi-
ased estimates of the parameters (e.g., DOA). Closed-form
expressions for the CRB offer insights into the dependence
of the array performance with respect to various param-
eters such as the number of sensors N in the array, the
array geometry, the number of sources D, the number of
snapshots, signal to noise ratio (SNR), and so forth.

Two of the most influential papers in the DOA con-
text are the papers by Stoica and Nehorai [90] and [91].
These papers distinguish between the deterministic CRB
and the stochastic CRB (reviewed here in Section 3), and
obtain closed-form expressions for these. In both cases,
the expressions for CRB come from the inversion of the
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Fisher information matrix (FIM), which contains informa-
tion about all the unknown parameters. An appropriate
principal submatrix of this inverse reveals the CRB of the
DOAs, which we denote as CRB(θ̄). In this paper, we will
be especially interested in the stochastic CRB because the
model assumptions used therein are more appropriate in
our context, namely sparse array processing using the dif-
ference coarray (Section 3).

The specific CRB expressions given in Eqs. (2.11) and
(3.1) of [91] are valid only when D < N (fewer sources
than sensors). This is because the expressions are based
on the inverse of the matrix AHA (e.g., see the equation
after (2.11) in [91]), where A is the so-called array man-
ifold matrix (see Section 2.1). The assumption D < N
is however not fundamental to the existence of CRB of
the DOA parameters because even when D ≥ N , with
proper prior information, the FIM can remain nonsingular
(invertible) under a much broader range of conditions, as
we shall prove in this paper. So it is possible to get more
useful expressions which do not involve (AHA)−1.

The closed-form expressions for CRB(θ̄) given in Eq.
(3.1) of [91] assume an arbitrary covariance matrix for the
sources. For the case where it is known a priori that the
sources are uncorrelated, it has been shown in a very in-
teresting paper by Jansson et al. [40] that the CRB is in
general smaller than what one would get if one substituted
a diagonal covariance in the expression (3.1) given in [91].
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Closed-form expressions for CRB(θ̄) for the case of uncor-
related sources are also given in [40]. The authors mention
that it is possible to estimate more sources than sensors in
the case of certain array configurations [40, 68]. However,
the detailed conditions under which this is possible are not
provided in [40]. Furthermore, all the examples given in
[40] are for the case of uniform linear arrays (ULAs), for
which the number of identifiable sources is less than the
number of sensors. Finally, the inverses of certain matri-
ces are assumed to exist in the CRB expression (13) in [40]
although the conditions under which these inverses exist
are not spelt out. In fact, the appearance of m − d (i.e.,
N−D in our notation) in the denominator Eq. (14) of [40]
makes this expression invalid when N = D.

Most importantly, suppose we are interested in the ques-
tion “Given an array configuration, what is the upper limit
on the number of sources D (in relation to the number of
sensors) such that the expression for CRB(θ̄) is valid?”
This is not answered in [40]. One of our contributions
here is to give a precise theoretical answer to such ques-
tions. The reason why this is possible is because there are
multiple ways to express the CRB in closed forms, and
some of them are more revealing than others.

The reason for the renewed interest in finding more use-
ful closed-form expressions for the CRB is the following.
For a long time, sparse arrays, such as the minimum re-
dundancy arrays (MRAs) have been known to be able to
identify more sources than sensors (D ≥ N) [61]. More re-
cently, the development of sparse arrays such as the nested
arrays [63], the coprime arrays [64, 98], and their exten-
sions [51, 53, 54, 75, 76], have generated a new wave of
interest in this topic. These new arrays have simple closed-
form expressions for array geometry (compared to MRAs
which do not have this advantage), which makes them
more practical than MRAs. The most essential property
of these successful sparse arrays is that, given N sensors,
the difference coarrays of these arrays have O(N2) ele-
ments, which allows them to identify D = O(N2) sources
using N sensors. In particular, therefore, D � N is
possible as demonstrated amply in [1–3, 16–19, 21, 28–
32, 36, 40, 52, 57, 58, 61, 63, 64, 67, 68, 70, 71, 74–
77, 93, 94, 96, 98, 107, 108].

It is therefore of great importance to study the perfor-
mance limits of these sparse arrays by using standard tools
such as the CRB. If we try to do this using the existing re-
sults in the literature, we run into a road block. Either the
known closed-form expressions are not valid when D ≥ N ,
or the precise conditions under which they are valid are not
specified. In this context, it is worth mentioning that the
pioneering work by Abramovich et al. many years ago [1]
discussed the performances of MRAs by successfully plot-
ting the CRB even for the case of D ≥ N . The same can be
done today for nested and coprime arrays. However, the
theoretical conditions under which the CRB exists (for the
case D ≥ N) have not been spelt out in the past.

We now summarize the main contributions of our paper.
Starting from the Fisher information matrix for the case

of stochastic CRB with uncorrelated priors, as in [40], we
derive a new closed-form expression for the CRB, specifi-
cally for the case of uncorrelated sources. The new CRB
expressions are valid if and only if the FIM is nonsingular.
The condition for the validity of our CRB expression are
here expressed explicitly in terms of the geometry of the
difference coarray. Thus, with D denoting the difference
coarray of a linear array, let VD be the array manifold ma-
trix defined on this difference coarray. So VD is a |D| ×D
matrix. The number of rows is the size of difference coar-
ray (which could be O(N2)), and the number of columns
is the number of sources. Now consider the |D| × (2D+ 1)
matrix

Ac =
[
diag(D)VD VD e0

]
(1)

where diag(D) is a diagonal matrix with D on its diago-
nals, and e0 is an all zero vector except for one nonzero
element, the location of which depends on the coarray ge-
ometry. We refer to the matrix (1) as the augmented
coarray manifold matrix or ACM matrix. The main
result is that the FIM is nonsingular if and only if the
ACM matrix Ac has full column rank 2D + 1. We shall
refer to this as the rank condition. To the best of our
knowledge, the invertibility of the FIM has not in the past
been characterized in terms of the difference coarray ge-
ometry. The proposed CRB expression holds under this
rank condition, and is given by our Eq. (49) (to be proved
in Theorem 2). Thus the specific CRB expression is valid
whenever the FIM is invertible.

The invertibility of FIM, expressed as a rank condition
on the ACM matrix, leads to a number of further insights
as we shall elaborate in the paper. In short, the rank
condition depends explicitly only on the difference coar-
ray and the DOAs, whereas the CRB itself depends also
on the physical array, the number of snapshots, and the
SNR (Properties 3 and 4 of Section 5). We will also see
that if the rank condition on the ACM matrix is satisfied,
then CRB(θ̄) converges to zero as the number of snap-
shots increases. This is true even for the case D ≥ N
(more sources than sensors).

Rather surprisingly, the same cannot be said for the
SNR. Thus, when the array manifold matrix VS has full
row rank, implying D ≥ N , we show that if the sources
have identical powers p, then for a fixed number of snap-
shots, the CRB stagnates to a constant value as p/pn goes
to infinity, where pn is the noise power (Theorem 4 in Sec-
tion 5). When VS does not have full row rank, we will see
that the CRB decays to zero for large SNR, under suitable
assumptions (Theorem 3 in Section 5). Similar behavior
for D ≥ N and D < N was first noticed by Abramovich et
al. in [1] experimentally. Here we elaborate the conditions
and find these to be provable consequences of the specific
CRB expression we derive.

Another corollary of our results is that if the central
ULA segment in the difference coarray has length L, then
the rank condition on the ACM matrix is indeed satisfied

2



as long as D ≤ (L− 1)/2 (Theorem 5). This is very satis-
fying because, experimentally it has indeed been observed
repeatedly that, methods such as spatial-smoothing based
coarray MUSIC always succeed in identifying the sources
in this case [52, 63, 64, 98].

Yet another outcome of the rank condition is that it is
possible to give a precise bound on the number of sources
D such that the proposed CRB expression is valid. In par-
ticular, for nested arrays, coprime arrays, and MRAs, the
FIM is provably invertible for O(N2) uncorrelated sources
(the exact number depending on the specific array used,
the source locations, and so forth), and therefore the CRB
expression is provably valid for this many sources. Need-
less to say, our results (the rank condition and the pro-
posed CRB expression) and the conclusions derived from
them are valid for any linear array, sparse or otherwise,
including the redoubtable ULA.

Paper outline. In Section 2, we introduce the data model
and provide a brief review of sparse arrays (minimum re-
dundancy arrays, minimum hole arrays, nested arrays, co-
prime arrays, and so on). In Section 3, we review some
known results on the CRB, which are necessary for build-
ing up new results. The new CRB expression and the rank
condition for its validity are presented in Section 4. The
implications of this CRB expression are detailed in Sec-
tion 5 and 6. Numerical examples are given in Section 7
to demonstrate the implications of the new results. Details
of some of the proofs are given in Appendix A to Appendix
D.

1.1. Notation

Scalars, vectors, matrices, and sets are denoted by lower-
case letters (a), lower-case letters in bold face (a), upper-
case letters in bold face (A), and upper-case letters in
blackboard boldface (A). [A]i,j indicates the (i, j)th en-
try of A. The complex conjugate, the transpose, and the
complex conjugate transpose of A are A∗, AT , and AH ,
respectively. Letting A ∈ CM×N , the Kronecker product
between A and B is defined as

A⊗B =


[A]1,1B [A]1,2B . . . [A]1,NB
[A]2,1B [A]2,2B . . . [A]2,NB

...
...

. . .
...

[A]M,1B [A]M,2B . . . [A]M,NB

 .
The Hadamard product between A and B of the same
size is A � B such that [A � B]i,j = [A]i,j [B]i,j . The
Khatri-Rao matrix product ◦ is defined as[

a1 a2 . . . aN
]
◦
[
b1 b2 . . . bN

]
=
[
a1 ⊗ b1 a2 ⊗ b2 . . . aN ⊗ bN

]
.

For a full column rank matrix A, the matrices

ΠA = A(AHA)−1AH . (2)

Π⊥A = I−A(AHA)−1AH . (3)

denote the orthogonal projection onto the column space
of A, and to the null space of AH , respectively.
diag(a1, . . . , an) is a diagonal matrix with diagonal entries
a1, . . . , an. For a real set A = {a1, . . . , an} such that a1 <
· · · < an, diag(A) = diag(a1, . . . , an). rank(A) is the rank
of A. tr(A) denotes the trace of A, which is the sum of
diagonal entries. vec([a1,a2, . . . ,aN ]) = [aT1 ,a

T
2 , . . . ,a

T
N ]T

is the vectorization operation. The cardinality of a set A
is denoted as |A|. E[·] denotes the expectation operator.
N (µ,C) is a multivariate real-valued normal distribution
with mean µ and covariance C. CN (m,Σ) is a complex
normal distribution with mean m and covariance matrix
Σ.

Let S be an integer set and let the signal defined over
S denoted by a column vector xS. The square bracket
notation [xS]i represents the ith component of xS. The
triangular bracket notation 〈xS〉n denotes the signal value
on the support n ∈ S and is very useful for nonuniform
arrays. For instance, if S = {0, 2, 5} and xS = [−1, 1, 4]T ,
then the square brackets [xS]1 = −1, [xS]2 = 1, [xS]3 =
4, and the triangular brackets 〈xS〉0 = −1, 〈xS〉2 = 1,
〈xS〉5 = 4.

2. The Data Model and Sparse Arrays

2.1. The data model

In sensor array processing, the sensor locations nd are
described by an integer set S such that n ∈ S, and d = λ/2
is half of the wavelength. We assume that this sensor array
S is illuminated by D monochromatic plane waves with
DOA θi satisfying −π/2 ≤ θi < π/2 for i = 1, 2, . . . , D.
Then, the measurements on the sensor array S, denoted
by xS, can be modeled as [33, 60, 102]

xS =

D∑
i=1

AivS(θ̄i) + nS ∈ C|S|, (4)

where Ai and θ̄i = (d/λ) sin θi represent the complex
amplitude and the normalized DOA of the ith source.
vS(θ̄i) = [ej2πθ̄in]n∈S is the steering vector defined on S.
nS is a random noise term.

To analyze the DOA estimation performance based on
K independent and identically distributed snapshots of
(4), two probability models are commonly considered:

1. The conditional or deterministic model [90]: The com-
plex amplitude [Ai]

D
i=1 is assumed to be unknown but

non-random. The noise vector nS is a complex Gaus-
sian random vector with mean zero and covariance
pnI.

2. The unconditional or stochastic model [91]: [Ai]
D
i=1 is

assumed to be a Gaussian random vector with mean
zero and covariance P such that [P]i,j = E[AiA

∗
j ]. nS

is a complex Gaussian random vector with mean zero
and covariance pnI. nS and Ai are uncorrelated.

A more detailed description of these models can be found
in [89–91].
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2.2. Review of coarray-based DOA estimators

DOA estimators aim to evaluate the normalized DOAs
θ̄ based on the sensor output xS. This goal can be achieved
by a variety of DOA estimators, including the Barlett
beamformer [8], the Capon beamformer [15], the MUSIC
algorithm [10, 84], the ESPRIT algorithm [81], and many
others [6, 7, 24, 27, 62, 69, 72, 79]. However, the perfor-
mance of these DOA estimators is limited by the number
of sensors. For instance, it was shown in [90, 102] that for
N -sensor ULA, the MUSIC algorithm identifies at most
N − 1 sources.

For the case where the sources are known to be uncor-
related and the array is the ULA, some improved DOA
estimators have been reported [11, 40, 41, 49, 104, 105].
Furthermore, with uncorrelated priors and suitable array
configurations, coarray-based DOA estimators convert the
sample covariance matrix of the sensor outputs into the
so-called difference coarray domain, using which DOAs
are estimated [1, 2, 18, 19, 21, 31, 35, 52, 55, 57, 58, 63–
67, 70, 71, 74, 93, 96, 107]. For appropriate array geome-
tries, the size of the difference coarray is much larger than
the number of sensors, which makes it possible to identify
more sources than the number of sensors.

The details of coarray-based DOA estimators are devel-
oped as follows. It is assumed that the sources are un-
correlated and the sensor output xS follows the stochastic
model, as in (4), where the complex amplitude [Ai]

D
i=1 and

the noise term nS have the following distribution:

[A1, A2, . . . , AD]T ∼ CN (0,diag(p1, p2, . . . , pD)) ,
(5)

nS ∼ CN (0, pnI) , (6)

where p1, p2, . . . , pD > 0 are the source powers and pn > 0
is the noise power. It is assumed that sources are un-
correlated to noise, namely, E[Ain

H
S ] = 0. Under these

assumptions, the covariance matrix of xS is given by

RS = E[xSx
H
S ] =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI. (7)

Vectorizing (7) and removing duplicated entries give [52,
57, 58, 63, 64]

xD =

D∑
i=1

pivD(θ̄i) + pne0, (8)

where e0 is a column vector satisfying 〈e0〉m = δm,0. Here
xD can be regarded as a deterministic data vector on the
difference coarray D, which is defined as

Definition 1 (Difference coarray D). Let S be an inte-
ger set defining the sensor locations. The difference set is
defined as D = {n1 − n2 | n1, n2 ∈ S}.

The difference coarray is symmetric, i.e., if m ∈ D, then
−m ∈ D, so we often show the non-negative part only. It

is also useful to characterize the contiguous ULA section
in the difference coarray, denoted as U, which is utilized
in many coarray-based DOA estimators:

Definition 2 (U, the central ULA segment). Let D be the
difference coarray of S and let m be the largest integer such
that {0,±1, ..±m} ⊆ D. Then U = {0,±1, ..±m} is called
the central ULA segment of D.

Definition 3 (w(m), the weight function). Let S be the
physical array and D be its difference coarray. The weight
function is the number of sensor pairs with separation m,
defined as

w(m) = |M(m)| , (9)

M(m) =
{

(n1, n2) ∈ S2 | n1 − n2 = m
}
. (10)

For example, if S = {0, 1, 4}, then the difference coarray
D = {−4,−3,−1, 0, 1, 3, 4} while the set U = {−1, 0, 1}.
The weight function w(m) satisfies w(0) = 3, w(±1) =
w(±3) = w(±4) = 1, and w(m) = 0 for other m’s. It can
be seen directly from Definition 2 that U ⊆ D.

Coarray-based DOA estimators are based on the finite-
snapshot version of (7) and (8). Assume that x̃S(k) for
k = 1, 2, . . . ,K denote K snapshots of xS. The sample
covariance matrix is

R̃S =
1

K

K∑
k=1

x̃S(k)x̃HS (k). (11)

The finite-snapshot version of xD, denoted by x̃D, can be
constructed from (11) as follows [52]:

〈x̃D〉m =
1

w(m)

∑
(n1,n2)∈M(m)

〈R̃S〉n1,n2
, m ∈ D,

where w(m) and M(m) are defined in Definition 3.
The signal x̃D on the difference coarray D facilitates a va-

riety of DOA estimators. For instance, the augmented co-
variance matrix method [70, 71] constructs an augmented

covariance matrix R̃aug, which has larger dimension than

R̃S, from x̃D. The spatially smoothed MUSIC algorithm
(SS MUSIC) [63, 64] evaluates a spatially smoothed ma-

trix R̃ss based on x̃D. Another family is the sparsity-based
methods [67, 93, 107], which relate x̃D to (8) using over-
complete dictionaries and enforce sparsity constraints to
source profiles.

It is known that, in SS MUSIC, the size and the struc-
ture of the difference coarray are crucial to the number of
identifiable sources for nested arrays [63] and coprime ar-
rays [64]. Empirically, the number of identifiable sources
can be characterized by the following properties:

Property 1 ([63, 64]). If the number of distinct sources
D ≤ (|U| − 1)/2, then SS MUSIC is able to identify these
sources for larger number of snapshots.

Property 2 ([66]). If D > (|D|−1)/2, then it is impossible
to identify these sources using SS MUSIC.
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2.3. Review of sparse array design

Property 1 and 2 indicate that the size of D and U plays
a crucial role in the number of identifiable sources. So it is
motivating to design the sensor locations S such that |D|
or |U| is large. Several well-known solutions include mini-
mum redundancy arrays (MRA) [61], minimum hole arrays
(MHA) [94, 103], nested arrays [63], coprime arrays [98],
super nested arrays [51, 53, 54], and many other variants
[4, 9, 12–14, 23, 38, 39, 50, 66, 76, 82, 83, 85, 86, 106]. All
of them have O(N2) distinct lags in the difference coarray,
given O(N) physical sensors.

Minimum redundancy arrays (MRA) [61] maximize the
coarray size under the constraint that the difference coar-
ray consists of consecutive integers1. In particular, assume
that N distinct sensors are located at s1, s2, . . . , sN such
that s1 < s2 < · · · < sN . Let A = sN − s1 be the array
aperture. The N -sensor MRAs solve the following opti-
mization problem:

Objective: Maximize the array aperture A subject to the
following constraint: the difference coarray D should
contain all the integers from −A to A.

As a example, Fig. 1(a) illustrates a 6-sensor MRA, its
difference coarrary D, and the associated weight functions.
It can be seen that these sensors are placed non-uniformly
along a straight line while the difference coarray contains
consecutive integers from −13 to 13. The size of the differ-
ence coarray is 27, which is much larger than the number
of sensors, 6. The main drawback of MRA is that the
sensor locations cannot be expressed in closed forms for
large N and can only be evaluated by searching algorithms
[39, 48, 50, 83].

Minimum hole arrays (MHA) [94, 103], which are also
named as Golomb arrays or minimum gap arrays, mini-
mize the number of holes in the coarray domain. More
specifically, let s1, s2, . . . , sN be N sensor locations such
that s1 < s2 < · · · < sN , and A = sN − s1 be the array
aperture. The “holes” are defined as the set of integers h
such that 1 ≤ h < A and h does not belong to the different
coarray D. Then, the MHAs with N sensors are solutions
to the following optimization problem:

Objective: Minimize the number of the holes subject to
the following constraint: the weight function w(m) is
either 0 or 1 for 1 ≤ |m| ≤ A.

Note that w(m) = 0 corresponds to holes and w(m) = 1
means that the difference m occurs exactly once. Thus
the constraint ensures that no difference m occurs more
than once. For instance, Fig. 1(b) depicts the physical
array and the difference coarray of a 6-sensor MHA. It
can be seen that in this case, S = {0, 1, 4, 10, 12, 17} and
the non-negative part of D is {0, 1, . . . , 13, 16, 17}. The
set of holes is {14, 15}. It can be verified that Fig. 1(b)

1This array configuration was denoted as restricted MRA in [61].

satisfies the definition of MHA. Like MRA, the main issue
for the MHA is that, there are no closed-form expressions
for sensor locations [5, 22, 47, 80, 92, 94]. For further
discussions, see [2] and the references therein.

Nested and coprime arrays [63, 98] are sparse arrays with
simple geometries having closed-form expressions. Both
have O(N2) distinct elements in the difference coarray do-
main, although they do not optimize the parameters that
MRA or MHA seek to optimize. Nested arrays are com-
posed of a dense ULA with sensor separation 1, and a
sparse ULA with sensor separation (N1 + 1), in units of
λ/2. The closed-form sensor locations are given by [63]:

Snested = {n | n = 1, 2, . . . , N1}
∪ {n(N1 + 1) | n = 1, 2, . . . , N2}, (12)

where N1 and N2 are positive integers. Fig. 1(c) demon-
strates a nested array with N1 = N2 = 3. In this ex-
ample, the number of physical sensors is 6 while the non-
negative part of the difference coarray consists of integers
from 0 to 11. In particular, it was proved in [63] that, if
N1 is approximately N2, then with O(N) physical sensors,
the size of the difference coarray is O(N2), which has the
same order as MRA and MHA [61, 94]. One advantage
of nested arrays is the simplicity of design equations for
large number of elements [63], which cannot be achieved
in MRA or MHA. Another advantage of nested arrays is
that, the difference coarray consists of contiguous integers
from −N2(N1 + 1) + 1 to N2(N1 + 1) − 1 and there are
no holes. This property makes it possible to utilize the
complete autocorrelation information in SS MUSIC [63].

Coprime arrays are another family of sparse arrays that
enjoys long difference coarray and closed-form sensor lo-
cations [98]. They are composed of two sparse ULAs with
sensor separations M and N , respectively, in units of λ/2.
The set S is defined as follows:

Scoprime = {nM | n = 0, 1, . . . , N − 1}
∪ {mN | m = 1, 2, . . . , 2M − 1} , (13)

where M and N are a coprime pair of integers and M < N .
Fig. 1(d) shows a coprime array with M = 2 and N = 3,
as an example. The number of sensors is 6 and the non-
negative part of the difference coarray consists of consec-
utive integers from 0 to 7 but the lag 8 is missing. It was
shown in [64, 98] that the difference coarray of coprime ar-
rays, Dcoprime, contains consecutive integers from −MN to
MN and there are holes outside this region. It was further
proved in [76, 108] that the maximum central contiguous
ULA section of Dcoprime, is actually from −(MN +M −1)
to MN +M − 1. In other words, the size of the ULA seg-
ment in difference coarray for coprime arrays is O(MN),
given O(M + N) physical sensors. The advantages of co-
prime arrays include, first, simple and closed-form sensor
locations, as indicated in (13). Second, it was shown in
[51, 64, 98] that, compared to nested arrays, coprime ar-
rays reduce the mutual coupling effect, which originates
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Physical array S Non-negative part of the difference array D

(a) MRA •
0
•
1

•
6

•
9

•
11

•
13

× × × × × × × × •
0
•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8
•
9
•
10
•
11
•
12
•
13m =

w(m) =

This part is maximized

6 1 2 1 1 2 1 1 1 1 1 1 1 1

(b) MHA •
0
•
1

•
4

•
10

•
12

•
17

× × × × × × × × × × × × •
0
•
1
•
2
•
3
•
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Figure 1: Array geometry of 6-sensor MRA, 6-sensor MHA, nested array with N1 = N2 = 3, and coprime array with M = 2, N = 3. Bullets
denote sensor locations in S or sensor separations in D.

from the non-ideal interference between adjacent sensor
outputs.

3. Review of Cramér-Rao bounds

Consider a real-valued random vector x with probability
density function (pdf) p(x;α), where α is a real-valued de-
terministic parameter vector. Assume that the pdf p(x;α)
satisfies the regularity condition Ex [(∂/∂α) log p(x;α)] =
0, where Ex[·] indicates that the expectation is over x. The
Fisher information matrix (FIM) I(α) is defined as

[I(α)]i,j = −Ex

[
∂2

∂[α]i∂[α]j
log p(x;α)

]
. (14)

It can be shown that the FIM is positive semidefinite [42].
Furthermore, if the FIM is positive definite, then the FIM
is invertible and the Cramér-Rao bound (CRB) is given
by the inverse of the FIM:

CRB(α) = I−1(α), (15)

which is also positive definite. The significance of the CRB
is that the covariance of any unbiased estimator is lower
bounded by the CRB. Namely, any unbiased estimator
α̂(x) for α, based on the observation x, satisfies the fol-
lowing:

Ex

[
α̂(x)α̂(x)T

]
� CRB(α), (16)

where A � B is equivalent to A−B being positive semidef-
inite for two Hermitian matrices A and B. More details
on the FIM and the CRB can be found in [42, 89, 102].

For the deterministic or conditional CRB model, we use
K snapshots of (4):

xS(k) =

D∑
i=1

Ai(k)vS(θ̄i) + nS(k), k = 1, 2, . . . ,K. (17)

It is assumed that the noise is both spatially and tempo-
rally uncorrelated, i.e., E[nS(k1)nHS (k2)] = pnIδk1,k2 , while
the source amplitudes Ai(k) are deterministic. As a result,
the probability model for the deterministic model with K
snapshots becomes


xS(1)
xS(2)

...
xS(K)

 ∼ CN


∑D
i=1Ai(1)vS(θ̄i)∑D
i=1Ai(2)vS(θ̄i)

...∑D
i=1Ai(K)vS(θ̄i)

 , pnI

 , (18)

and the parameters to be estimated contain normalized
DOAs, source amplitudes at K snapshots, and the noise
power. In particular, the parameter vector αdet for the
deterministic model over K snapshots becomes

αdet = [θ̄i, Re{Ai(k)}, Im{Ai(k)}, pn]T , (19)

where 1 ≤ i ≤ D, 1 ≤ k ≤ K, and the subscript “det”
stands for the deterministic model. The total number of
real parameters is D + 2DK + 1. According to (18), the
deterministic CRB for θ̄ can be expressed as [89, 90]

CRBdet(θ̄) =
pn
2K

{
Re
[(

UH
S Π⊥VS

US

)
� P̂T

]}−1

, (20)
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where

VS =
[
vS(θ̄1) vS(θ̄2) . . . vS(θ̄D)

]
, (21)

US =
[
∂vS(θ̄1)

∂θ̄1

∂vS(θ̄2)

∂θ̄2
. . . ∂vS(θ̄D)

∂θ̄D

]
, (22)

P̂ =
1

K

K∑
k=1


A1(k)
A2(k)

...
AD(k)



A1(k)
A2(k)

...
AD(k)


H

, (23)

and Π⊥A is as defined in (3). Thus VS is the ar-

ray manifold matrix, and P̂ is the sample covariance of
[A1, A2, . . . , AD]T . Note that a nonsingular P̂ is required
for (20) being valid, which in turn requires that K ≥ D.

The stochastic CRB model [91] also uses K snapshots
as in (17). It is assumed that the noise is spatially and
temporally uncorrelated, and, in addition, the source am-
plitudes are stochastic with mean zero and

E



A1(k1)
A2(k1)

...
AD(k1)



A1(k2)
A2(k2)

...
AD(k2)


H
 = Pδk1,k2 , (24)

where [P]i,j = E[AiA
∗
j ]. Thus the probability model for

stochastic CRB for K snapshots is given by
xS(1)
xS(2)

...
xS(K)

 ∼ CN
0,


Σ O . . . O
O Σ . . . O
...

...
. . .

...
O O . . . Σ


 , (25)

where

Σ = VSPVH
S + pnI. (26)

In this scenario, the parameter vector αsto is

αsto = [θ̄i, [P]i,i, Re{[P]i,j}, Im{[P]i,j}, pn]T (27)

where 1 ≤ i ≤ D and i > j. The number of real scalar
parameters becomes D + D2 + 1. This does not depend
on K (snapshots) unlike in the deterministic model. Using
(25) and (27) yields the stochastic CRB expression for θ̄:

CRBsto(θ̄) =
pn
2K

{
Re
[(

UH
S Π⊥VS

US

)
�
(
PVH

S Σ−1VSP
)T ]}−1

, (28)

where VS, US, P, Σ are defined in (21), (22), (24), and
(26), respectively. Note that the CRB expression (28) does
not assume any prior information on the source covariance
matrix P, except that P is nonsingular for the inverse in
(28) to exist.

In DOA estimation literature, it is often assumed that
the sources are uncorrelated [7, 73, 84]. In such cases, a
subtle distinction should be made depending upon whether
we know apriori the fact that the sources are uncorrelated:

1. If the sources are uncorrelated but this information is
not known a priori, then the CRB can be evaluated
from the expression (28) with a diagonal P.

2. Otherwise, if the sources are known a priori to be
uncorrelated, then the off-diagonal entries of P are
known to be zero. This prior information modifies
the parameter vector α, the FIM I(α), and the CRB
expression. Hence, the CRB expression (28) cannot
be applied. The closed-form CRB expression for this
scenario was proposed in [40], which will be reviewed
next.

The probability model for the stochastic model with un-
correlated sources and K snapshots (17) is given by

xS(1)
xS(2)

...
xS(K)

 ∼ CN
0,


RS O . . . O
O RS . . . O
...

...
. . .

...
O O . . . RS


 , (29)

where RS is defined in (7). The parameters to be estimated
are composed of normalized DOAs θ̄i, source powers pi,
and noise power pn, so that the parameter vector αuncor

becomes

αuncor =
[
θ̄i, pi, pn

]T
, (30)

where 1 ≤ i ≤ D. It can be seen that the number of real
parameters is only 2D + 1 in this case. According to [40],
the CRB for θ̄ can be expressed as

CRBuncor(θ̄) =
1

K

(
PDHG

(
GHC̃G

)−1

GHDP

)−1

,

(31)

where

C̃ = (RT
S ⊗RS) +

p2
n

|S| −D
vec(ΠVS)vecH(ΠVS), (32)

D = (U∗S ◦VS) + (V∗S ◦US), (33)

G is any matrix whose columns span the null space of
(V∗S ◦ VS)H , and P = diag(p1, p2, . . . , pD) is the source
covariance matrix. VS and US are given in (21) and (22),
respectively. Eq. (31) will be called Jansson et al.’s CRB
expression in this paper. However, if D = |S|, then the
denominator in (32) becomes zero, which makes (32) and
Jansson et al.’s CRB expression (31) invalid. Furthermore,
if D > |S|, then ΠVS is not well-defined.

Table 1 summarizes some CRB expressions along with
their model assumptions, as in [90], [91], and [40]. The de-
terministic CRB expression [90] and the stochastic CRB
expression [91] assume less sources than the number of
sensors, namely D < |S|, while Jansson et al.’s CRB ex-
pression [40] implicitly assumes D < |S| so that the expres-
sion for ΠVS is valid. For the complex amplitude Ai, the
deterministic CRB expression [90] assumes unknown, non-
random Ai, the stochastic CRB expression [91] supposes
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Table 1: Summary of several related CRB expressions for DOA estimation1

Deterministic or Conditional
[90]

Stochastic or Unconditional
[91]

[40] and the CRB expression
proposed in this paper

Number of
sources, D

Known (D < |S|) Known (D < |S|)
Known (D < |S| in [40])

(D < |S| or D ≥ |S| in the
proposed CRB expression)

Normalized
DOAs, {θ̄i}Di=1

Unknown, non-random Unknown, non-random Unknown, non-random

Complex
amplitude
{Ai}Di=1

Unknown, non-random
Unknown, random,

correlated,
[Ai]

D
i=1 ∼ CN (0,P)

Unknown, random,
uncorrelated, [Ai]

D
i=1 ∼

CN (0,diag(p1, . . . , pD))

Noise vector nS
Unknown, random,
nS ∼ CN (0, pnI)

Unknown, random,
nS ∼ CN (0, pnI)

Unknown, random,
nS ∼ CN (0, pnI)

Distribution of
xS

CN
(∑D

i=1AivS(θ̄i), pnI
)

CN
(
0,VSPVH

S + pnI
)

CN (0,RS)

Distribution of
K snapshots

(18) (25) (29)

Unknown
parameters

(19) (27) (30)

Number of
unknown

parameters
D + 2DK + 1 D +D2 + 1 2D + 1

CRB(θ̄) (20) (28)
(31), or

the new expression
proposed in Theorem 2

1 θ̄=[θ̄1, . . . , θ̄D]T , [P]i,j=E[AiA
∗
j ], VS =[vS(θ̄1), . . . ,vS(θ̄D)], RS =

∑D
i=1 pivS(θ̄i)v

H
S (θ̄i) + pnI.
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unknown, random Ai with mean zero and covariance P,
while Jansson et al.’s CRB expression presumes unknown,
random Ai with mean zero and a diagonal covariance ma-
trix.

The CRB for DOA estimation with sparse arrays is gain-
ing importance due to recent developments in coarray-
based DOA estimators and sparse array design. An early
work by Abramovich et al. [1] demonstrated numerically
that the CRB exhibits two different behaviors in the
regimes D < |S| and D ≥ |S|. For D < |S|, the CRB
at high SNR decays to zero. For D ≥ |S| , the CRB at
high SNR tends to saturate to a non-zero value as SNR in-
creases. Among other results, we will prove both of these
in this paper (Theorems 3 and 4).

The connection between the CRB and the array geom-
etry has been studied in previous literature. The CRB for
single source with azimuth, elevation, and planar arrays
was investigated in [16]. It was observed that the CRB for
DOAs is inversely proportional to the array variance, un-
der suitable assumptions. The CRB for two sources with
one-dimensional DOA profiles was considered in [99, 100],
based on the deterministic CRB expression, (20). It was
noted empirically that larger array aperture helps to re-
duce the CRB and the array geometry influences the max-
imum number of identifiable sources.

Another interesting work by Koochakzadeh and Pal for-
mulates the DOA estimation using a predefined DOA grid
and sensor perturbation [44, 45]. The DOA grid is denoted
by ϑ1, ϑ2, . . . , ϑNϑ

while the perturbation is characterized
by δ ∈ R|S|. In particular, the measurement y(k) origi-
nates from the following data model:

y(k) = Agridx(k) + w(k) ∈ C|S|, k = 1, 2, . . . ,K,

where x(k) ∈ CNϑ is the source amplitude on the grid with
source powers γi = E[|[x(k)]i|2]. w(k) is the noise term.
Agrid ∈ C|S|×Nϑ is given by [vS(ϑ̄1),vS(ϑ̄2), . . . ,vS(ϑ̄Nϑ

)].
In this setting, the parameters to be estimated are the
source powers γi and the sensor location perturbation δ.
The FIM and the CRB for γi were also analyzed in detail.

4. New Expressions for CRB, Applicable for
Sparse Arrays with More Sources than Sensors

4.1. Remarks on the CRB expressions [40, 90, 91]

We now argue that, among the three CRB expressions:
the deterministic CRB expression [90], the stochastic CRB
expression [91], and Jansson et al.’s CRB expression [40],
in Section 3, only Jansson et al.’s CRB expression is ap-
propriate when coarray-based methods are applicable for
DOA estimation.

The deterministic CRB expression [90] is not suitable for
coarray-based DOA estimators since the assumptions do
not match. It is assumed in the deterministic model that
the complex amplitude Ai is deterministic, as summarized
in Table 1. Coarray-based DOA estimators operate under

the condition that sources are stochastic, as mentioned in
(5).

The stochastic CRB expression in [91] is incompatible
with coarray-based DOA estimators due to the following:

1. The stochastic CRB expression in [91] is valid if
D < |S|. Hence, it is inappropriate to consider the
stochastic CRB expression for the regime D ≥ |S|
where coarray based DOA estimators are usually of
interest.

2. The assumptions are different. The stochastic CRB
expression in [91] considers the stochastic model with
source covariance P. But it is not known apriori that
the sources are uncorrelated. On the other hand, for
coarray-based DOA estimators, it is known a priori
that sources are uncorrelated, as stated in (5).

Finally, Jansson et al.’s CRB expression [40] is applica-
ble to coarray-based DOA estimators. It is because the
uncorrelated information is assumed to be known a priori,
which matches the assumptions of coarray-based DOA es-
timators.

To demonstrate how much the uncorrelated prior helps
to reduce the CRB, consider a sensor array with S =
{0, 1, 4, 6}. Assume there are two equal-power, uncorre-
lated sources with normalized DOAs θ̄ = [−0.25, 0.25]T .
The number of snapshots K is 500 and the SNR is 0 dB.
Substituting these parameters into (28) and (31) yields

The stochastic CRB expression [91] :

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 1.809× 10−6, (34)

Jansson et al.’s CRB expression [40]:

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 1.696× 10−6. (35)

Thus, Jansson et al.’s CRB (with uncorrelated prior) is less
than the stochastic CRB (without uncorrelated prior).

However, Jansson et al.’s CRB expression has some lim-
itations. First of all, the precise conditions that Jansson
et al.’s CRB expression is valid are not explicitly stated
in [40]. From Jansson et al.’s CRB expression, it is not so
easy to study the behavior of the CRB with respect to the
number of snapshots K, the number of sources D, and the
SNR. Furthermore, [40] considers only the ULA and it is
not clear from [40] how sparse arrays, like MRA, nested
arrays, and coprime arrays, influence the CRB. Finally, for
D = |S|, Jansson et al.’s CRB expression becomes unde-
fined, due to the appearance of |S|−D in the denominator
of (32).

In Section 4.2, we will propose a CRB expression that
addresses all these issues raised in the previous paragraph.
First, it will be shown that a rank condition on the aug-
mented coarray manifold (ACM) matrix is necessary and
sufficient for the nonsingular FIM, which leads to a closed-
from CRB expression.

4.2. The proposed Cramér-Rao bound expression

Consider a random vector x with a complex normal dis-
tribution with mean zero and covariance Σ(α), where α is
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a real-valued parameter vector. The (p, `)th entry of the
FIM I(α) is given by [88, 89, 91]

[I(α)]p,` = tr

(
Σ−1(α)

∂Σ(α)

∂[α]p
Σ−1(α)

∂Σ(α)

∂[α]`

)
. (36)

Setting the probability model to be (29) and the parameter
vector to be (30) results in

[I(α)]p,` = Ktr

(
R−1

S
∂RS

∂[α]p
R−1

S
∂RS

∂[α]`

)
= K

[
vec

(
∂RS

∂[α]p

)]H (
R−TS ⊗R−1

S
)

vec

(
∂RS

∂[α]`

)
= K

[(
RT

S ⊗RS
)− 1

2
∂rS
∂[α]p

]H [(
RT

S ⊗RS
)− 1

2
∂rS
∂[α]`

]
,

(37)

since tr(ABCD) = vec(BH)H(AT ⊗C)vec(D), and (A⊗
B)−1 = A−1 ⊗ B−1 for nonsingular A and B [56]. The
vector rS is defined as

rS = vec(RS). (38)

Eq. (37) leads to an expression for the FIM I(α) as follows

I(α) = K

[
GH

∆H

] [
G ∆

]
(39)

=

D D + 1[ ]
D KGHG KGH∆

D + 1
K∆HG K∆H∆

, (40)

where

G =
(
RT

S ⊗RS
)− 1

2

[
∂rS
∂θ̄1

. . . ∂rS
∂θ̄D

]
=
|S|2

D

, (41)

∆ =
(
RT

S ⊗RS
)− 1

2

[
∂rS
∂p1

. . . ∂rS
∂pD

∂rS
∂pn

]
=
|S|2

D + 1

.

(42)

It follows from (39) that the FIM is positive semidefinite.
And ∆H∆ is obviously positive semidefinite. If the FIM
I(α) is nonsingular, then the CRB for the normalized
DOAs θ̄ = [θ̄1, . . . , θ̄D]T can be expressed as the inverse
of the Schur complement of the block ∆H∆ of the FIM
I(α) [88]

CRB(θ̄) =
1

K

(
GHΠ⊥∆G

)−1

, (43)

where Π⊥∆ = I−∆(∆H∆)−1∆H is defined as in (3).
An important observation here is that nonsingularity

of the FIM is equivalent to nonsingularity of ∆H∆ and
GHΠ⊥∆G :

Lemma 1. Let F be a positive semidefinite matrix of the
form

F =

[
A B

BH D

]
� 0,

where A and D are Hermitian matrices. Then F is non-
singular (invertible) if and only if D and the Schur comple-
ment of D, namely, A−BD−1BH , are both nonsingular.

Proof. The proof can be found in Appendix A.2.

Lemma 1 can be applied to (40). Let F be the FIM
I(α), which is positive semidefinite. The submatrices
A = KGHG, B = KGH∆, and D = K∆H∆ so that
the Schur complement of D becomes A − BD−1BH =
KGHΠ⊥∆G. Lemma 1 indicates that the FIM I(α) is
nonsingular if and only if ∆H∆ and GHΠ⊥∆G are both
nonsingular.

It is of great interest to simplify the condition that
∆H∆ and GHΠ⊥∆G are both nonsingular. The follow-
ing lemmas characterize the necessary and sufficient condi-
tions that ∆H∆ and GHΠ⊥∆G are positive definite, hence
nonsingular. For the following lemma, the reader should
recall the triangular bracket notation from Section 1.1.

Lemma 2. Let VD be the array manifold matrix defined
on the difference coarray and WD = [VD, e0], where e0

is a column vector satisfying 〈e0〉m = δm,0 for m ∈ D.
Therefore, VD is a |D|×D matrix while WD has size |D|×
(D + 1). Then ∆H∆ is positive definite if and only if

rank(WD) = D + 1, (44)

i.e., if and only if WD has full column rank.

Proof. The proof can be found in Appendix A.3.

Definition 4 (ACM matrix). The augmented coarray
manifold (ACM) matrix is defined as

Ac =
[
diag(D)VD WD

]
(45)

=

D D 1[ ]
|D|

diag(D)VD VD e0
, (46)

where diag(D) is a diagonal matrix with D on its diagonals,
VD is the array manifold matrix defined on D, and WD =
[VD, e0], where e0 is a column vector satisfying 〈e0〉m =
δm,0 for m ∈ D. The triangular brackets 〈·〉 are defined in
Section 1.1.

Lemma 3. Assume that rank(WD) = D + 1 and let Ac

be the augmented coarray manifold (ACM) matrix. Then
GHΠ⊥∆G is positive definite if and only if

rank(Ac) = 2D + 1, (47)

i.e., if and only if the ACM matrix Ac has full column
rank.
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Proof. The proof can be found in Appendix A.4.

The significance of Lemma 2 and Lemma 3 is that the
invertibility of ∆H∆ and GHΠ⊥∆G can be simply char-
acterized by (44) and (47). Furthermore, these conditions
lead to a necessary and sufficient condition for nonsingular
FIMs, as summarized next:

Theorem 1. Let Ac be the ACM matrix, as defined in
Definition 4. Then the FIM I(α), given in (36), is non-
singular if and only if Ac has full column rank, i.e., if and
only if

rank(Ac) = 2D + 1. (48)

Proof. It follows directly from Lemma 1, 2, and 3.

The next result is that, if the FIM is nonsingular, then
the CRB exists and the closed-form CRB expression is
given by the following theorem. The quantity J in this
theorem is defined in Definition 5 in Appendix B.

Theorem 2. Let Ac be the ACM matrix, as defined in
Definition 4. If rank(Ac) = 2D + 1, then the CRB for
normalized DOAs θ̄ = [θ̄1, . . . , θ̄D]T can be expressed as

CRB(θ̄) =
1

4π2K

(
GH

0 Π⊥MWD
G0

)−1

, (49)

where

G0 = M(diag(D))×VD × (diag(p1, p2, . . . , pD)), (50)

M =
(
JH(RT

S ⊗RS)−1J
) 1

2 , (51)

RS =

D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI, (52)

VD =
[
vD(θ̄1) vD(θ̄2) . . . vD(θ̄D)

]
, (53)

WD =
[
VD e0

]
. (54)

Here K is the number of snapshots, D is the number of
sources, pi is the ith source power, and pn is the noise
power.

Recall that, D is the difference coarray, as defined in
Definition 1, and J is given in Definition 5 of Appendix
B. VD is the array manifold matrix on D. e0 is defined
in Lemma 2. The matrix Π⊥A = I − A(AHA)−1AH is
defined in (3).

Proof. The proof of this Theorem follows from Appendix
A.1, Appendix A.4, (A.11), and (43).

4.3. Comparison between [1, 40] and the proposed CRB
expression

In this subsection, we will include more detailed dis-
cussions on the CRB expressions [1, 40] and the pro-
posed CRB expression (Theorem 2). These expressions
are equivalent under appropriate assumptions.

Abramovich et al. [1] plotted the CRB curves numeri-
cally based on the FIM of the complex normal distribution
(36) (or (11) in [1]). It is also known a priori that sources
are uncorrelated and there is no assumption on the number
of sources. As a result, their CRB plots should be iden-
tical to those from Theorem 2, for any choice of parame-
ters. However, Abramovich et al.’s CRB expressions make
it difficult to explain the number of resolvable sources, the
behavior of the CRB for large SNR, and the conditions
under which the FIM is nonsingular.

Jansson et al.’s CRB expressions [40] were derived from
(43) (or (38) in [40]). Then, to simplify (43) into (31),
the projection matrix ΠVS = VS(VH

S VS)−1VH
S was intro-

duced. Note that, if D > |S|, then VH
S VS is singular, so

ΠVS and (31) are undefined. However, for certain param-
eters, if (31) is well-defined, then it should agree with (49)
in Theorem 2, since they are both derived from (43).

The proposed CRB expressions overcome the limitations
of [1, 40], as we shall see in Section 5 and 6. Later on, all
these CRB expressions will be compared through numeri-
cal examples in Section 7.4 and Fig. 7.

5. Conclusions which Follow from Theorem 2

Theorem 2 enables us to study various parameters that
affect the CRB, such as the array configuration, the nor-
malized DOAs, the number of snapshots, and the SNR, as
explained next.

Property 3. The rank condition, (48), depends only on
four factors: the difference coarray D, the normalized
DOAs θ̄, the number of sources D, and e0. The follow-
ing parameters are irrelevant to (48): The source powers
p1, . . . , pD, the noise power pn, and the number of snap-
shots K.

Property 4. The CRB for θ̄ is a function of the physical
array S, the normalized DOA θ̄, the number of sources
D, the number of snapshots K, and the SNR of sources
p1/pn, . . . , pD/pn.

The fact that the CRB depends on the SNRs and not on
individual powers can be proved as follows: If we replace
pi and pn with Cpi and Cpn, then RS, M, and G0 change
to

R′S =

D∑
i=1

CpivS(θ̄i)v
H
S (θ̄i) + CpnI = CRS,

M′ = (JH((CRS)T ⊗ (CRS))−1J)
1
2 = C−1M,

G′0 = M′(diag(D))VD(diag(Cp1, Cp2, . . . , CpD)) = G0.

Therefore, G′H0 Π⊥M′WD
G′0 = GH

0 Π⊥MWD
G0, implying

that the CRB is unchanged if all the ratios pi/pn are un-
changed.

Property 3 characterizes the parameters that affect the
singularity of the FIM, due to Theorem 1. If two distinct
array configurations S1 and S2 have the same difference
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coarray D, then for the same DOAs, the ACM matrices
are exactly identical.

Example 1. For instance, consider the nested array with
N1 = N2 = 5 and the second-order super nested array
with N1 = N2 = 5. The sensor locations are given by
[51, 63]:

Snested = {1, 2, 3, 4, 5, 6, 12, 18, 24, 30}, (55)

Ssuper nested = {1, 3, 5, 8, 10, 12, 18, 24, 29, 30}. (56)

It was proved in [51] that their difference coarray are iden-
tical, i.e., Dnested = Dsuper nested = {−29, . . . , 29}. Hence,

(Ac)nested = (Ac)super nested.

The above equation indicates that for some normalized
DOAs θ̄

?
, if the nested array (55) leads to a singular FIM,

then the super nested array (56) also results in a singular
FIM for the same θ̄

?
.

However, two distinct array configurations S1 and S2

with the same difference coarray do not necessarily imply
the same CRB. This is because, as in (51), the matrix

M = (JH(RT
S ⊗RS)−1J)

1
2 depends on S.

Example 2. To demonstrate, consider the nested array
and the super nested array in (55) and (56). Let θ̄ =
[0.1, 0.2]T , p1 = p2 = pn = 1, and K = 500. Evaluating
(49) yields

Nested array:

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 3.2648× 10−8,

Super nested array:

[CRB(θ̄)]1,1 = [CRB(θ̄)]2,2 = 2.9352× 10−8.

Therefore, the CRBs are indeed different even if the dif-
ference coarrays are identical.

Property 5. If rank(Ac) = 2D + 1, then as the number
of snapshots K approaches infinity, CRB(θ̄) converges to
zero.

Proof. This follows directly from the expression (49).

The following theorems investigate the asymptotic be-
havior of the CRB for large SNR. Assume the sources have
identical power. It was experimentally noticed in [1] that
for D < |S|, the CRB decays to zero for large SNR while
for D ≥ |S|, the CRB tends to converge to a non-zero
value for large SNR. Here we find these phenomena to be
a provable consequence of the proposed CRB expression
as given in Theorem 2.

However, in this paper, we notice that the conditions
D < |S| and D ≥ |S| are not fundamental to the asymp-
totic behavior of the CRB for large SNR. Instead, the
condition that the array manifold matrix VS has full row
rank, i.e., rank(VS) = |S|, is more critical. In the regime
D < |S|, VS does not have full row rank since VS is a
tall matrix. Thus, the asymptotic CRB expression can be
specified by the following theorem:

Theorem 3. If the D uncorrelated sources have equal
SNR p/pn, rank(VS) < |S|, and rank(Ac) = 2D + 1,
then for sufficiently large SNR, the CRB has the follow-
ing asymptotic expression which converges to zero as SNR
tends to infinity:

CRB(θ̄)
∣∣∣ large SNR
rank(VS)<|S|

=
pn

4π2Kp
S−1, (57)

where

S = GH
∞Π⊥M∞WD

G∞ +
(GH
∞u)(GH

∞u)H

‖u‖2
, (58)

M∞ =
[
JH
[
(UsΛ

−1UH
s )T ⊗ (UnUH

n )

+(UnUH
n )T ⊗ (UsΛ

−1UH
s )
]
J
] 1

2 , (59)

G∞ = M∞(diag(D))VD, (60)

u = (M∞WD)
(
WH

D M2
∞WD

)−1
eD+1, (61)

eD+1 = [

D︷ ︸︸ ︷
0, . . . , 0, 1]T . (62)

WH
D M2

∞WD and S can be readily shown to be positive
definite. The vector u can be shown to be non-zero.

Here VSV
H
S has eigen-decomposition UsΛUH

s . Us

has dimension |S| × rank(VS) with normalized eigenvec-
tors on its columns. Λ is a rank(VS) × rank(VS) diago-
nal matrix with eigenvalues on its diagonals. The eigen-
decomposition of RS is Us(pΛ + pnI)UH

s + pnUnUH
n ,

where Un is orthonormal to Us.

Proof. The proof can be found in Appendix C.1.

It is obvious from (57) that, as the SNR approaches
infinity, the CRB decays to zero for D < |S|, which is
consistent with the observation in [1].

For D ≥ |S| and VS being full row rank, the asymptotic
CRB expression can be given by

Theorem 4. If the D uncorrelated sources have equal
SNR p/pn, D ≥ |S|, rank(VS) = |S|, and rank(Ac) =
2D + 1, then for sufficiently large SNR, the CRB has an
asymptotic expression which does not decay to zero as SNR
tends to infinity. Thus,

CRB(θ̄)
∣∣∣ large SNR
rank(VS)=|S|

=
1

4π2K
S−1, (63)

where

S = GH
∞Π⊥M∞WD

G∞,

M∞ = (JH((VSV
H
S )−T ⊗ (VSV

H
S )−1)J)

1
2 ,

G∞ = M∞(diag(D))VD.

Here WH
D M2

∞WD and S can be shown to be positive defi-
nite.

Proof. The proof can be found in Appendix C.2.

12



Theorem 4 also confirms what was empirically observed
in [1], for D ≥ |S|. It will be demonstrated in Section 7.1
that the proposed CRB expression (49) indeed comes close
to the asymptotic values (57) and (63).

6. Connection to the ULA Part of the Coarray

It was observed from Property 3 that the difference coar-
ray D has a direct impact on the singularity of the FIM.
In this section, it will be shown that, if the difference coar-
ray has certain structure, then the rank condition (48) is
guaranteed for any choice of distinct DOAs. This can be
regarded as a theoretical justification of the identifiabil-
ity observations empirically made in Property 1 and 2 in
Section 2.2.

Theorem 5. Let U be the central ULA segment of the
difference coarray D, as in Definition 2. Let Ac be the
ACM matrix. If D ≤ (|U|−1)/2, then rank(Ac) = 2D+1,

for every θ̄ =
[
θ̄1, θ̄2, . . . , θ̄D

]T
such that θ̄i 6= θ̄j for i 6= j.

Proof. The proof can be found in Appendix D.

Theorem 5 and Property 5 indicate that if D ≤ (|U| −
1)/2, then the CRB expression approaches zero for large
snapshots. This result is consistent with Property 1.

Corollary 1. If D > (|D| − 1)/2, then for any choice of
D distinct DOAs, we have rank(Ac) < 2D + 1, and the
FIM is singular.

Proof. If D > (|D| − 1)/2, then for any choice of θ̄, the
ACM matrix Ac becomes a fat matrix. This proves the
Corollary.

Note that Corollary 1 explains the observation given in
Property 2. Finally, when

(|U| − 1)/2 < D ≤ (|D| − 1)/2, (64)

it is unclear whether the rank condition (48) holds true
or not. For some choices of the DOA values, the rank
condition (48) holds and for some values it does not. So
in the regime (64), whether the FIM is nonsingular and
whether the CRB exists depends on the specific values of
the DOA.

7. Numerical Examples

7.1. The proposed CRB expression versus snapshots and
SNR

Our first numerical example examines Property 5, The-
orem 3, and Theorem 4. Consider a nested array with
N1 = N2 = 2, so that the sensor locations S = {1, 2, 3, 6}
and the difference coarray becomes D = {−5, . . . , 5}. As a
result, the total number of sensors is 4 while the max-
imum number of identifiable sources is 5. The equal-
power sources are located at θ̄i = −0.49 + 0.9(i − 1)/D
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Figure 2: The dependence of the proposed CRB expression on snap-
shots for various numbers of sources D. The array configuration
is the nested array with N1 = N2 = 2 so that the sensor loca-
tions are S = {1, 2, 3, 6}. The equal-power sources are located at
θ̄i = −0.49 + 0.9(i− 1)/D for i = 1, 2, . . . , D. SNR is 20 dB.

for i = 1, 2, . . . , D. It can be shown that these parame-
ters indeed satisfy the rank condition (48), so that, the
proposed CRB expression is valid.

Fig. 2 plots the proposed CRB expression for θ̄1 as a
function of snapshots, with 20 dB SNR. It can be observed
that this expression is inversely proportional to the number
of snapshots K, which verifies Property 5. These curves
also depend on the number of sources D. In this specific
example, these CRBs increase with D, which suggests that
if there are more sources, it is more difficult to estimate θ̄1

accurately.
Fig. 3(a) and (b) display the relationship between the

proposed CRB expression and the SNR for 500 snapshots.
Fig. 3(a) shows that if D < |S| = 4, the CRBs decrease
with the SNR. For D ≥ |S| = 4, the CRBs saturate when
the SNR is over 20dB, as indicated in Fig. 3(b). These
phenomena are consistent with what was observed experi-
mentally in [1]. Furthermore, the dashed lines in Fig. 3(a)
and (b) demonstrate that, for large SNR, the CRBs indeed
converge to the asymptotic CRB expressions, as presented
in Theorem 3 and 4.

7.2. The proposed CRB expression for ULA, MRA, nested
arrays, coprime arrays, and super nested arrays

In the following simulations, consider the following five
array configurations: uniform linear arrays (ULA) [102],
minimum redundancy arrays (MRA) [61], nested arrays
with N1 = N2 = 5 [63], coprime arrays with M = 3, N =
5 [98], and second-order super nested arrays with N1 =
N2 = 5 [51]. The sensor locations for these arrays are
given by

SULA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, (65)

SMRA = {0, 1, 3, 6, 13, 20, 27, 31, 35, 36}, (66)

Snested = {1, 2, 3, 4, 5, 6, 12, 18, 24, 30}, (67)

Scoprime = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}, (68)

Ssuper nested = {1, 3, 5, 8, 10, 12, 18, 24, 29, 30}. (69)
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Figure 3: The dependence of the proposed CRB expression on SNR
for (a) D < |S| = 4 and (b) D ≥ |S| = 4. The array configuration
is the nested array with N1 = N2 = 2 so that the sensor locations
are S = {1, 2, 3, 6}. The equal-power sources are located at θ̄i =
−0.49 + 0.9(i − 1)/D for i = 1, 2, . . . , D. The number of snapshots
K is 500.
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Figure 4: The dependence of the proposed CRB on (a) snapshots
and (b) SNR for ULA, MRA, nested arrays, coprime arrays, and
super nested arrays. The total number of sensors is 10 and the
sensor locations are given in (65) to (68). The number of sources is
D = 3 (fewer sources than sensors) and the sources are located at
θ̄i = −0.49 + 0.99(i − 1)/D for i = 1, 2, . . . , D. For (a), the SNR is
20 dB while for (b) the number of snapshots K is 500.
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Figure 5: The dependence of the proposed CRB on (a) snapshots
and (b) SNR for MRA, nested arrays, coprime arrays, and super
nested arrays. The total number of sensors is 10 and the sensor
locations are given in (65) to (68). The number of sources is D = 17
(more sources than sensors) and the sources are located at θ̄i =
−0.49 + 0.99(i− 1)/D for i = 1, 2, . . . , D. For (a), the SNR is 20 dB
while for (b) the number of snapshots K is 500.

Table 2: Identifiable/non-identifiable regions for coarray MUSIC.

Identifiable
Cannot
judge

Non-
identifiable

ULA (65) 1≤D≤9 - 10≤D
MRA (66) 1≤D≤36 - 37≤D

Nested (67) 1≤D≤29 - 30≤D
Coprime (68) 1≤D≤17 18≤D≤21 22≤D
Super nested

(69)
1≤D≤29 - 30≤D

In each array, the total number of sensors is 10. The dif-
ference coarray is listed as follows:

DULA = {0,±1, . . . ,±9}, (70)

DMRA = {0,±1, . . . ,±36}, (71)

Dnested = {0,±1, . . . ,±29}, (72)

Dcoprime = {0,±1, . . . ,±17,±19,±20,±22,±25},
(73)

Dsuper nested = {0,±1, . . . ,±29}. (74)

According to Property 1 and 2, the identifiability capabil-
ities of coarray MUSIC are summarized in Table 2.

Fig. 4 compares the CRB for DOA estimation over
ULA, MRA, nested arrays, coprime arrays, and super
nested arrays if there are fewer sources (D = 3) than sen-
sors (|S| = 10). The equal-power sources are located at
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Figure 6: The dependence of the proposed CRB on the number of
sources D for various array configurations. The equal-power sources
are located at θ̄i = −0.49 + 0.99(i − 1)/D for i = 1, 2, . . . , D. The
number of snapshots K is 500 and SNR is 20 dB.

θ̄i = −0.49 + 0.99(i − 1)/D for i = 1, 2, . . . , D, where the
number of sources D is 3. According to Table 2, all of
these arrays can identify such sources using coarray MU-
SIC because D < |S|. Fig. 4(a) depicts the CRBs in terms
of the number of snapshots K with 20 dB SNR while Fig.
4(b) shows the dependence of the CRBs on SNR for 500
snapshots. It can be inferred that, for fixed K and SNR,
the least CRB is exhibited by MRA, followed by the su-
per nested array, then the nested array, then the coprime
array, and finally ULA. This ranking is consistent with
the empirical observation that the estimation error de-
creases with the increasing size of the difference coarray
[1, 61, 63, 64, 99]. In particular, the size of the difference
coarray is 73 for MRA, 59 for the super nested array and
the nested array, 43 for the coprime array, and 19 for ULA.

Fig. 5 illustrates the CRB for MRA, nested arrays, co-
prime arrays, and super nested arrays if there are more
sources (D = 17) than sensors (|S| = 10). The remaining
parameters are identical to those in Fig. 4. The least CRB
is now enjoyed by MRA, followed by the nested array, the
super nested array, and finally the coprime array. Note
that the CRB for ULA is divergent since the number of
sources D = 17 resides in the non-identifiable regime, as
indicated in Table 2. Another obervation is that, in this
example, the coprime array has the largest CRB. It is be-
cause the number of sources D = 17 is the upper limit
of the identifiable region for the coprime array, while the
number of identifiable sources for the remaining three ar-
rays is larger than 17. Hence, the estimation performance
for the coprime array is worst among the others.

7.3. The proposed CRB expression versus the number of
sources

Next, the maximum number of detectable sources for
ULA, MRA, nested arrays, coprime arrays, and super
nested arrays is investigated. The sensor locations for
these arrays are listed from (65) to (69). The normal-
ized DOAs for D equal-power sources are θ̄i = −0.49 +
0.99(i − 1)/D for i = 1, 2, . . . , D. The SNR is 20dB and
the number of snapshots is 500. According to Property

1 and 2, the identifiability capabilities of coarray MUSIC
are summarized in Table 2.

Fig. 6 evaluates the proposed CRB expression with re-
spect to the number of sources D for these array configura-
tions. It can be observed that the identifiability, as shown
in Table 2, is actually consistent with the proposed CRB
expression. Each CRB curve diverges for D greater than
a certain threshold, which can be inferred from the non-
identifiable regimes in Table 2. As an example, for the co-
prime array with 1 ≤ D ≤ 17, the associated CRB expres-
sions are small, which match the identifiability of coarray
MUSIC in Property 1. On the other hand, for D ≥ 22,
the CRB expressions become divergent, which is consis-
tent with non-identifiability of coarray MUSIC (Property
2). In the region 18 ≤ D ≤ 21 which corresponds to the
regime (64), the existence or otherwise of CRB is inconclu-
sive. In this example, the CRB is small but in an example
in Section 7.4, we will see that it is divergent.

Fig. 6 also elaborates the discussion, given earlier in Sec-
tion 5, on the associated CRB expression for two sparse
arrays S1 and S2 with the same difference coarray D. Con-
sider the CRBs for the nested array and the super nested
array. It can be seen that both CRBs are convergent for
1 ≤ D ≤ 29 and divergent for D ≥ 30, even if the physical
array configurations are different. This behavior is truly
compatible with the discussion in Section 5.

7.4. Comparison between the well-known CRB expres-
sions and the proposed expression

In this subsection, the coprime array with M = 3, N = 5
is considered, where the sensor locations are given in (68).
The SNR is 20dB and the number of snapshots is K = 500.
The sources have normalized DOAs θ̄i = −0.48+(i−1)/D
for i = 1, 2, . . . , D, which is different from those in Section
7.3.

Fig. 7 depicts several different CRB expressions: (a) the
stochastic CRB expression of [91], (b) the CRB which is
evaluated numerically by Abramovich et al. [1], (c) Jansson
et al.’s CRB expression [40], and (d) the proposed CRB
expression, as in Theorem 2. First of all, the stochastic
CRB expression of [91] is valid only when D < |S|, as
discussed in Section 4.1. Hence, it cannot be used to derive
conclusions about identifiability in the regime D ≥ |S|.
This is indeed seen in Fig. 7(a) where the CRB of [91]
diverges for D ≥ |S| = 10, even though this is still an
identifiable regime according to Table 2.

Abramovich et al.’s CRB expression, in Fig. 7(b), is cal-
culated numerically from the FIM. Jansson et al.’s CRB
expression, as shown in Fig. 7(c), is consistent with the
identifiable and non-identifiable regions in Table 2, except
for D = |S| = 10. It is because the appearance of |S| −D
in the denominator of (32) makes the whole expression in-
valid. Furthermore, if D > |S| = 10, even though ΠVS is
undefined, we still calculate Jansson et al.’s CRB expres-
sion (31) numerically and it resembles the plot given in
Fig. 7(b).
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Figure 7: The CRB expressions versus the number of sources D for a
coprime array. (a) The stochastic CRB expression [91], (b) the CRB
which is evaluated numerically by Abramovich et al. [1], (c) Jansson
et al.’s CRB expression [40], and (d) the proposed CRB expression,
as in Theorem 2. The coprime array with M = 3, N = 5 has
sensor locations as in (68) and the difference coarray as in (73). The
number of sensors |S| = 10. The equal-power sources are located at
θ̄i = −0.48 + (i− 1)/D for i = 1, 2, . . . , D. The number of snapshots
K is 500 and SNR is 20 dB.

Finally, the newly proposed CRB expression (49), as
plotted in Fig. 7(d), fully agrees with Jansson et al.’s CRB
expression for D < |S| = 10 and Abramovich et al.’s for
any D. Unlike Jansson et al.’s expression, the new ex-
pression can also be evaluated for D = |S| = 10. Fur-
thermore, the proposed CRB expression is in agreement
with the identifiablity results for every D in Table 2. This
example also justifies the relations among Abramovich et
al.’s, Jansson et al.’s, and the proposed CRB expression,
as discussion in Section 4.3.

Note that in the example, the proposed CRB expression
becomes divergent at D = 18, as seen in Fig. 7(d). It is
because the rank of the ACM matrix is 35 < 2D+ 1 = 37,
which violates the rank condition (48). Hence, these par-
ticular DOAs lead to a singular FIM, as stated in Theorem
1. This example also shows that, in the “unknown” region
of Table 2, which is 18 ≤ D ≤ 21, the FIM could be sin-
gular or nonsingular, depending on the DOAs.

8. Concluding Remarks

In this paper, we derived a new expression for the CRB
of DOA estimates using linear arrays. The expression is
especially useful in the case of sparse arrays such as nested
arrays, coprime arrays, or MRAs, which can identify many
more sources than the number of sensors. The conditions
for validity of the expression are expressed in terms of
the rank of an augmented coarray manifold matrix. The
expression is valid for up to O(N2) sources where N is
the number of sensors. The precise details depend on the
array configuration. We found that considerable insights
regarding the behavior of sparse arrays can be gained from
these expressions. All results were derived for uncorrelated
sources, and only the estimation of source DOAs were con-
sidered, and not the source powers. In the future, it will
be of interest to extend the results of this paper to the
case where source powers are also parameters of interest.
Extension to correlated sources will be of future interest
as well.

During the galley stages of this paper we came to
know that somewhat similar results are being reported
by Koochakzadeh and Pal in a forthcoming issue of the
IEEE Signal Processing Letters (2016) and by Wang and
Nehorai at http://arxiv.org/abs/1605.03620.

Appendix A. Derivation to the proposed CRB ex-
pression

Appendix A.1. Connection to the difference coarray

To simplify the CRB, it can be inferred from (38) that

rS = vec

(
D∑
i=1

pivS(θ̄i)v
H
S (θ̄i) + pnI

)

=

D∑
i=1

pivec
(
vS(θ̄i)v

H
S (θ̄i)

)
+ pnvec(I)
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=

D∑
i=1

piv
∗
S(θ̄i)⊗ vS(θ̄i) + pnvec(I), (A.1)

since vec(abT ) = b⊗a [56]. It is useful to express v∗S(θ̄i)⊗
vS(θ̄i) in terms of the difference coarray manifold vector
vD(θ̄i) using a matrix J as follows:

v∗S(θ̄i)⊗ vS(θ̄i) = JvD(θ̄i). (A.2)

The appropriate matrix J for this is given in Appendix B.
It is shown in Appendix B that J has full column rank,
which leads to the following corollary:

Corollary 2. JH(RT
S ⊗ RS)−1J is positive definite.

Therefore, it has a positive definite square root M =(
JH(RT

S ⊗RS)−1J
) 1

2 .

Proof. Since p1, . . . , pD, pn > 0, RS and RT
S are both pos-

itive definite, implying (RT
S ⊗RS)−1 is also positive def-

inite [56]. Hence, JH(RT
S ⊗ RS)−1J is positive definite

[37, 56].

Property 7 and Corollary 3, both given later in Ap-
pendix B, simplify (A.1) as

rS = JxD = J (VDp + pne0) = JWD

[
p
pn

]
, (A.3)

VD =
[
vD(θ̄1) vD(θ̄2) . . . vD(θ̄D)

]
=
|D|

D

,

(A.4)

WD =
[
VD e0

]
=
|D|

D + 1

, (A.5)

and p = [p1, p2, . . . , pD]T .

Appendix A.2. Proof of Lemma 1

(Sufficiency) If D is nonsingular, F can always be de-
composed as [37, 56, 101] [97, Problem A.18]

F =

[
A B

BH D

]
(A.6)

=

[
I BD−1

0 I

] [
A−BD−1BH 0

0 D

] [
I 0

D−1BH I

]
.

(A.7)

Taking the determinant on both sides of (A.7) leads to

det(F) = det(A−BD−1BH) det(D). (A.8)

If A − BD−1BH is also nonsingular, then det(A −
BD−1BH) 6= 0 and det(F) 6= 0. Hence, F is nonsingu-
lar.

(Necessity) Suppose D is nonsingular and A−BD−1BH

is singular. Then det(A − BD−1BH) = 0. Eq. (A.8)
becomes det(F) = 0 hence F is singular.

If D is singular, then det(D) = 0. It is well-known that
a Hermitian matrix is positive definite if and only if all the
leading principal minors are positive [97, Fact A.6.3]. Since
det(D) is a leading principal minor, it follows trivially that
F is not positive definite. This concludes the proof.

Appendix A.3. Proof of Lemma 2

(Sufficiency) According to (42) and (A.3), ∆H∆ =
WH

D JH(RT
S ⊗ RS)−1JWD. Since rank(WD) = D + 1, it

follows from Corollary 2 that ∆H∆ is positive definite.
(Necessity) If rank(WD) < D + 1, then there exists a

non-zero vector u such that WDu = 0. It can be deduced
that

uH(∆H∆)u=(WDu)HJH(RT
S ⊗RS)−1J(WDu)=0,

implying that ∆H∆ is not positive definite.

Appendix A.4. Proof of Lemma 3

(Sufficiency) Combining (A.3) and (41) yields

G = (RT
S ⊗RS)−

1
2 J
[
p1

∂vD(θ̄1)

∂θ̄1
. . . pD

∂vD(θ̄D)

∂θ̄D

]
= j2π(RT

S ⊗RS)−
1
2 J

× diag(D)
[
p1vD(θ̄1) . . . pDvD(θ̄D)

]
= j2π(RT

S ⊗RS)−
1
2 J(diag(D))VDP, (A.9)

where P = diag(p1, p2, . . . , pD). Similarly, (42) and (A.3)
lead to

∆ = (RT
S ⊗RS)−

1
2 J
[
vD(θ̄1) . . . vD(θ̄D) e0

]
= (RT

S ⊗RS)−
1
2 JWD. (A.10)

Substituting (A.9) and (A.10) into GHΠ⊥∆G/(4π2) gives
(A.11), where the matrix M is defined in Corollary 2.

Let u ∈ CD. Since the projection matrix Π⊥MWD
is

Hermitian and idempotent [37, 56], it can be deduced from
(A.11) that

uH

(
GHΠ⊥∆G

4π2

)
u =

∥∥∥Π⊥MWD
G0u

∥∥∥2

2
≥ 0.

The equality holds only if Π⊥MWD
G0u = 0, i.e., only if

there exits a vector v ∈ CD+1 such that

M(diag(D))VDPu = MWDv, (A.12)

Since M is positive definite, (A.12) can be expressed as

[
diag(D)VD WD

]︸ ︷︷ ︸
Ac

[
Pu
−v

]
= 0,

where Ac is the ACM matrix, as defined in Definition 4.
If rank(Ac) = 2D + 1, then Pu = 0, implying u = 0. As
a result, GHΠ⊥∆G is positive definite.

17



GHΠ⊥∆G

4π2
= PHVH

D (diag(D))H
[
JH(RT

S ⊗RS)−
1
2 Π⊥

(RT
S ⊗RS)

− 1
2 JWD

(RT
S ⊗RS)−

1
2 J

]
(diag(D))VDP

= PHVH
D (diag(D))H

[
MHM−MH(MWD)

[
(MWD)H(MWD)

]−1
(MWD)HM

]
(diag(D))VDP

= GH
0 Π⊥MWD

G0, where G0 = M(diag(D))VDP. (A.11)

(Necessity) If rank(Ac) < 2D+ 1, then there exists a ∈
CD and b ∈ CD+1 such that [aT ,bT ]T 6= 0 and

diag(D)VDa + WDb = 0. (A.13)

Left multiplying (A.13) by M leads to an expression sim-
ilar to (A.12):

(M(diag(D))VDP)
(
P−1a

)
= (MWD) (−b) , (A.14)

where P = diag(p1, . . . , pD) is positive definite. If a 6= 0,
then P−1a 6= 0, Π⊥MWD

G0(P−1a) = 0, and GHΠ⊥∆G is
not positive definite. On the other hand, if a = 0 and b 6=
0, then (A.14) becomes WDb = 0, which contradicts with
the assumption that rank(WD) = D+1. These arguments
complete the proof.

Appendix B. Definition of J

Definition 5. The binary matrix J has size |S|2-by-|D|
such that the column of J associated with the difference m
is given by

〈J〉:,m = vec(I(m)), m ∈ D,

where the |S|-by-|S| matrix I(m) satisfies

〈I(m)〉n1,n2
=

{
1 if n1 − n2 = m,

0 otherwise.
n1, n2 ∈ S.

As an example of J, if S = {0, 1, 4}, then D =
{−4,−3,−1, 0, 1, 3, 4}, and I(m) are

I(m = 0) =

n2 = 0 1 4[ ]n1 = 0 1 0 0
1 0 1 0
4 0 0 1

,

I(m = 1) =

n2 = 0 1 4[ ]
n1 = 0 0 0 0

1 1 0 0
4 0 0 0

,

I(m = 3) =

n2 = 0 1 4[ ]n1 = 0 0 0 0
1 0 0 0
4 0 1 0

,

I(m = 4) =

n2 = 0 1 4[ ]
n1 = 0 0 0 0

1 0 0 0
4 1 0 0

,

and I(−1) = I(1)T , I(−3) = I(3)T , and I(−4) = I(4)T .
As a result, J is given by

J =

m = −4 −3 −1 0 1 3 4



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0

.

The following properties of J are useful:

Property 6. J has full column rank, i.e., rank(J) = |D|.
Proof. It suffices to prove that {I(m)}m∈D is a lin-
early independent set. Consider the linear equation∑
m∈D cmI(m) = 0. Suppose there exists P ∈ D such

that cP 6= 0. For any n1, n2 ∈ S such that n1 − n2 = P , it
can be deduced that

0 = 〈0〉n1,n2
= 〈

∑
m∈D

cmI(m)〉n1,n2

=
∑
m∈D

cm〈I(m)〉n1,n2
= cP ,

which contradicts cP 6= 0. Hence, the coefficients cm are
all zero, implying J has full column rank.

Property 7. With J as in Definition 5, we have v∗S(θ̄i)⊗
vS(θ̄i) = JvD(θ̄i).

Proof. Letting αi = ej2πθ̄i and starting with the right-
hand side of the equation yield

JvD(θ̄i) =
∑
m∈D

vec(I(m))αmi = vec

(∑
m∈D

I(m)αmi

)
.

The (n1, n2) entry of
∑
m∈D I(m)αmi is

〈
∑
m∈D

I(m)αmi 〉n1,n2 =
∑
m∈D
〈I(m)〉n1,n2α

m
i = αn1

i (αn2
i )∗,

so that
∑
m∈D I(m)αmi = vS(θ̄i)v

H
S (θ̄i). Therefore,

JvD(θ̄i) = vec(vS(θ̄i)v
H
S (θ̄i)) = v∗S(θ̄i) ⊗ vS(θ̄i), which

proves the property.

Corollary 3. vec(I) = Je0, where e0 ∈ {0, 1}|D| satisfying

〈e0〉m =

{
1, if m = 0,

0, otherwise,
m ∈ D.
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Appendix C. Proof of the asymptotic CRB ex-
pression for large SNR

Appendix C.1. Proof of Theorem 3

According to Property 4, the CRB expression depends
on the SNR p/pn, so without loss of generality, we set pn =
1. For sufficiently large SNR, p is much greater than pn, so
that RS can be approximated by pUsΛUH

s + UnUH
n and

R−1
S approaches p−1UsΛ

−1UH
s + UnUH

n asymptotically.

The quantity R−TS ⊗R−1
S can be expressed as

R−TS ⊗R−1
S = A + p−1B + p−2C,

where A, B, and C are defined as

A = (UnUH
n )T ⊗ (UnUH

n ), (C.1)

B =
[
(UsΛ

−1UH
s )T ⊗ (UnUH

n )

+ (UnUH
n )T ⊗ (UsΛ

−1UH
s )
]
, (C.2)

C = (UsΛ
−1UH

s )T ⊗ (UsΛ
−1UH

s ). (C.3)

For large p, R−TS ⊗R−1
S can be approximated by

R−TS ⊗R−1
S

large p−−−−→ A + p−1B. (C.4)

The following corollaries show two identities regarding A:

Corollary 4. AJ(diag(D))VD = 0, where A and J are
given in (C.1) and Definition 5, respectively.

Proof. According to Definition 5, the ith column of
AJ(diag(D))VD can be expressed as

AJ(diag(D))vD(θ̄i) = Avec

(∑
m∈D

I(m)mαmi

)
, (C.5)

where αi = ej2πθ̄i . The matrix I(m) is defined in Defini-
tion 5. The (n1, n2) entry of

∑
m∈D I(m)mαmi becomes

〈
∑
m∈D

I(m)mαmi 〉n1,n2
= n1α

n1
i (αn2

i )∗ − αn1
i (αn2

i )∗n2,

so that∑
m∈D

I(m)mαmi

= diag(S)vS(θ̄i)v
H
S (θ̄i)− vS(θ̄i)v

H
S (θ̄i)(diag(S)). (C.6)

Substituting (C.6) into (C.5) yields

AJ(diag(D))vD(θ̄i)

=
[
(UnUH

n )T ⊗ (UnUH
n )
]

× vec
(
diag(S)vS(θ̄i)v

H
S (θ̄i)− vS(θ̄i)v

H
S (θ̄i)(diag(S))

)
= vec(UnUH

n (diag(S))vS(θ̄i) vHS (θ̄i)Un︸ ︷︷ ︸
0

UH
n )

− vec(Un UH
n vS(θ̄i)︸ ︷︷ ︸

0

vHS (θ̄i)(diag(S))UnUH
n ) = 0,

where the property (CT ⊗A)vec(B) = vec(ABC) is uti-
lized. Hence AJ(diag(D))VD = 0.

Corollary 5. WH
D JHAJWD = (rank(Un))eD+1e

H
D+1,

where eD+1 is defined in (62).

Proof. For 1 ≤ i, j ≤ D, the (i, j)th entry of
WH

D JHAJWD can be simplified as[
WH

D JHAJWD
]
i,j

= vHD (θ̄i)J
HAJvD(θ̄j)

=
[
vTS (θ̄i)⊗ vHS (θ̄i)

] [
(UnUH

n )T ⊗ (UnUH
n )
] [

v∗S(θ̄j)⊗ vS(θ̄j)
]

=
(
vHS (θ̄j)UnUH

n vS(θ̄i)
)T ⊗ (vHS (θ̄i)UnUH

n vS(θ̄j)
)

= 0.

The (i,D + 1)th entry of WH
D JHAJWD becomes[

WH
D JHAJWD

]
i,D+1

= vHD (θ̄i)J
HAJe0

=
[
vTS (θ̄i)⊗ vHS (θ̄i)

] [
(UnUH

n )T ⊗ (UnUH
n )
]

vec(I)

= vec
(
vHS (θ̄i)UnUH

n UnUH
n vS(θ̄i)

)
= 0

Similarly, the (D + 1, j)th entry of WH
D JHAJWD is also

zero. Finally the (D+ 1, D+ 1)th entry of WH
D JHAJWD

is given by[
WH

D JHAJWD
]
D+1,D+1

= vec(I)H
[
(UnUH

n )T ⊗ (UnUH
n )
]

vec(I)

= tr
(
UnUH

n IUnUH
n I
)

= rank(Un),

since tr(ABCD) = vec(BH)H(AT ⊗ C)vec(D) and
tr(AB) = tr(BA).

To evaluate the asymptotic expression of the CRB, we
first consider the inverse of WH

D M2WD, based on (C.4)
and Corollary 5:

(
WH

D M2WD
)−1

large p−−−−→
(
WH

D JHAJWD + p−1WH
D JHBJWD

)−1

=
(
p−1WH

D JHBJWD + rank(Un)eD+1e
H
D+1

)−1

= p
(
WH

D M2
∞WD + rank(Un)p× eD+1e

H
D+1

)−1
, (C.7)

where M∞ is the positive definite squared root of JHBJ,
as defined in (59).

To be more rigorous, we need to show that JHBJ is
positive semidefinite. Since UsΛ

−1UH
s and UnUH

n are
both positive semidefinite, (UsΛ

−1UH
s )T ⊗ (UnUH

n ) and
(UnUH

n )T ⊗ (UsΛ
−1UH

s ) are also positive semidefinite
[56]. Then, according to (C.2), B is a sum of two positive
semidefinite matrices, implying B is also positive semidef-
inite [56]. These arguments prove the existence of M∞.

If WH
D M2

∞WD has full rank, then applying the matrix
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inversion lemma [37] to (C.7) leads to

(WH
D M2WD)−1

large p−−−−→ p
((

WH
D M2

∞WD
)−1

−
(
WH

D M2
∞WD

)−1
eD+1e

H
D+1

(
WH

D M2
∞WD

)−1

(rank(Un)p)−1 + eHD+1

(
WH

D M2
∞WD

)−1
eD+1

)
large p−−−−→ p

((
WH

D M2
∞WD

)−1

−
(
WH

D M2
∞WD

)−1
eD+1e

H
D+1

(
WH

D M2
∞WD

)−1

eHD+1

(
WH

D M2
∞WD

)−1
eD+1

)
,

(C.8)

where it is assumed that eHD+1

(
WH

D M2
∞WD

)−1
eD+1 is

not zero. Next, we consider the asymptotic expression of
GH

0 G0 for large SNR,

GH
0 G0

large p−−−−→ p2VH
D (diag(D))JH(A + p−1B)J(diag(D))VD

= pVH
D (diag(D))JHBJ(diag(D))VD = pGH

∞G∞, (C.9)

due to Corollary 4. Here G∞ is defined in (60). Similarly,
(MWD)HG0 has an asymptotic expression,

(MWD)HG0
large p−−−−→WH

D JH(A + p−1B)J(diag(D))VD(pI)

= (M∞WD)HG∞ (C.10)

Substituting (C.8), (C.9), and (C.10) into (49) yields (57).

Appendix C.2. Proof of Theorem 4

Since VS has full row rank, VSV
H
S is nonsingular. It

can be inferred from (52) that

R−1
S

large p−−−−→ (pVSV
H
S )−1,

M
large p−−−−→ (JH((pVSV

H
S )−T⊗(pVSV

H
S )−1)J)

1
2 =

M∞

p
,

G
large p−−−−→ M∞

p
(diag(D))VD(pI) = G∞.

Replacing M and G0 with their limits in (49) proves this
property.

Appendix D. Proof of Theorem 5

To prove that rank(Ac) = 2D + 1, it suffices to show
that, there exists a (2D + 1)× (2D + 1) full rank subma-
trix. Since D ≤ (|U| − 1)/2, the following matrix S0 is a

submatrix of Ac,

S0 =



−Dα−D1 . . . −Dα−DD α−D1 . . . α−DD 0
...

. . .
...

...
. . .

...
...

−2α−2
1 . . . −2α−2

D α−2
D . . . α−2

D 0
−α−1

1 . . . −α−1
D α−1

1 . . . α−1
D 0

0 . . . 0 1 . . . 1 1
α1 . . . αD α1 . . . αD 0
2α2

1 . . . 2α2
D α2

1 . . . α2
D 0

...
. . .

...
...

. . .
...

...
DαD1 . . . DαDD αD1 . . . αDD 0


,

where αi = ej2πθ̄i for i = 1, 2, . . . , D. It will be shown that
rank(S0) = 2D + 1. Consider another matrix S1, defined
as

S1 = S0

L1,1 0 0
L2,1 L2,2 0
0T 0T 1


︸ ︷︷ ︸

L

, (D.1)

where the matrices L1,1, L2,1, and L2,2 are given by

L1,1 = diag(αD−1
1 , αD−1

2 , . . . , αD−1
D ),

L2,1 = diag(DαD−1
1 , DαD−1

2 , . . . , DαD−1
D ),

L2,2 = diag(αD1 , α
D
2 , . . . , α

D
D).

S0, S1, and L are square matrices of size 2D+ 1. Expand-
ing (D.1) results in

S1 =

0 . . . 0 1 . . . 1 0
1 . . . 1 α1 . . . αD 0

2α1 . . . 2αD α2
1 . . . α2

D 0
...

. . .
...

...
. . .

...
...

(D−1)αD−2
1 . . . (D−1)αD−2

D αD−1
1 . . . αD−1

D 0

DαD−1
1 . . . DαD−1

D αD1 . . . αDD 1

(D+1)αD1 . . . (D+1)αDD αD+1
1 . . . αD+1

D 0
...

. . .
...

...
. . .

...
...

2Dα2D−1
1 . . . 2Dα2D−1

D α2D
1 . . . α2D

D 0


.

It holds true that rank(S0) = rank(S1), since the lower
triangular matrix L has non-zero diagonal entries.

Next, it will be shown that S1 has full rank. Let h =
[h0, h1, . . . , h2D]T satisfy hTS1 = 0. Define a polynomial

H(z) =
∑2D
n=0 hnz

n. Then hTS1 = 0 is equivalent to

H ′(α1) = · · · = H ′(αD) = 0, (D.2)

H(α1) = · · · = H(αD) = 0, (D.3)

hD = 0, (D.4)

where H ′(z) = (d/dz)H(z) =
∑2D
n=0 hn(nzn−1). Since the

DOAs are distinct, (D.2) and (D.3) indicate H(z) can be
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expressed as

H(z)=K

D∏
i=1

(z − αi)2 =K0z
D

D∏
i=1

(
αi
z
− 2 +

z

αi

)
︸ ︷︷ ︸

G(z)

,

(D.5)

where K0 = K
∏D
i=1 αi for some constant K. Eqs. (D.4)

and (D.5) imply

0 = K0 × (Constant term of G(z))

= K0

∫ 1
2

− 1
2

G(ej2πθ̄)dθ̄

= K0

∫ 1
2

− 1
2

D∏
i=1

(
e−j2π(θ̄−θ̄i) − 2 + ej2π(θ̄−θ̄i)

)
dθ̄, (D.6)

where the constant term is based on the inverse discrete-
time Fourier transform of G(ej2πθ̄) [97]. (D.6) can be sim-
plified as

0 = K0(−2)D

>0︷ ︸︸ ︷∫ 1
2

− 1
2

(
D∏
i=1

(1− cos 2π(θ̄ − θ̄i))

)
︸ ︷︷ ︸

≥0

dθ̄ .

Since the integrand is non-negative, this integral is strictly
positive, implying K0 = K = 0 and h = 0. Hence, 2D +
1 = rank(S1) = rank(S0) = rank(Ac).
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