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Abstract

I consider peer effects of network externalities in a competitive telecommunica-
tion market. The magnitude of network externalities depends on whether the caller
and the receiver are in the same peer group. Technically, interconnection between
carriers can eliminate network externalities, but carriers may adopt termination-
based price discrimination to reduce compatibility. When termination-based pricing
is prohibited, carriers cannot exploit network externalities. Peer effects are equiva-
lent to consumers with vertically heterogeneous tastes. There is a unique subscrip-
tion equilibrium. On the other hand, when carriers offer termination-specific prices,
peer effects have a substantial impact on the equilibrium. Because of the network
externalities created by incompatibility, there might be multiple stable equilibria.
Carriers may specialize to serve different consumer groups in a stable equilibrium
even if they are identical ex ante. If carriers anticipate such an equilibrium, they
would like to negotiate a high interconnection fee and offer intra-network discounts.

1 Introduction

Models of network externalities typically assume consumers are homogeneous, with iden-
tical externalities. Consequently, network effects only depend on the total number of
users of a product. However, this assumption is not plausible in many situations. For
example, consider the choice of e-mail service. My utility is positively correlated with
the number of my friends using e-mail service but it decreases in the number of spam-
mers on the Internet. This simple example illustrates the importance of peer effects in
network externalities. Externalities are influenced by the composition of users, not just
the number of users.

With telecommunication deregulation, many phone carriers often compete in the same
market. This is especially true in cellular phone service markets. Competing carriers are
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generally interconnected. Interconnection allows customers of one carrier to make a phone
call to customers of a different carrier. Technically, interconnection can eliminate network
externalities between carriers. Nevertheless, carriers can use termination-based price
discrimination to exploit network effects and compete with other carriers. When a receiver
subscribes to the same carrier as the caller, the price of the phone call is often lower.
Intra-network discounts reduce the compatibility of the services between different carriers.
Despite interconnection, network externalities still exist among consumers subscribing to
different carriers. In the extreme case, when the inter-network price is high enough, the
two carriers essentially become incompatible.

For a phone call between two different networks, the caller’s carrier needs to pay an
interconnection fee to the receiver’s carrier to compensate its cost of terminating the call.
In the seminal works of Laffont, Rey, and Tirole (1998a,b), they analyze the policies
on interconnection fees between competing networks.1 Under their framework, carriers
would like to negotiate an interconnection fee less than the actual cost of terminating
a call in order to soften their competition whenever they can use two-part tariffs and
termination-based price discrimination in the retail market (Gans and King, 2001). Such
an agreement would result in a lower price for inter-network calls than for intra-network
calls. However, it is rare, if at all, that a carrier offers discounts for inter-network calls
in the real world. When I account for peer effects in this paper, carriers may prefer a
higher interconnection fee in a stable equilibrium and offer discounts for intra-network
calls. This model provides an explanation for the intra-network discounts that we often
observe in the cellular service industry.

An important antitrust policy issue is to understand the impacts of terminational-
based price discrimination. I propose a simple model to analyze competition among
duopolistic carriers. Each carrier offers a two-part tariff, consisting of a subscription
fee and a unit rate for a phone call. The same price schedule applies to all consumers.
All consumers subscribe to one of the two carriers. There are two consumer groups.
Consumers obtain a higher utility level when making a phone call which terminates within
the same group. When termination-based price discrimination is not allowed, network
externalities are entirely eliminated by interconnection. The peer effects simply affect
the demand of a consumer. A consumer belonging to a large group has higher demand
for the phone service. When both consumer groups are of the same size, carriers choose
unit price equal to the perceived marginal cost and use the subscription fee to extract
consumer surplus. On the other hand, when one group is larger than the other, price
differs from the marginal cost. This distortion results because a single pricing scheme
cannot extract all consumer surplus from different consumer groups. Regardless of the
relative group sizes, profits are independent of the interconnection fee. In addition, the
social optimum can be achieved by requiring the interconnection fee equal to the marginal
cost of terminating a call.

When carriers charge different unit rates according to the termination of a call, net-
work externalities are present. A consumer creates a positive externality for all other
consumers subscribing to the same carrier when intra-network prices are lower. She
would like to join a larger network, ceteris paribus. The subscription decision depends

1See Laffont and Tirole (2000) and Armstrong (2002) for surveys of interconnection in the telecom-
munication industry.
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on the belief about the market shares. Under a rational expectation assumption, it is
possible to have multiple stable equilibria for subscription choices. There are two types
of stable equilibria, pooling and separating equilibria. While a pooling equilibrium al-
ways exist, a separating equilibrium is more likely to exist when (a) carriers are less
differentiated, (b) intra-network discounts are larger, or (c) peer effects are stronger.

In a pooling equilibrium, the market share of a carrier is identical across different
groups. Peer effects do not play any role when consumer groups are of the same size.
Carriers choose intra- and inter-network prices equal to their respective marginal costs to
maximize profits. The profits are maximized at an interconnection fee less than the cost
of terminating a call. When carriers can negotiate the interconnection fee, they desire an
interconnection deficit and offer a higher price for intra-network calls.

In a separating equilibrium, each carrier is dominant among one of the two consumer
groups. Carriers specialize to serve different groups even though they are identical ex
ante. Unlike the above cases, there is not marginal cost pricing rule even if the two
consumer groups are of equal size. A numerical example shows that profits increase in
the interconnection fee, and the intra-network price is less than inter-network price in a
separating equilibrium. Therefore, carriers prefer a higher interconnection fee and offer
intra-network discounts in anticipation of a separating equilibrium.

The rest of the paper is organized as follows. In the next section, I discuss the related
literature. I then present a duopoly model with heterogeneous consumer groups. The
social optimum is discussed in Section 4. I analyze the pricing decisions under duopolistic
competition without termination-based price discrimination in Section 5. In Section 6,
carriers are allowed to charge different prices based on the termination of a phone call.
The conclusion is in the final section.

2 Related Literature

Although early researches of network externalities focus on a single network with homo-
geneous consumers, their main results hold in a more complicated environment. Because
the utility of a product depends on the belief of the number of users, there are usually
multiple equilibria. The outcome depends on consumers’ beliefs. In the basic model of
Rohlfs (1974), zero consumption in the market is obviously a stable equilibrium because,
if everyone expects no one would purchase a network product, the product is useless.
For positive quantities, the demand curve is a hump-shaped curve. Any point on the
upward-sloping part of the demand curve is a unstable equilibrium, and it is the critical
mass for the product to be introduced into the market. The downward-sloping part of
the demand curve represents a stable equilibrium. The market would achieve a positive
stable equilibrium only when consumers believe the equilibrium quantity would be greater
than the critical mass.

Katz and Shapiro (1985) extend the discussion of network externalities into duopoly.
Since there are more than one network in the market, compatibility between two networks
is crucial. They assume that consumers are homogeneous so that their surplus only
depends on the number of consumers buying a compatible product. There are multiple
fulfilled equilibria, which depend on compatibility between different networks. In their
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model, products are either fully compatible or non-compatible. On the contrary, in my
discussion of termination-based price discrimination, products are partially compatible.
Carrier can change the degree of compatibility continuously by adjusting the discount on
intra-network calls.

As I mentioned above, Laffont et al. (1998a,b) propose a framework to analyze compe-
tition between two interconnected networks.2 The duopolistic networks are horizontally
differentiated à la Hotelling. Consumers are otherwise identical. There exists a unique,
stable, symmetric equilibrium when networks are poor substitutes. When termination-
based price discrimination is not allowed, carriers choose their unit rate of a call equal to
the perceived marginal cost under two part-tariffs, and their profits are independent of
interconnection fee. Carriers are willing to accept an interconnection fee at the marginal
cost of terminating a call, which is socially desirable.3 When price discrimination is possi-
ble, they price intra- and inter-network calls to their respective marginal costs. However,
Gans and King (2001) find that their profit decreases in the interconnection fee when the
fee is nonnegative. As a result, carriers would like to negotiate an interconnection fee less
than its marginal cost and offer discounts for inter-network calls. Social welfare is lower
than the social optimum and consumers are worse off.

Peer effects in network industry are also analyzed in Jullien (2001, 2006). Contrary
to my model, firms can use third-degree price discrimination based on the group identity
of a consumer. An entrant can use a divide-and-conquer strategy to join the market.
Specifically, it can subsidize some consumer groups and exploit the network externalities
to recover the subsidy.

3 Model

There are two identical telephone carriers k = 1, 2. Carrier k offers a two-part tariff
(tk, pkk, pkl) to consumers, where tk is the subscription fee; pkk and pkl are the unit rates
for calls terminated in network k and network l, respectively. Receivers do not pay for
incoming calls.4 The phone tariff of qI intra-network calls and qO inter-network calls is
tk + pkkqI + pklqO. There is a fixed cost f ≥ 0 to serve a customer. Marginal cost c
is the same for intra-network calls and inter-network calls. The marginal cost can be
decomposed into two parts: c = cO + cT , where cO is the originating-end cost and cT is
the terminating-end cost. For each phone call originated from network k and terminated
in the other network l, carrier k needs to pay carrier l an interconnection fee a. This
interconnection fee is reciprocal, determined exogenously. It can be either determined
by the regulator or negotiated by the carriers in advance. A carrier pays as much for
termination of a call on the rival’s network as it receives for completing a call originated
from the rival’s network. The cost to operate a network is normalized to zero.

2See also Armstrong (1998) for this framework.
3Dessein (2003, 2004) and Hahn (2004) extend this framework to consider consumers with heteroge-

neous demand, the profit-neutrality holds for many generalized cases.
4This “calling party pays” principle applies to most telecommunication sectors in most countries.

One notable exception is the cellular phone service in the United State, where receivers pay for incoming
calls. See Jeon et al. (2004) for discussions on the “receivers-pay” principle.
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Let C be the set of all consumers in the market. There are two group of consumers,
C1 and C2, such that {C1, C2} is a partition of C. Normalize the population of consumers
to be 1, |C| = 1. Denote the size of group Cn by µn. The sizes {µ1, µ2} are common
knowledge, but the group identity of a consumer is unknown to carriers. Denote an
individual i’s group by C(i).

Consumers subscribe to the network which yields a higher utility level. Denote con-
sumer i’s selected carrier by k(i). The utility function is quasi-linear5 and the utility
from making phone calls is additively separable across receivers. Consumer i’s utility of
subscribing to network k is

∫

j∈C

ūij(qij) dj − T ({qij : j ∈ C}) +
1

σ
εik, (1)

where qij is the quantity of calls from i to j, and ūij(qij) is i’s utility from calling j.
T ({qij : j ∈ C}) is the tariff of these calls. The final term, εik, is consumer i’s idiosyn-
cratic preference of subscribing to carrier k, which is not affected by the quantity choices
{qij : j ∈ C}. For example, εik captures the effect of advertisements. The idiosyncratic
preference εik draws from the Type I extreme value distribution independently across i
and k.6 It is private information of consumer i. There is no utility from receiving phone
calls.7

The coefficient σ > 0 captures the substitutability between the two carriers. Its
inverse is the degree of differentiation between them. When the two carriers are more
substitutable with each other, it is easier for the carrier that provides a higher utility
level to attract more subscribers. As σ → ∞, there is no differentiation among them,
and carriers are competing with each other only in prices. On the contrary, when σ → 0,
each of them covers half of the market regardless their price schemes.

The utility of a phone call depends on the receiver’s group. Specifically, let

ūij(qij) =

{

uG(qij) for j ∈ C(i)

uN(qij) for j /∈ C(i),
(2)

with uG(q) ≥ uN(q) and uG′

(q) ≥ uN ′

(q) for all q ≥ 0. Therefore, a caller i gets a higher
utility level and also higher marginal utility from calling a receiver in her peer group
than from calling other people. Moreover, both uG and uN are strictly concave, and
uG′

(0) > c, uN ′

(0) > c.
Because a consumer’s group identity is unknown to carriers, carriers have to offer

a uniform price scheme for all consumers in the market. It is impossible to implement
third degree price discrimination across peer groups. Therefore, the divide-and-conquer

5It is reasonable to assume quasi-linear because the expenditure on telecommunications is small
relative to income.

6The logit-style preferences ensure market shares are always strictly between 0 and 1. I can analyze
marginal effects of price in cases where one carrier is dominant in the market. In the framework of
Laffont et al. (1998a,b), εik is specified such that consumers are differentiated à la Hotelling. Market
shares do not respond to an infinitesimal change in price at corner solutions.

7If consumers benefit from receiving incoming calls without paying for them, there are call externali-
ties. See Hahn (2003) for discussions on call externalities under nonlinear pricing.
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strategy discussed in Jullien (2001) does not work.
Denote the number of group-Cn consumers subscribing to network k by sn

k , for n = 1, 2
and k = 1, 2. For each individual consumer i, let sn

ik be her expected number of individuals
subscribing to network k among group Cn. Clearly, sn

i1 + sn
i2 = µn. For most of the

following analyses in this paper, I will focus on the results under rational expectation,
sn

ik = sn
k for all i ∈ C.

For any given interconnection fee a, the interactions between consumers and carriers
can be summarized in the following three stages.

1. Pricing stage: Carriers determine their price scheme (tk, pkk, pkl) simultaneously.
Each consumer i forms her belief about the market shares {(sn

ik) : k = 1, 2, n =
1, 2}.

2. Subscription stage: Each consumer i selects one carrier k(i) from {1, 2} simultane-
ously.

3. Calling stage: Consumer i determines the quantities of phone calls, {qij : j ∈ C},
and pay for the service.

Because utility from calling is additively separable across receivers, the quantity de-
cision at Stage 3 is independent across receivers. For any consumer i ∈ C, conditional
on subscribing to carrier k(i), the quantity of calls to a receiver j is determined by the
utility maximization problem.

max
qij

{

uG(qij) − pk(i),k(j)qij, if j ∈ C(i),

uN(qij) − pk(i),k(j)qij, if j /∈ C(i),
(3)

where pk(i),k(j) is the unit rate of a call from i’s network to j’s network. It is obvious that
the quantity depends on (a) peer effect: whether i and j are members of the same peer
group, and (b) on-off effect: whether i and j subscribe to the same network. The strict
concavity of utility functions guarantees a unique solution of (3). Hence, the quantity
can be expressed as the following function.

qij =

{

qG(pk(i),k(j)), if j ∈ C(i),

qN(pk(i),k(j)), if j /∈ C(i).
(4)

The on-off effect results from termination-based price discrimination. It diminishes when
the intra-network price equals the inter-network price.

For notational convenience, let

vG(p) = uG(qG(p)) − p qG(p), πG(p) = (p − c) qG(p), φG(p) = (a − cT ) qG(p),

vN(p) = uN(qN(p)) − p qN(p), πN(p) = (p − c) qN(p), φN(p) = (a − cT ) qN(p).

v(p) is a consumer’s surplus from calling a receiver at price p. The profit of a carrier made
from its own customer calling someone else on its network is π(p), and the profit from its
customer calling someone outside its network is π(p) − φ(p). The profit of terminating
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calls from a rival’s customer is φ(p). The superscripts in these expressions represent
whether the caller and the receiver are in the same peer group (G) or not (N).

The subscription decision of a consumer at Stage 2 depends on consumer surpluses,
vG(p) and vN(p), and her expected market shares among each peer group, {sn

ik : k =
1, 2, n = 1, 2}. As I will show, it is possible to have multiple fulfilled equilibria when
intra-network calls are cheaper than inter-network calls.

At Stage 1, each carrier chooses its price scheme (tk, pkk, pkl) to maximize the profit,

Πk(P ) =
∑

n=1,2

sn
k

{

sn
kπ

G(pkk) + sm
k πN(pkk)

+ sn
l [πG(pkl) − φG(pkl) + φG(plk)] + sm

l [πN(pkl) − φN(pkl) + φN(plk)] + tk − f
}

,

where l = 3 − k and m = 3 − n. It depends on the belief of the realized equilibrium
market shares at Stage 2.

4 Social Optimum

Since I assume zero fixed cost to operate a network, two active networks are better
than one because consumers value the variety of subscription choices. For any given
subscription pattern, there is no externality at the calling stage. Therefore, it is socially
optimal that a consumer’s marginal utility from making a call equals the marginal cost of a
call. The socially optimal volume of intra-group calls, q̄G, is determined by uG′

(q̄G) = c.
Similarly, the socially optimal volume of inter-group calls, q̄N , satisfies the condition
uN ′

(q̄N) = c. Because uG′

(q) ≥ uN ′

(q) for any q, it is optimal to make more calls to
intra-group receivers than to inter-group receivers, q̄G ≥ q̄N . The total volume consumed
by a consumer in a large group is higher than the total volume by a small-group consumer
at the social optimum.

µ1q̄G + µ2q̄N ≥ µ2q̄G + µ1q̄N

if and only if µ1 ≥ µ2.
Because all consumers are required to subscribe to one of the two networks, there

is no externality of the subscription choice as well. The optimal subscription pattern is
determined by a consumer’s idiosyncratic preferences {εik, εil}. It is socially optimal to
subscribe to network k if and only if εik ≥ εil. As a result, each network provides service
to half of the consumers within each group, sn

k = 0.5µn, for k = 1, 2 and n = 1, 2.
Under nonlinear price schemes, the operator can recover the fixed cost f from the

subscription fees {tk}. These fees only change the distribution of welfare in the economy,
but the overall welfare level is fixed. For Ramsey pricing, the industry breaks even at
t1 = t2 = f .

Nonetheless, when the cost of serving a consumer is too high, it is optimal to shut
down the phone service. Specifically, the social planner should provide the phone service
if and only if

∑

n=1,2

µn log
[

2 exp
(

µnvG(c) + µlvN(c)
)]

≥ f.
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Equivalently,
log 2 +

[

(µ1)2 + (µ2)2
]

vG(c) +
[

2µ1µ2
]

vN(c) ≥ f.

5 Competition without Price Discrimination

The price of intra-network calls are the same as that of inter-network calls in this section.
Denote the marginal price by pk = pkk = pkl. For each group Cn, denote the average
utility level of subscribing to network k as

Un
k (P ) =

[

µnvG(pk) + µmvN(pk)
]

− tk,

for k = 1, 2, n = 1, 2, and m = 3− n. The utility level is independent of the belief about
the market shares {sn

ik}. Under the assumption on the distribution of the idiosyncratic
preferences, εik, the number of network-k subscribers among group Cn is

sn
k(P ) = µn exp (σUn

k (P ))

exp (σUn
k (P )) + exp (σUn

l (P ))

for k = 1, 2, n = 1, 2, and l = 3 − k.

5.1 Symmetric Consumer Groups

In this benchmark case, suppose peer groups are of the same size, µ1 = µ2 = 1/2. This
implies s1

k(P ) = s2
k(P ). Consequently, the profit of carrier k can be written as

Πk(P ) = 2s1
k(P )

[

πG(pk)

2
+

πN(pk)

2
+ tk − f

]

+ 2s1
k(P )s1

l (P )
[

φG(pl) − φG(pk) + φN(pl) − φN(pk)
]

The first order conditions are

0 =
∂Πk

∂tk
=

∂s1
k

∂tk

[

πG(pk) + πN(pk) + 2(tk − f)
]

+ 2s1
k

+ 2

[

∂s1
k

∂tk
s1

l + s1
k

∂s1
l

∂tk

]

[

φG(pl) − φG(pk) + φN(pl) − φN(pk)
]

(5)

and

0 =
∂Πk

∂pk

=
∂s1

k

∂pk

[

πG(pk) + πN(pk) + 2(tk − f)
]

+ s1
k

[

πG′

(pk) + πN ′

(pk)
]

+ 2

[

∂s1
k

∂pk

s1
l +s1

k

∂s1
l

∂pk

]

[

φG(pl)−φG(pk)+φN(pl)−φN(pk)
]

−2s1
ks

1
l

[

φG′

(pk)+φN ′

(pk)
]

. (6)
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From equation (5), I obtain

−
[

πG(pk)+πN(pk)+2(tk − f)
]

+
1

σs1
l

+2(s1
k − s1

l )
[

φG(pl)−φG(pk)+φN(pl)−φN(pk)
]

=0.

Substitute this into the equation (6). The first order conditions imply

p∗k = c + (s1
l + s2

l )(a − cT ). (7)

The right hand size in equation (7) is the perceived marginal cost faced by a carrier when
the interconnection fee is a and the ratio of calls terminating in the rival’s network is
(s1

l + s2
l ). From equation (5), I obtain the optimal subscription fee,

t∗k = f −
1

2

[

πG(p∗k) + πN(p∗k)
]

+
1

2σs1
l

+ (s1
k − s1

l )
[

φG(p∗l ) − φG(p∗k) + φN(p∗l ) − φN(p∗k)
]

.

(8)

Proposition 1. Suppose termination-based price discrimination is not allowed and con-
sumer groups are of the same size. There is a symmetric Nash equilibrium in the pricing
stage if the interconnection markup (a−cT ) is small in absolute value or the degree of sub-
stitutability σ is small. The unit price equals the perceived marginal cost p∗ = c+(a−cT )/2
and the subscription fee is t∗ = f + 2/σ − [qG(p∗) + qN(p∗)](a − cT )/4 for both carriers.
The profit of each carrier is Πk = 1/σ, which is independent of the cost parameters and
the interconnection charge a. The market share is identical for both carriers among each
group, sn

k = 1/4 for k = 1, 2 and n = 1, 2. Furthermore, the equilibrium is unique if
either (a) the interconnection markup (a− cT ) is non-positive, or (b) the interconnection
markup is positive but not too high.

Proof. Existence and uniqueness of the symmetric Nash equilibrium is relegated to Ap-
pendix A. By symmetry, the market shares are sn

k = 1/4 for k = 1, 2 and n = 1, 2.
According to the first order conditions (7) and (8), I obtain p∗ = c + (a − cT )/2 and
t∗ = f + 2/σ − [πG(p∗k) + πN(p∗k)]/2 = f + 2/σ − [qG(p∗) + qN(p∗)](a − cT )/4. The profit
is Πk = (t∗ − f)/2 + [φG(p∗)/4 + φN(p∗)/4]/2 = 1/σ for k = 1, 2.

This result is fundamentally the same as Laffont et al. (1998a), in which carriers
are differentiated à la Hotelling without consumer peer groups. In my model, they are
differentiated in a logit model. When the group sizes are the same (µ1 = µ2), peer
groups in the economy does not affect market equilibrium. The intuition of the result is
straightforward. Since both groups are of the same size, there is no need to discriminate
consumers against their group identity. The carriers can use a uniform two-part tariff to
extract consumer surplus from both groups.

The social optimum is achieved in equilibrium when the interconnection fee equals
the marginal cost of terminating a call. Because profit does not depend on this fee, the
regulator may suggest carriers to set a = cT and carriers have no incentive to deviate to
a different interconnection fee.
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5.2 Asymmetric Consumer Groups

Suppose the group sizes are different, µ1 6= µ2. Consider a symmetric equilibrium with
t1 = t2 = t∗ and p1 = p2 = p∗. By continuity, the symmetric equilibrium is the unique one
if the groups sizes are not too different, and either |a−cT | or σ is small. By symmetry, sn

1 =
sn
2 = µn/2 for each group Cn. The first order condition ∂Πk(t

∗, p∗, p∗; t∗, p∗, p∗)/∂tk = 0
can be simplified as

t∗ = f +
2

σ
−
[

(µ1)2 + (µ2)2
]

πG(p∗) − 2µ1µ2πN(p∗). (9)

The other first order condition ∂Πk(t
∗, p∗, p∗; t∗, p∗, p∗)/∂pk = 0 is

0 = −σ[µ1qG(p∗) + µ2qN(p∗)]µ1[µ1πG(p∗) + µ2πN(p∗) + t∗ − f ]

− σ[µ2qG(p∗) + µ1qN(p∗)]µ2[µ2πG(p∗) + µ1πN(p∗) + t∗ − f ]

+ 2[(µ1)2 + (µ2)2]πG′

(p∗) + 4µ1µ2πN ′

(p∗) − [(µ1)2 + (µ2)2]φG′

(p∗) − 2µ1µ2φN ′

(p∗).

Combining these two conditions, I obtain

p∗ = c +
a − cT

2
×

(

2[(µ1)2 + (µ2)2]qG′

(p∗) + 4µ1µ2qN ′

(p∗)

2[(µ1)2 + (µ2)2]qG′(p∗) + 4µ1µ2qN ′(p∗) − σµ1µ2(µ1 − µ2)2[qG(p∗) − qN(p∗)]2

)

.

Because the term in the parenthesis in the above equation is between 0 and 1, the unit
price p∗ is (strictly) between c and c + (a − cT )/2.







c < p∗ < c + 1
2
(a − cT ), if a > cT ;

c = p∗ = c + 1
2
(a − cT ), if a = cT ;

c > p∗ > c + 1
2
(a − cT ), if a < cT .

From the first order condition (9), I can obtain the subscription fee t∗. The profit for
carrier k is Πk(t

∗, p∗, p∗; t∗, p∗, p∗) = 1/σ. The results are summarized in the following
proposition.

Proposition 2. Suppose termination-based price discrimination is not allowed. Each
carrier uses a uniform two-part tariff to maximize its profit. Consumer groups have
different sizes. Then, each carrier serves half of the consumers among each peer group
in the symmetric Nash equilibrium. The unit price is between the actual marginal cost c
and the perceived marginal cost c + (a − cT )/2. Moreover, the profit is 1/σ, independent
of the interconnection charge.

When the sizes of peer groups are different, the optimal unit price pk is different from
the perceived marginal cost c+(a− cT )/2. This is in line with the result of implicit price
discrimination discussed in Dessein (2004) in which consumers have vertically heteroge-
nous demand. A consumer from a large peer group is logically identical to a heavy user
in Dessein’s model because she wants to make more phone calls for a given price. The
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intuition behind Proposition 2 is that the carriers cannot extract all consumer surplus
from different groups by a single subscription fee. When the interconnection markup
(a − cT ) is positive, carriers would like to have a greater proportion of large-group users
among their subscribers in order to receive more interconnection revenue from the rival
for incoming phone calls. 8 By lowering the unit price pk from the perceived marginal
cost c + (a − cT )/2, consumer surplus is higher, and the increase is relatively greater for
large-group consumers. The carrier can extract the higher surplus by raising the subscrip-
tion fee tk. These changes in the price scheme would attract relatively more large-group
users. As a result, the carrier would receive more interconnection revenue for any given
price scheme of its rival. In equilibrium, however, both carriers cover half of the market
and the net interconnection payment is zero.

Similar to the result with symmetric consumer groups, profits are independent of the
interconnection charge. The social optimum can be reached by suggesting carriers to set
a = cT in their interconnection agreement.

The discussions in this section can be easily extended if carriers can use more general
nonlinear pricing instead of a two-part tariff. According to the revelation principle, I
can assume, without loss of generality, that each carrier offers a menu of two optional
plans. One rate plan for the large-group consumers, and the other one for the small-group
consumers. The rate plans have to satisfy incentive constraints. The results are parallel
to Section 4 of Dessein (2004).

6 Competition with Price Discrimination

Now, I allow carriers to charge different unit prices based on the terminating network
of a phone call. The following lemma shows their incentive to adopt termination-based
price discrimination.

Lemma 1. Suppose the two consumer groups are of the same size. At the symmetric non-
discriminatory equilibrium, both carriers have an incentive to decrease the price for intra-
network calls and raise the price for inter-network calls if and only if the interconnection
markup (a − cT ) is positive.

Proof. Let p∗ = c + (a − cT )/2 and t∗ = f + 2 − [πG(p∗) + πN(p∗)]/2. Then the partial
derivatives of carrier k’s profit with respect to pkk and pkl are

∂Πk(t
∗, p∗, p∗; t∗, p∗, p∗)

∂pkk

=
1

16
(a − cT )[qG′

(p∗) + qN ′

(p∗)] and

∂Πk(t
∗, p∗, p∗; t∗, p∗, p∗)

∂pkl

= −
1

16
(a − cT )[qG′

(p∗) + qN ′

(p∗)],

respectively. Consequently, ∂Πk/∂pkk < 0 and ∂Πk/∂pkl > 0 at P = (t∗, p∗, p∗; t∗, p∗, p∗)
if and only if a − cT > 0.

8Carriers do not worry about the interconnection payments due to outgoing calls because they can
use the subscription fee tk to recover this cost from their own subscribers.
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6.1 Conditions for Rational Expectation Equilibria

After carriers announce a pricing scheme P = (t1, p11, p12; t2, p22, p21), consumers make
their subscription decisions k(i). When carriers discriminate phone calls based on the
carrier of the receiver, the price difference between the intra-network and inter-network
calls creates network externalities among consumers of different carriers. Termination-
based price discrimination essentially makes the networks less compatible. When the
intra-network price is lower than the inter-network price, a consumer would like to sub-
scribe to the larger network, ceteris paribus. As a result, the subscription choice depends
on the belief about the group-specific market shares {sn

k , k = 1, 2, n = 1, 2}. I assume
consumers have rational expectation about the market shares for the remaining of this
paper.

Assumption 1 (Rational Expectation). Consider the subscription stage. For any given
price scheme P = (t1, p11, p12; t2, p22, p21), the expected market distribution equals the
realized market distribution in equilibrium, sn

ik = sn
k(P ), for all i ∈ C, k = 1, 2, and

n = 1, 2.

For each group Cn, the average utility of subscribing to network k ∈ {1, 2} for a given
price scheme P is

Un
k (P ; sn

k , sm
k , sn

l , s
m
l ) ≡ sn

kv
G(pkk) + sm

k vN(pkk) + sn
l v

G(pkl) + sm
l vN(pkl) − tk, (10)

where m = 3 − n and l = 3 − k. Under the logit specification, the number of carrier-k
subscribers among group Cn satisfies

sn
k = µn ×

exp[σUn
k (P ; sn

k , s
m
k , sn

l , sm
l )]

exp[σUn
k (P ; sn

k , s
m
k , sn

l , sm
l )] + exp[σUn

l (P ; sn
k , sm

k , sn
l , s

m
l )]

. (11)

for each k = 1, 2, n = 1, 2.
The following proposition shows the existence of a rational expectation equilibrium.

Proposition 3. For any given price scheme P , there exists a rational expectation equi-
librium of the subscription decisions, {sn

k , k = 1, 2, n = 1, 2}.

Proof. Let ∆ ≡ {(sn
k)k=1,2, n=1,2 : sn

1 + sn
2 = µn; sn

k ≥ 0,∀k, n}. ∆ is the set of all possible
market distributions. Since {(sn

k)k=1,2 : sn
1 + sn

2 = µn; sn
k ≥ 0,∀k} is a simplex in R2 for

each n, it is a nonempty, convex, and compact space. Because ∆ is the product of two
such spaces, it is nonempty and convex. Moreover, by Tychonoff theorem, ∆ is compact.

Fix the price scheme P . Equations (10) and (11) define a continuous mapping from ∆
onto itself. Therefore, by Brouwer’s fixed point theorem, the mapping has a fixed point
s ∈ ∆. This fixed point is a rational expectation equilibrium.

Because s1
2 = µ1 − s1

1 and s2
2 = µ2 − s2

1, and the sizes of consumer groups (µ1, µ2)
are fixed, the market shares in equilibrium can be expressed by two variables (s1

1, s
2
1) ∈

[0, µ1]× [0, µ2]. Consequently, with some abuse of notation, the average utility level (10)
can be rewritten as

Un
k (P ; s1

1, s
2
1)=

[

vG(pk1) −vG(pk2)
]

sn
1+vG(pk2)µ

n +
[

vN(pk1) −vN(pk2)
]

sm
1 +vN(pk2)µ

m−tk

12



for k = 1, 2, n = 1, 2, and m = 3−n. For a given price scheme P , the rational expectation
equilibria of carrier 1’s market shares are fixed points of the mapping T : [0, µ1]×[0, µ2] →
[0, µ1] × [0, µ2]

T

[

s1
1

s2
1

]

=

[

µ1 ×
exp[σU1

1
(P ;s1

1
,s2

1
)]

exp[σU1

1
(P ;s1

1
,s2

1
)]+exp[σU1

2
(P ;s1

1
,s2

1
)]

µ2 ×
exp[σU2

1
(P ;s1

1
,s2

1
)]

exp[σU2

1
(P ;s1

1
,s2

1
)]+exp[σU2

2
(P ;s1

1
,s2

1
)]

]

.

This operator maps the belief of the distribution to the actual distribution.
Define an equilibrium (s1

1, s
2
1) to be stable if it is a stable fixed point of the mapping

T . In other words, if the belief is slightly deviated from an equilibrium, applying the
operator T recursively would converge to the original equilibrium.

Lemma 2 (Stability). The subscription distribution (s1
1, s

2
1) is stable if and only if the

following conditions hold.

(

1 −
σs1

1s
1
2

µ1
△vG(P )

)(

1 −
σs2

1s
2
s

µ2
△vG(P )

)

>
σs1

1s
1
2

µ1

σs2
1s

2
2

µ2
(△vN(P ) )2,

(

1 +
σs1

1s
1
2

µ1
△vG(P )

)(

1 +
σs2

1s
2
s

µ2
△vG(P )

)

>
σs1

1s
1
2

µ1

σs2
1s

2
2

µ2
(△vN(P ) )2, and

− 1 <
1

2

(

σs1
1s

1
2

µ1
+

σs2
1s

2
2

µ2

)

△vG(P ) < 1,

where △vG(P ) ≡ vG(p11)+vG(p22)−vG(p12)−vG(p21) and △vN(P ) ≡ vN(p11)+vN(p22)−
vN(p12) − vN(p21).

Proof. A necessary and sufficient condition for stability is that the radii of the eigenvalues
of the Jacobian of T are both less than 1. The characteristic function of the Jacobian is

Ψ(λ) =

[

σs1
1s

1
2

µ1
△vG(P ) − λ

] [

σs2
1s

2
2

µ2
△vG(P ) − λ

]

−
σs1

1s
1
2

µ1
△vN(P )

σs2
1s

2
2

µ2
△vN(P )

= λ2 −

[

σs1
1s

1
2

µ1
+

σs2
1s

2
2

µ2

]

△vG(P )λ +
σs1

1s
1
2

µ1

σs2
1s

2
2

µ2

[

(△vG(P ) )2 − (△vN(P ) )2
]

.

Since

[

σs1
1s

1
2

µ1
+

σs2
1s

2
2

µ2

]2

(△vG(P ))2 − 4
σs1

1s
1
2

µ1

σs2
1s

2
2

µ2

[

(△vG(P ) )2 − (△vN(P ) )2
]

> 0,

both roots of Ψ(λ) = 0 are real numbers. Therefore,

Ψ(1) > 0,

Ψ(−1) > 0, and

−1 <
1

2

(

σs1
1s

1
2

µ1
+

σs2
1s

2
2

µ2

)

△vG(P ) < 1.

are the necessary and sufficient conditions for the absolute value of the roots to be less
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than one.

To simplify the analysis, suppose the ratio of the surplus generated from calling a
receiver within the same peer group and the utility from calling other receiver satisfies
the following relation.9

Assumption 2. γ ≡ vN(p)/vG(p) is a constant for all price p.

Obviously, 0 ≤ γ ≤ 1. The inverse of the ratio γ represents the strength of the peer
effects. When γ = 0, consumers receive no utility from people outside their own group.
On the contrary, when γ = 1, peer effects vanish.

Under rational expectation, the market shares among group C1 has to satisfy

s1
1 = µ1 ×

exp[σU1
1 (P ; s1

1, s
2
1)]

exp[σU1
1 (P ; s1

1, s
2
1)] + exp[σU1

2 (P ; s1
1, s

2
1)]

. (12)

When △vN(P ) 6= 0, this equation can be equivalently expressed as

s2
1 =

− log
(

µ1

s1

1

− 1
)

σ△vN(P )
−

1

γ
s1
1 +

[vG(p22) − vG(p12)]µ
1 + [vN(p22) − vN(p12)]µ

2 + (t1 − t2)

△vN(P )
.

(13)
For any given brief of s2

1, this equations solve for the number of consumers among group
C1 who subscribe to carrier 1 in a rational expectation equilibrium. Because of network
externalities among the group members, there might be multiple solutions.

The right hand side of equation (13) is a function of s1
1.

10 The numerator of the first
term, − log(µ1/s1

1 − 1), is strictly increasing. It goes to −∞ as s1
1 → 0 and to +∞ as

s1
1 → µ1. The second term is a downward-sloping linear function of s1

1, and the final
term is a fixed value for any given price scheme. In Figure 1, I demonstrate four possible
shapes of the graph of this function. When △vN(P ) < 0, it is strictly decreasing in s1

1.
When △vN(P ) = 0, s1

1 does not depend on s2
1. Finally, when △vN(P ) > 0, the right hand

side of (13) may either strictly increase in s1
1 or contain a downward-sloping region.11 It

depends on the magnitude of σ△vN(P ) relative to γ.
Likewise, for any subscription distribution among group C1, the market shares in

group C2 satisfies the following condition under rational expectation.

s2
1 = µ2 ×

exp[σU2
1 (P ; s1

1, s
2
1)]

exp[σU2
1 (P ; s1

1, s
2
1)] + exp[σU2

2 (P ; s1
1, s

2
1)]

. (14)

Similar to (13), I can express s1
1 as a function of s2

1. The rational expectation Nash
equilibria in the subscription stage are the market shares (s1

1, s
2
1) which satisfy conditions

(12) and (14) together. Figure 2 demonstrates several possible scenarios of rational
expectation equilibria. All intersections on the graphs are equilibria at the subscription
stage. When △vN(P ) ≥ 0, multiple equilibria may exist.

9Most results remains true even then γ is not a constant. Only the results in Lemma 4 and Proposition
5 rely on this sufficient condition.

10To be more rigorous, it is a function of s1

1
when △vN (P ) 6= 0.

11When it exists, the region is a connected subset of the open interval (0, µ1).
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Figure 1: The market share among group 1 for a given share among group 2
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Figure 2: Rational expectation equilibria for subscription
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The following lemma provides a necessary condition for a stable equilibrium.

Lemma 3. When △vG(P ) > 0, the slope of the graph for equation (12) on the (s1
1, s

2
1)

space is positive for a stable equilibrium. The corresponding result holds for the graph for
equation (14) on the (s2

1, s
1
1) space.

Proof. Without loss of generality, I only prove the result for the slope of the graph for
the equation (12) on the (s1

1, s
2
1) space. The other one holds by symmetry. According to

the first condition stated in Lemma 2,

(

µ1

σs1
1s

1
2△vN(P )

−
1

γ

)(

µ2

σs2
1s

2
2△vN(P )

−
1

γ

)

> 1.

Combine this condition with the third condition in Lemma 2. It is obvious that the slope
of equation (13), µ1/[σ△vN(P )s1

1(µ
1 − s1

1)] − 1/γ, is positive.

The black dots on the graphs in Figure 2 are stable equilibria. It is possible to have
up to four stable equilibria as illustrated by the two right graphs. The stable equilibria
can be categorized into two types:12 pooling and separating equilibria. For a pooling
equilibrium, market shares are the same across different consumer groups, s1

k = s2
k. For

a separating equilibrium, one group of consumers flocks to one carrier while the other
group flocks to the other carrier, s1

k 6= s2
k. When △vN(P ) < 0, however, there is only one

equilibrium, which is a stable pooling equilibrium.
Multiple stable equilibria exist when σ△vN(P ) is large enough relative to γ. Be-

cause △vN(P ) increases in intra-network discounts, and γ decreases in the peer effects of
network externalities, I have the following result.

Proposition 4. When the surplus of intra-network prices is smaller than that of inter-
network prices (△vN(P ) < 0), there is a unique stable pooling equilibrium at the sub-
scription stage.

On the other hand, when the surplus of intra-network prices is greater than that of
inter-network prices (△vN(P ) > 0), there are up to four stable equilibria. It is more likely
to have multiple stable equilibria at the subscription stage when (a) the substitutability σ
between carrier is larger, (b) the intra-network discounts are larger, or (c) the peer effects
are stronger.

When there are multiple equilibria, it is inappropriate to restrict our attention to the
symmetric equilibrium sn

k = µn/2 for all k = 1, 2 and n = 1, 2. For example, consider
the case shown in the lower right graph of Figure 2. Both carriers offer identical price
scheme in this example. Although the symmetric solution sn

k = µn/2 is an equilibrium
for the subscription decision, it is unstable.

Lemma 4. Under Assumption 2, when △vN(P ) > 0, the graph of the rational expectation
equilibrium condition for s1

1, equation (12), moves upward in the space (s1
1, s

2
1) ∈ [0, µ1]×

[0, µ2] as any of carrier 1’s price components (t1, p11, p12) increases. In particular, this

12This definition is for the case µ1 = µ2 = 0.5. When consumer groups are of different sizes, a pooling
equilibrium still refers to an equilibria where a carrier is dominant among both groups, but the market
shares would differ across groups.
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movement is a parallel shift for change of t1. When △vN(P ) < 0, the graph moves
downward when any of the price components increases.

Proof. See Appendix B

As a result of Lemma 4, I can perform comparative statics at a stable equilibrium for
small changes in the price schemes.

Proposition 5. Under Assumption 2, the number of consumers subscribing to carrier
k in either group declines locally at a stable equilibrium of subscription if the carrier
marginally increases the subscription fee tk, the intra-network price pkk, or the inter-
network price pkl.

Proof. This result follows from Lemma 3 and Lemma 4 immediately.

The properties mentioned in Proposition 5 do not hold for an unstable equilibrium.
A carrier may marginally increase its market shares by raising its price at an unstable
equilibrium. The analyses in this paper rule out these equilibria.

6.2 Pooling Equilibria

Now, I consider the pricing decisions under the belief of a pooling equilibrium. To elim-
inate the effects due to different group sizes, suppose the two consumer groups are of
the same size, µ1 = µ2 = 1/2. A pooling equilibrium has s1

k = s2
k for k = 1, 2. Since

△vN(P ) = γ△vG(P ), the stability condition in Lemma 2 implies

2(s1
1s

1
2)(1 + γ)

∣

∣△vG(P )
∣

∣ <
1

σ
. (15)

The first order partial derivatives of carrier k’s profit can be written as

∂Πk

∂tk
= 2

∂s1
k

∂tk

{

2s1
kπ

G(pkk) + 2s1
kπ

N(pkk) + (s1
l − s1

k)[π
G(pkl) − φG(pkl) + φG(plk)]

+ (s1
l − s1

k)[π
N(pkl) − φN(pkl) + φN(plk)] + tk − f

}

+ 2s1
k,

∂Πk

∂pkk

= 2
∂s1

k

∂pkk

{

2s1
kπ

G(pkk) + 2s1
kπ

N(pkk)+(s1
l − s1

k)[π
G(pkl) − φG(pkl) + φG(plk)]

+(s1
l − s1

k)[π
N(pkl) − φN(pkl) + φN(plk)]+tk−f

}

+ 2(s1
k)

2[qG(pkk) + (pkk − c)qG′

(pkk)] + 2(s1
k)

2[qN(pkk) + (pkk − c)qN ′

(pkk)],
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and

∂Πk

∂pkl

= 2
∂s1

k

∂pkl

{

2s1
kπ

G(pkk) + 2s1
kπ

N(pkk)+(s1
l − s1

k)[π
G(pkl) − φG(pkl) + φG(plk)]

+ (s1
l − s1

k)[π
N(pkl) − φN(pkl) + φN(plk)]+tk−f

}

+ 2s1
ks

1
l [q

G(pkl) + (pkl − cO − a)qG′

(pkl)] + 2s1
ks

1
l [q

N(pkl) + (pkl − cO − a)qN ′

(pkl)].

The partial derivatives of s1
k can be computed from (12) and (14) by using the Implicit

Function Theorem.

∂s1
k

∂tk
= −

σ
1
s1

k

+ 1
s1

l

− σ(1 + γ)△vG(P )
,

∂s1
k

∂pkk

= −
σ[qG(pkk) + qN(pkk)]s

1
k

1
s1

k

+ 1
s1

l

− σ(1 + γ)△vG(P )
,

∂s1
k

∂pkl

= −
σ[qG(pkl) + qN(pkl)]s

1
l

1
s1

k

+ 1
s1

l

− σ(1 + γ)△vG(P )
.

According to (15), the denominator 1
s1

k

+ 1
s1

l

− σ(1 + γ)△vG(p) is positive for a stable

equilibrium. Plugging these partial derivatives into the first order conditions, I obtain
the marginal-cost pricing strategy for both carriers.

{

pkk = c

pkl = cO + a,
(16)

for k = 1, 2, l = 3 − k, and the subscription fee tk satisfies

−σ
(sn

l − sn
k)[φG(cO + a) + φN(cO + a)] + tk − f

1
s1

1

+ 1
s1

2

− σ∆∗
+ sn

k = 0, (17)

where ∆∗ ≡ 2[vG(c) + vN(c) − vG(cO + a) − vN(cO + a)] is a constant.
The conditions in (16) show that the unit prices are equal to the termination-specific

marginal costs. In addition, carrier k chooses the subscription fee tk that satisfies equation
(17). As a result,







(s1
2 − s1

1)[φ
G(cO + a) + φN(cO + a)] + t1 − f = 1

σ

(

1 +
s1

1

s1

2

)

− s1
1∆

∗

(s1
1 − s1

2)[φ
G(cO + a) + φN(cO + a)] + t2 − f = 1

σ

(

1 +
s1

2

s1

1

)

− s1
2∆

∗
(18)

are necessary conditions for a Nash equilibrium of (t1, t2) at the pricing stage.

Lemma 5. Consider Nash equilibria in the pricing stage. The symmetric pricing decision
t1 = t2 is the unique solution to equations (18) when

σ
{

3∆∗ − 4(1 + γ)φG(cO + a)
}

≤ 24. (19)
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On the other hand, there are multiple solutions to the system of equations (18) if the
inequality (19) does not hold.

Proof. See Appendix C

When the inequality (19) does not hold, there exists subscription fees t1 6= t2 which
satisfy both carriers’ first order conditions and constitute a Nash equilibrium at the
pricing stage. The market shares are asymmetric, sn

1 6= sn
2 . Nevertheless, these pric-

ing decisions are profit-maximizing behaviors only when the profit functions are locally
concave for both carriers. The following lemma describes its condition.

Lemma 6. An equilibrium satisfies the second order condition of the carrier k’s profit
function if and only if

σ
[

∆∗ − (1 + γ)φG(cO + a)
]

<
1

2s1
1

+
1

2s1
2

+ min

{

1

(2s1
1)

2
,

1

(2s1
2)

2

}

. (20)

Proof. See Appendix D

Proposition 6. Suppose consumer groups are of the same size and the market shares are
believed to be the same across groups at the subscription stage in the sense that s1

k = s2
k

for each carrier k. When carriers can charge different prices based on the termination
of a call, it is optimal to set the termination-specific usage price equals to the effective
marginal cost of a call, pkk = c and pkl = cO + a.

When the interconnection markup is nonnegative (a− cT ≥ 0), the symmetric pricing
strategy, tk = f + 2/σ−∆∗/4 for k = 1, 2, is the unique equilibrium. Each carrier serves
half of the market, sn

k = 1/4 for k = 1, 2, n = 1, 2. The profit is 1/σ + [(1 + γ)φG(cO +
a) − ∆∗]/8 for both carriers.

On the other hand, when the interconnection markup is negative (a − cT < 0), it is
possible to have asymmetric pricing strategies, t1 6= t2, in addition to the symmetric one,
t1 = t2. The market shares differ across carriers, sn

1 6= sn
2 , under asymmetric pricing

strategies.

Proof. I have shown in equation (16) that both carriers choose marginal-cost pricing for
intra-network and inter-network calls, respectively. It remains to show the decision on
the subscription fee tk for k = 1, 2.

Consider the case where the interconnection markup is zero or positive (a − cT ≥ 0).
Without loss of generality, suppose t1 > t2. Then, (s1

1, s
1
2) is an asymmetric equilibrium

with s1
1 < s1

2. Let x = 1/4− s1
1, which lies in (0, 1/4). From the proof of Lemma 5, I have

1

3

{

1

x
log

( 1
4

+ x
1
4
− x

)

+
1

1
16

− x2

}

= σ

{

∆∗ −
4

3
(1 + γ)φG(cO + a)

}

< σ
{

∆∗ − (1 + γ)φG(cO + a)
}

<
1

2(1
4
− x)

+
1

2(1
4
− x)

+
1

[2(1
4

+ x)]2
,

The last inequality follows from Lemma 6. However, the last term is always smaller than
the first term for any x ∈ (0, 1/4). This is a contradiction. Therefore, there exists no
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Table 1: Example of multiple pooling equilibria

Equilibrium 1 Equilibrium 2 Equilibrium 3

(t1, t2) (20.348, 17.022) (18.602, 18.602) (17.022, 20.348)
(sn

1 , s
n
2 ) (0.200, 0.300) (0.250, 0.250) (0.300, 0.200)

(Π1, Π2) (1.339, 3.013) (2.051, 2.051) (3.013, 1.339)

Notes: σ(1 + γ)φG(cO + a) = −50, σ∆∗ = −58.408, and f = 2.

asymmetric equilibrium. It is impossible for these two carriers to set different fees t1 6= t2
in equilibrium.

For the symmetric equilibrium with t1 = t2, it is clear that the market share is sn
k = 1/4

for k = 1, 2 and n = 1, 2. The subscription fee is tk = f + 2/σ − ∆∗/4. Therefore, the
profit is 1/σ + [(1 + γ)φG(cO + a) − ∆∗]/8 for each carrier.

On the other hand, when the interconnection markup is negative (a − cT < 0), the
conditions in Lemma 5 and Lemma 6 can be satisfied simultaneously. Carriers can choose
different subscription fees, t1 6= t2, in a Nash equilibrium.

The following example demonstrates the existence of an asymmetric Nash equilibrium.

Example 1. Suppose σ(1 + γ)φG(cO + a) = −50 and σ∆∗ = −58.408. The fixed cost is
f = 2. Then there are three possible equilibria for the choice of subscription fees. Their
subscription fee, market share, and profit are summarized in Table 1.

It is easy to find a demand function which satisfies the conditions, σ(1+γ)φG(cO+a) =
−50 and σ∆∗ = −58.408. For instance, c = 1.430, cO + a = 0.430, qG(p) = 29.204 p−0.8,
γ = 0, and σ = 1.

The results in Proposition 6 do not rely on the peer effects. In fact, when γ = 1,
all consumers are homogeneous. In the Hotelling model of Laffont et al. (1998b), the
usage prices chosen by firms are also termination-specific marginal costs. The two firms
essentially compete in one dimension, namely the subscription fees. Laffont et al. only
focus on the symmetric choice of the subscription fees t1 = t2. Here, I also consider
conditions for multiple Nash equilibria in the pricing game. As Example 1 shows, the
subscription fees may differ across firms even though their cost structure is assumed to
be identical. This would result in asymmetric stable market shares in the subscription
stage. Hence, restricting the attention to symmetric solutions is inappropriate.

Proposition 7. Suppose consumer groups are of the same size. Consider a pooling equi-
librium. The profit is decreasing in the interconnection fee whenever the interconnection
markup is nonnegative (a − cT ≥ 0).

Proof. From Proposition 6, the profit can be expressed as

Πk =
1

σ
+

1 + γ

8

[

(a − cT )qG(a + cO) + 2vG(a + cO) − 2vG(c)
]

.
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Its derivative with respect to a is

∂Πk

∂a
=

1 + γ

8

[

(a − cT )qG′

(a + cO) − qG(a + cO)
]

,

which is always negative whenever a ≥ cT .

As a result of this proposition, when carriers can negotiate the interconnection charge
a, it is always optimal to choose a < cT . By doing so, they will offer discounts for inter-
network calls in the retail market. Therefore, competition for subscribers is softened.
This conclusion is identical to Gans and King (2001).

6.3 Separating Equilibria

The market shares of a carrier differ across groups in a separating equilibrium, s1
k 6= s2

k. A
separating equilibrium can exist only when there are multiple equilibria in the subscription
stage. Consequently, I only need to consider a − cT ≥ 0. Suppose the peer groups are of
the same size µ1 = µ2 = 1/2 and consider a separating equilibrium, s1

1 = s2
2 and s2

1 = s1
2.

Without loss generality, assume s1
1 > s1

2.
Contrary to a pooling equilibrium, the first order conditions do not hold for marginal

cost pricing (pkk = c and pkl = cO + a). Consider an equilibrium with p11 = p22 and
p12 = p21. The first order condition of carrier k’s profit with respect to the subscription
fee tk can be simplified as

−
πG(pkk) + πN(pkk) + 2(tk − f)

1
2σs1

1
s1

2

− ∆(P )
+

1

2
= 0.

The partial derivatives with respect to the unit prices are

∂Πk

∂pkk

=
(s1

k−s1
l )

2
[

qG(pkk)−qN(pkk)
]

{[qG(pkl)−qN(pkl)](pkl−c)−
[

qG(pkk)−qN(pkk)
]

(pkk−c)}
1

2σs1

1
s1

2

−△vG + △vN

+

[

(s1
k)

2+(s2
k)

2−
1

8

]

[qG(pkk)−qN(pkk)]+(pkk−c){[(s1
k)

2+(s2
k)

2]gG′

(pkk)+2s1
ks

2
kq

N ′

(pkk)}

and

∂Πk

∂pkl

=
(s1

k−s1
l )

2[qG(pkl)−qN(pkl)]{[q
G(pkk)−qN(pkk)](pkk−c)−[qG(pkl)−qN(pkl)](pkl−c)}

1
2σs1

1
s1

2

−△vG + △vN

−

[

(s1
k)

2+(s1
l )

2−
1

8

]

[qG(pkl)−qN(pkl)]+(pkl−cO−a){2s1
ks

2
kq

G′

(pkl)+[(s1
k)

2+(s2
k)

2]qN ′

(pkl)}.

Since qG(pkk) > qN(pkk), qG(pkl) > qN(pkl) > 0, and (s1
k)

2 + (s1
l )

2 > 1/8, the first order
condition ∂Πk/∂pkk = 0 implies pkk ≤ c and pkl < c cannot jointly hold. When the two
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first order conditions are combined, I obtain the following necessary condition.

(pkk − c){[(s1
k)

2 + (s2
k)

2]qG′

(pkk) + 2s1
ks

2
kq

N ′

(pkk)}

qG(pkk) − qN(pkk)

+
(pkl − cO − a){2s1

ks
2
kq

G′

(pkl) + [(s1
k)

2 + (s2
k)

2]qN ′

(pkl)}

qG(pkl) − qN(pkl)
= 0. (21)

It is impossible to have

{

pkk < c
plk < cO + a

or

{

pkk > c
plk > cO + a

.

Moreover, equation (21) implies that pkk = c if and only if pkl = cO + a. The first order
conditions do not hold for this pricing strategy. Consequently, the usage prices must
satisfy

{

pkk > c
plk < cO + a

.

Proposition 8. Suppose the consumer groups are of the same size and the market shares
are believed to be a separating equilibrium with s1

1 = s2
2 and s1

2 = s2
1. The optimal usage

prices are different from the marginal costs of a call. While pkk > c, pkl < cO + a.

The following example illustrates the existence of a separating equilibrium.

Example 2. Suppose vG(p) = 100 exp(−0.8p), vN(p) = 0, c = 3, a− cO = 8, σ = 1, and
f = 0. When carriers expected consumers to coordinate to a separating stable equilibrium
in the subscription stage, both of them choose unit prices pkk = 3.4553, pkl = 7.7692,
and the subscription fee t = 3.8966. The market shares are s1

1 = s2
2 = 0.4669 and

s1
2 = s2

1 = 0.0331. This pricing strategy satisfy the first order conditions, ∂Πk/∂tk =
∂Πk/∂pkk = ∂Πk/∂pkl = 0 and its Hessian is





−0.3325 −1.5530 0.0255
−0.1530 −4.6908 0.0226
0.0255 0.0226 −0.0032



 ,

which is negative definite. Their profits are Π1 = Π2 = 2.4749. Furthermore, the profit
increases in the exogenously determined access charge a. ∂Πk/∂a = 0.270 for k = 1, 2.

Consequently, when peer effects are incorporated into the network effect model. The
rule of marginal-cost pricing ceases to hold in a separating equilibrium. Even when
carriers are identical in their cost structure and offer the same price scheme, they may
be dominant among different consumer groups.

Contrary to a pooling equilibrium, the profit of carriers may increase in the inter-
connection charge. Therefore, when this charge is negotiated by carriers, they have an
incentive to choose a higher interconnection fee. As Example 2 demonstrates, the intra-
network price could be lower than inter-network price at a stable equilibrium.
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7 Conclusion

I analyze network externalities with peer effects. When termination-based price discrim-
ination is not allowed, the peer effects would simply affect the taste for the service. A
consumer in a larger peer group has stronger taste because there are more friends in her
group to make phone calls. If all groups are of the same size, consumers are essentially
homogeneous. The results in my model is the same as Laffont et al. (1998a). If the group
size varies across consumers, it is equivalent to consumers with vertically heterogeneous
taste as in Dessein (2004).

When carriers can discriminate phone calls based on the terminating network, network
externalities across carriers have substantial effects on the market. There might be multi-
ple stable rational expectation equilibria if the interconnection charge is greater than the
marginal cost of terminating a call. The realized one would depend on consumers’ beliefs.
For a pooling equilibrium, the market shares are identical across peer groups. Carriers
use marginal cost pricing and compete in the subscription fee. They may choose different
subscription fees in a stable equilibrium. On the other hand, for a separating equilibrium,
carriers specialize to serve different consumer groups even though they are identical ex
ante. The profit-maximizing pricing strategy is different from marginal cost pricing. The
intra-network price is higher than its marginal cost, but the inter-network price is lower
than the perceived marginal cost. While carriers prefer a lower interconnection fee in
anticipation of a pooling equilibrium, they could favor a higher interconnection fee in
anticipation of a separating equilibrium. There is no clear relation between the profit
and this fee. My model provides a reasonable explanation for intra-network discounts
when carriers can negotiate the interconnection fee and compete in two-part tariffs to
maximizing their profits.

Carriers are assumed to be identical ex ante in this paper. An extension of the
model is to consider an entrant competing with an incumbent. The incumbent has some
locked-in customers who have a long-term contract with the carrier and cannot switch
to the entrant. Intra-network discounts give the incumbent an advantage through the
installation base.

A Proof of Proposition 1

Uniqueness and Existence of a Symmetric Equilibrium. I need to show that there is no Nash
equilibrium other than the symmetric one, (sn

1 , sn
2 ) = (1/4, 1/4) for n = 1, 2. Denote sk ≡

s1
k + s2

k, v(p) ≡ vG(p)/2 + vN (p)/2, q(p) ≡ qG(p)/2 + qN (p)/2, π(p) ≡ πG(p)/2 + πN (p)/2,
φ(p) ≡ φG(p)/2 + φN (p)/2 and Uk ≡ U1

k = U2
k .

When a ≤ cT , it is impossible to have multiple equilibria regardless the magnitude of (a−cT )
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and σ. The difference of equation (8) evaluated at k = 1 and at k = 2 is

t1 − t2 =
1

σs2
−

1

σs1
+ [π(p2) − π(p1)]

=
1

σs2
−

1

σs1
+

{
∫ p2

p1

[q(p) + (p − c)q′(p)] dp

}

=
1

σs2
−

1

σs1
+

∫ p2

p1

(p − c)q′(p) dp + [v(p1) − v(p2)] .

Therefore,

log(s1) − log(s2) = σU1 − σU2

= σ [v(p1) − t1] − σ [v(p2) − t2]

=
1

s1
−

1

s2
− σ

∫ p2

p1

[

(p − c)q′(p)
]

dp.

Consider the case δ ≡ a − cT ≤ 0. Without loss of generality, assume s1 < 1/2 < s2. The
condition (7) implies p2 ≥ p1. As a result, the right hand size of the above equation is strictly
positive. Nonetheless, the left hand side of the equation is always negative for s1 < 1/2 < s2.
This is a contradiction.

When a > cT , the uniqueness holds only when (a − cT ) or σ is small. The choice of the
subscription fee tk can be equivalently viewed as the choice of the average utility level Un

k . Then
tk = v(pk)−

n
k . Given the rival’s pricing decision, the profit can be express as a function of Un

k

and pk.

Πk(pk, Uk) = sk(Uk, Ul) [π(pk) + v(pk) − Uk − f + sl(Uk, Ul) [φ(pl) − φ(pk)]] .

The first order condition with respect to pk implies marginal cost pricing, pk = c + sl(a − cT ).
Moreover, the first order condition with respect to Uk is

∂Πk

∂Uk

= σsksl [π(pk) + v(pk) − Uk − f + (sl − sk)[φ(pl) − φ(pk)]] − sk = 0.

Since both carriers would choose marginal cost pricing, the above condition implicitly defines
Uk as a function of Ul. The slope of of this reaction function Uk(Ul) is

dUk

dUl

=
2σsksl[φ(pl) − φ(pk)] + sk

sl
+ (a − cT )σ [(pk − c)q′(pk) − 2(sl − sk)(a − cT )q(pl)]

1+ 2σsksl[φ(pl) − φ(pk)] + sk

sl
+ (a − cT )σ [(pk − c)q′(pk) − 2(sl −sk)(a −cT )q(pl)]

When the absolute values of the slopes of U1(U2) and U2(U1) are both less than 1, the intersection
of the two reaction functions is a stable equilibrium. Furthermore, if the absolute slopes are
both globally less than one, there is only one intersection. Therefore, a sufficient condition for
the uniqueness is

2σsksl[φ(pl) − φ(pk)] +
sk

sl

+ (a − cT )σ
[

(pk − c)q′(pk) − 2(sl − sk)(a − cT )q(pl)
]

> −
1

2
.
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for any equilibrium distribution (s1, s2). Equivalently,

sk

sl

+ 2σ(a − cT )[q(pl) − q(pk)] + σ(a − cT )2slq
′(pk) − 2σ(a − cT )2(sl − sk)q(pl) > −

1

2
.

Consequently, the condition hold when (a − cT ) or σ is small.
For the symmetric equilibrium, I have s1 = s2 and p1 = p2. Therefore, the symmetric

equilibrium is stable whenever

1 +
1

2
σ(a − cT )2q′

(

c +
a − cT

2

)

> −
1

2
.

I now prove the existence of a symmetric equilibrium by showing that the profit function is
concave. Given the rival’s price scheme, the profit can be expressed as a function of Un

k .

Π̂k = sk(Uk, Ul) [v(c + sl(Uk, Ul)δ) − Uk − f + slδq(pl)] ,

where δ ≡ a − cT . Therefore,

∂Π̂k

∂Uk

= σsksl[v(c + slδ) − Uk − f + slδq(pl)] + sk[σskslδq(c + slδ) − 1 − σskslδq(pl)]

and

∂2Π̂k

∂U2
k

= σsksl(sl − sk)[v(c + slδ) − Uk − f + slδq(pl)]

+ 2σsksl[q(c + slδ)σ δ slsk − 1 − σ sksl (a − cT ) q(pl)]

+ sk[sksl(sl − sk)δq(c + slδ) − (σsksl)
2δ2q′(c + slδ) − σ2sksl(sl − sk)δq(pl)],

When sk = sl = 1/2, p1 = p2.

∂2Π̂k

∂U2
k

= −
σ

2
−

σ2

32
(a − cT )2q′

(

c +
a − cT

2

)

.

Therefore, when |a−cT | or σ is small enough, there exist a symmetric equilibrium s1 = s2 = 1/2.
Moreover, this is the unique equilibrium.

B Proof of Lemma 4

Proof. Without loss of generality, consider only the price change of carrier 1.
The result for t1 can be easily established from (13) and this holds even without Assumption

2. For any given s1
1, the first two terms on the right-hand side are independent of t1, and the

third term is an affine function of t1. The coefficient on t1 is positive if and only if △vN (P ) > 0.
Hence, increasing t1 shifts the graph upward if and only if △vN (P ) > 0.

Under Assumption 2, the right-hand side of equation (13) can be expressed as the following
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two parts.

s2
1 =





− log
(

µ1

s1

1

− 1
)

△vN (P )



+

[

−
s1
1

γ
+

[vG(p22) − vG(p12)]µ
1 + [vN (p22) − vN (p12)]µ

2 + t1 − t2
△vN (P )

]

.

(22)
The first part equals 0 at s1

1 = µ1/2 and goes exponentially to −∞ and +∞ as µ1
1 approaches

0 and s1, respectively. The second part is an affine function of s1
1 with a negative slope.

As p11 increases, the denominators of the first and the third terms in equation (22) decrease.
When △vN (P ) > 0, the first term magnifies proportionally away from the s1

1-axis. The intercept
of the affine function in the second part also expands by the same ratio, but the slope is
unchanged. The change on equation (22) is the sum of the two parts. Both changes are positive
for s1

1 > µ1/2. As for s1
1 < µ1/2, whenever equation (22) takes values on [0, µ2], the positive

change is greater than the negative change in the absolute values. Therefore, the graph of
equation (22) moves up inside the box [0, µ1] × [0, µ2]. On the other hand, when △vN (P ) < 0,
the first part and the intercept shrink by the same ratio. It can be similarly shown that the
total change is negative whenever equation (22) takes values on s2

1 > 0.
Next, claim that the change in the right-hand side of (22) is a decreasing function of s1

1 for
a given increase of p12. Because the denominator of the first term in equation (22) increases,
its graph shrinks (expands) proportionally with respect to the s1

1-axis when △vN (P ) > (<) 0.
In either case, the change decreases in s1

1. The change in p12 causes a parallel shift of the affine
function. Therefore, the total change of equation (22) is a decreasing function of s1

1 regardless
the sign of △vN (P ).

Claim that the graph always moves upward inside the box [0, µ1]× [0, µ2] as p12 increases if
and only if △vN (P ) > 0. Let me calculate the intersection of the graph with the line s2

1 = µ2.
When s2

1 = µ2, equation (12) can be written as

log

(

µ1

s1
1

− 1

)

= −△vG(P )s1
1 + [vG(p22) − vG(p12)]µ

1 + [vN (p21) − vN (p11)]µ
2 + t1 − t2. (23)

Denote the affine function of s1
1 on the right-hand side by F (s1

1). Observe that F (µ1) =
[vG(p21)− vG(p11)]µ

1 + [vN (p21)− vN (p11)]µ
2 + t1 − t2, which is independent of p12. Increasing

p12 rotates the graph of F clockwise along the point (µ1, F (µ1)) (the diamond point on Figure
3). As the graph illustrates, F moves from the red solid line to the green dashed line. Hence,
the first and the last intersections (solid circles on the graph) move to the left (open circles on
the graph) while the second intersection moves to the right (from the solid square to the open
square). (When there is only one intersection, the same argument shows the only intersection
must move left.) Therefore, the first and the last intersections of the equation (22) with the line
s2
1 = µ2 move left on Figure 1. This implies that the graph of equation (22) (the curve on Figure

1) must move upward (downward) at these intersection points. This is sufficient to prove the
entire graph moves upward (downward) inside the region [0, µ1] × [0, µ2] for △vN (P ) > (<) 0
because I have shown the total movement is a decreasing function of s1

1.

C Proof of Lemma 5

Proof. When t1 = t2 = f + 2
σ

+ ∆∗

4 , I obtain a symmetric equilibrium s1
1 = s2

1 = 1/4. Obviously,
this solution satisfies condition (18). To find out any other equilibrium, let s1

1 = s2
1 = 1/4 − x

and s1
2 = s2

2 = 1/4 + x. Without loss of generality, consider 0 < x < 1/4. Because of the logit
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Figure 3: Solutions for equation (23)

assumption on the idiosyncratic preferences εik, I have

log

(

1
4 + x
1
4 − x

)

= xσ∆∗ + σ(t1 − t2).

Together with the conditions (18), x has to satisfy

log

(

1
4 + x
1
4 − x

)

+
x

1
16 − x2

− xσ
{

3∆∗ − 4(a − cT )[qG(cO + a) + qN (cO + a)]
}

= 0.

Since x > 0,

1

x
log

(

1
4 + x
1
4 − x

)

+
1

1
16 − x2

= σ
{

3∆∗ − 4(a − cT )
[

qG(cO + a) + qN (cO + a)
]}

.

The left-hand side equals 24 at x = 0 and increases to infinity as x → +∞. The right-hand side
does not depend on x. There is a solution x > 0 if and only if the right hand side is greater
than 24.

D Proof of Lemma 6

Proof. Under the termination-specific marginal cost pricing, pkk = c and pkl = cO + a for both
carriers. The two carriers essentially compete with each other in the subscription fees tk. The
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profit of carrier k can be written as

π̂k(tk, tl) = 2s1
k(tk, tl)s

1
l (tk, tl)[φ

G(cO + a) + φN (cO + a)] + 2s1
k(tk, tl)[tk − f ].

Consequently,

∂π̂k

∂tk
= −

2σ
1
s1

k

+ 1
s1

l

− σ∆∗

[

(s1
l − s1

k)(1 + γ)φG(cO + a) + tk − f
]

+ 2s1
k.

The second derivative is

∂2π̂k

∂t2k
= −

4σ
(

1
s1

k

+ 1
s1

l

− σ∆∗

)2

{

σ(1 + γ)φG(cO + a) − σ∆∗ +
1

2s1
k

+
1

2s1
l

+
1

(2s1
l )

2

}

.

If (s1
k, s

1
l ) is the market shares in equilibrium, the second order condition requires ∂2π̂k/∂t2k <

0 and ∂2π̂l/∂t2l < 0. This condition needs to hold for both carriers k = 1, 2. Therefore,

σ
[

∆∗ − (1 + γ)φG(cO + a)
]

<
1

2s1
1

+
1

2s1
2

+ min

{

1

(2s1
1)

2
,

1

(2s1
2)

2

}

.

References

Armstrong, M. (1998). Network interconnection in telecommunications. Economic Jour-
nal 108, 545–564.

Armstrong, M. (2002). The theory of access pricing and interconnection. In M. E. Cave,
S. K. Majumdar, and I. Vogelsang (Eds.), Handbook of Telecommunications Economics,
Volume 1. North-Holland/Elsevier.

Dessein, W. (2003). Network competition in nonlinear pricing. RAND Journal of Eco-
nomics 34, 593–611.

Dessein, W. (2004). Network competition with heterogenous customers and calling pat-
terns. Information Economics and Policy 16, 323–345.

Gans, J. S. and S. P. King (2001). Using ‘bill and keep’ interconnect arrangement to
soften network competition. Economic Letters 71, 413–420.

Hahn, J.-H. (2003). Nonlinear pricing of telecommunications with call and network ex-
ternalities. International Journal of Industrial Organization 21, 949–967.

Hahn, J.-H. (2004). Network competition and interconnection with heterogeous sub-
scribers. International Journal of Industrial Organization 22, 611–631.

Jeon, D.-S., J.-J. Laffont, and J. Tirole (2004). On the “receiver-pays” principle. RAND
Journal of Economics 35, 85–110.

29



Jullien, B. (2001). Competition in network industry: Divide and conquer. IDEI Working
paper, Institut d’Economie Industrielle, Toulouse, France.

Jullien, B. (2006). Multi-sided markets: Competing with network externalities and
price discrimination. IDEI Working paper, Institut d’Economie Industrielle, Toulouse,
France.

Katz, M. L. and Shapiro (1985). Network externalities, competition, and compatibility.
American Economic Review 75, 424–440.

Laffont, J.-J., P. Rey, and J. Tirole (1998a). Network competition: I. Overview and
nondiscriminatory pricing. RAND Journal of Economics 29, 1–37.

Laffont, J.-J., P. Rey, and J. Tirole (1998b). Network competition: II. Price discrimina-
tion. RAND Journal of Economics 29, 38–56.

Laffont, J.-J. and J. Tirole (2000). Competition in Telecommunications. Cambridge, MA:
MIT Press.

Rohlfs, J. (1974). A theory of independent demand for a communications service. Bell
Journal of Economics and Management Science 5, 16–37.

30


