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ABSTRACT: Wepresent a theoretical studyof the effects of solvent on the phase behavior ofABnmiktoarm star
copolymer solutions by adopting the self-consistent mean-field (SCMF) theory. In general, the associated effects
with the addition of one solvent on the AB linear diblock copolymers hold true on the ABn miktoarm star
copolymers.However, due to the asymmetry ofmolecular architecture,ABn exhibits a new spherical packing order
of A15, which has to be considered in competition with the well-known body-centered cubic (BCC) and face-
centered cubic (FCC) packing orders in the AB linear copolymer solutions. It is found that for A-formed spheres,
the “normal” ones (i.e., formedwhenA is aminor block) can adopt twopacking arrays ofBCCandA15,while the
“inverted” ones (i.e., formed when A is a major block) favor the A15 and FCC packing. Upon increasing
the solvent amount/solvent selectivity, theseA-formed inverted spheres tend topack fromBCCtoFCC.Moreover,
the transition of BCC/FCCfA15with increasing the solvent selectivity is often induced by the fact that a greater
degree of the interfacial distortion froma round into the polygonal shape in order to relax the stretching penalty for
the B arms on the outside domains. On the other hand, as to the B-formed spheres, we do not observe any stable
region of the A15 phase, but only BCC and FCC. This is mainly attributed to the tension of the highly stretched B
within the inner domains, thus the AB interface tends to preserve a more spherical shape. In this case, we observe
similar solvent effects on the stability of BCCandFCCpacked spheres, as those in theAB linear diblock solutions.

I. Introduction

Due to its variant self-assembling behavior, block copolymers
are widely applied in many nanotechnologies, such as photonic
and biotechnological applications.1,2 One of the major methods
in controlling the morphological patterns is to dilute a block
copolymer with solvents. Recently, with the improvement in
synthetic techniques, copolymers with more complex forms of
molecular architectures or with more than two types of mono-
mers have been successfully formulated. This development leads
to a rich variety of more fantastic morphologies, whichmay yield
significant advances for block copolymers in novel techno-
logies and applications. Thus, a greater understanding of how
to control the phase behavior of copolymers with more complex
architectures in both bulk and solution continues to be an
attractive and important issue.

Miktoarm star copolymers, shown as in Figure 1, are one of
the molecular architectures that have attracted a lot of attention.
There have been some experimental3-9 and theoretical10-16

studies related to the morphological behavior in the melt. A
systematic review of the theoretical results has been given by
Grason.15 Theoretically, Olvera de la Cruz et al.10 were among
the first to examine the stability criteria of microstructures
formed by star copolymers. They found that a simple graft AB2

copolymer ismore difficult tomicrophase separately than a linear
AB copolymer due to the greater change of entropy loss asso-
ciated with the disorder-to-order transition. Milner et al.11,12

applied the strong segregation theory (SST) to construct the
phase diagramofAmBnmiktoarm star copolymers in terms of the
composition and the asymmetric parameter ε (=(nA/nB)(lA/lB)

1/2),
where nI and lI are the number of arms and characteristic
length of component I, respectively. The length parameter lI is

defined as lI=VI/RI
2, where VI and RI correspond to the

molecular volume and the radius of gyration of the respective
blocks I. It is reported that at the same composition, varying the
asymmetric parameter ε can trigger the evolvement of various
microstructures. For instance, when the A composition f = 0.5,
increasing the number of B arms in the ABn miktoarm star
copolymers is analogous to decreasing f, and thereafter a series of
transition from lamellae (L) f gyroid of minority A (GA) f
hexagonally packed A-formed cylinders (CA

HEX) f A-formed
spheres (SA) is expected. This is reasonable since the component
with more arms experiences more lateral crowding and becomes
more stretched; it tends to remain on the outside domains. Grason
and Kamien14 employed the self-consistent mean-field (SCMF)
theory to construct the phase diagram of ABn miktoarm star
copolymers in terms of f and χABN (χAB is the Flory-Huggins
interactionparameter between componentsAandB,N is degree of
copolymerization). ComparedwithAB linear diblock copolymers,

Figure 1. Schematic representation of the model AmBn miktoarm star
copolymers.A length parameter along the copolymer chain, s, is defined
starting from one of the free ends of A. qC(rB,s) and qC

þ(rB,s) represent
the end-integrated distribution function in a “forward” and “backward”
diffusion pathway, respectively. When s1<s< s2, qC(rB,s) accounts for
the probability that m A-arms and n - 1 B-arms have diffused to the
junction point of s=s1 (shown as the dashed lines), and then continues to
diffuse along one B-arm (shown as the solid line) to the position rB at s.
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ABn miktoarm star copolymers form similar ordered structures,
such as lamellae (L), gyroid (G), hexagonally packed cylinders
(CHEX), and spheres (S), which are also mainly dominated by
the composition. All possible microstructures formed by ABn

miktoarm star copolymers are schematically plotted in Figure 2.
However, they discover two significant differences. First, the phase
diagram is no longer symmetric about f = 0.5 and shifts toward
f>0.5.That is, the stability ofmicrostructureswithBblocks in the
major domains is enhanced as the number of B arms n increases.
This effect of molecular asymmetry on the shifting degree of the
phase diagram reaches a limit when n>3. Second, in addition to
the commonly seen spherical packing order of body-centered
cubic (BCC) arrays in block copolymers, a significantly stable
regimeofA15packing array ofA-formed spheres exists, illustrated
as in Figure 2, between CA

HEX and SA
BCC in the ABn miktoarm

star copolymers. A simple way to manifest this fact is to treat
each spherical ordered phase into the corresponding polyhedral
Voronoi cell.17,18 Generally speaking, there should be many ways
for the copolymer chains to distribute and occupy the whole
Voronoi lattice. One is to form a spherical AB interface, as
frequently observed in the AB linear diblock copolymers. How-
ever, with an increase in the asymmetric degree of molecular
architecture (i.e., increasing the number of B arms) and/or the
composition of A, the AB interface tends to distort and reach the
shape of the polyhedralVoronoi cell in order to relax the stretching
penalty for the majority B-arms on the outside domains.14 When
considering the limited case that the AB interface adopts the same
shape of the Voronoi cell, the minimization of free energy in the
strong segregation limit leads to the stability of the A15 phase.13

On the other hand, as the composition of A decreases, the
A-formed minority domains become more spherical. Thus, they
prefer to pack into the BCC lattice, which has been known as the
most stable order formany soft spheres tominimize the cost of the
chain stretching (overlapping) energy of the outer domains.
Basically, these theoretical results are in good agreement with
experimental results, except in the stability of spherical packing
order.3-9 Experimentally, neither the A15 nor the BCC lattice of
spheres has been identified in melts of the miktoarm star copoly-
mers. Indeed, Pochan et al.3 reported that the spheres formed by
polystyrene (PS)-polyisoprene (PI)2 miktoarm star copolymers
tend to be poorly ordered. It is hard to distinguish between
each possible ordering (simple-cubic, BCC and A15, ...) from
only a few weak peaks of small-angle X-ray scattering profiles.
Though the A15 phase has not been identified in the miktoarm
copolymers experimentally, it has been observed in other complex
architectures, such as dendrimer19-21 and amphiphilic surfactant22-27

systems.

As many of the block copolymer systems with valuable
technological applications involve the presence of solvents, the
associated solvent effects on the morphological behavior need to
be considered. In AB linear block copolymer solutions, a wealth
of lyotropic and thermotropic order-order transitions (OOTs)
and order-disorder transition (ODT) have been extensively
studied. One of the significant results associatedwith the addition
of one solvent is the formation of the so-called “inverted” phases,
where the longer blocks form the minor domains. Upon increas-
ing the solvent selectivity and/or solvent amount, the formed
inverted spheres tend to pack from BCC into FCC. When
considering the effects of solvent addition on the miktoarm
copolymers, phase behavior becomes more complicated, since
the A15 spherical phase has to be considered in competition with
both BCC and FCC. Yet, a systematic examination of the effects
of one solvent in transforming the melt phase behavior for
miktoarm star copolymers has not been explored both experi-
mentally and theoretically. Herein, we employ the SCMF theory
to study the phase behavior of ABn miktoarm star copolymer in
the presence of a solvent. We adopt the Fourier space implemen-
tation of SCMF theory,28 which can resolve the small differences
of free energy between possible ordered phases. The model is
formulated essentially by an extension of a multiply branched
copolymer, which is constructed by Grason and Kamien,14,29 in
the presence of one solvent in a canonical ensemble. For simplic-
ity, we restrict consideration to the phases ofL,CHEX, SA15, SBCC,
and SFCC, in order to construct the phase maps. Other possible
complex phases such as the gyroid (G) and perforated layers
(PL), which have been frequently observed between L and CHEX,
are not examined here.Moreover, we ignore the possibility of the
disordered micellar regime as part of the disordered phase. That
is, the disordered phase in our approach is simply the homo-
geneous state. We first choose the simplest architecture of
miktoarm star copolymer, AB2, as a model system, and system-
atically investigate how the morphological transition behavior is
affected by solvent selectivity, copolymer volume fraction φ, and
copolymer composition f. We then examine the effects of molec-
ular asymmetry (i.e., number ofmulti-B arms n) on the formation
of microstructures in the presence of a selective solvent. In
addition to the ordered phases, the systems with lower values
of copolymer volume fraction when the solvent selectivity is large
may undergo a macrophase separation into two phases rich in
the solvent and copolymer, respectively, which is, however, not
our current concern. We thus use the Flory-Huggins thermo-
dynamic analysis to locate the binodal coexistence curve between
2 disordered phases, for simplicity.30 All the systems discussed
later are chosen within the one ordered phase region.

II. Theory

We use a canonical ensemble approach and consider a mono-
disperse AmBn miktoarm star copolymer in the presence of a
solvent S with average volume fractions φ and 1- φ, respectively.
The degree of copolymerization isN and A-monomer fraction in
the copolymer is f. Each copolymer chain is composed of m
identical arms of the A-block and n identical arms of the B-block
at a common junction point (see Figure 1). Accordingly, each
A-arm and B-arm has fN/m and (1 - f )N/n monomers, respec-
tively. We assume that the system is incompressible both locally
and globally, and each monomer type has the same statistical
segment length b. The local interaction between each pair of
monomers I and J is quantified by theFlory-Huggins interaction
parameter χIJ.

In general, the concentrations of A and B components at a
given spatial position rB, φA(rB) and φB(rB), are attributed to the
diffusion of each A and B monomer along the chains, respec-
tively, into the spatial position rB. To consider the contribution

Figure 2. Schematic plot of all possible microstructures formed by the
AmBn miktoarm star copolymers.
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from the chain diffusion, we define a length parameter along the
copolymer chain, s, so that there are (Δs)Nmonomers within any
chain interval of lengthΔs. We assume that each identical A-arm
starts from s=0 and terminates at the A-B junction point, s=
s1, and each identical B-arm ranges from s = s1 to the free end,
s= s2. It is clear that s1= f/m and s2= f/mþ (1- f )/n. In order
to solve the concentration profiles as well as the free energy in the
equilibrium state, we begin with solving the copolymer partial
partition functions, qC(rB,s) and qC

þ(rB,s). We define qC(rB,s) as the
end-integrated distribution function, which is proportional to the
probability that the chain portion of sNmonomers diffuses from
one of the free ends of theA-block, s=0, to the spatial position rB
(referred as “forward” direction). While qC

þ(rB,s) computes the
probability that the chain diffuses in the “backward” direction
fromone of the free ends of B-block, s= s2, to the spatial position
rB at s. In further detail, when 0< s<s1, qC(rB,s) simply represents
the probability that a single A-arm is diffused from the free end at
s = 0 to rB at s. But when s1<s<s2, qC(rB,s) accounts for the
probability that m A-arms and n - 1 B-arms have diffused from
s=0 and s= s2, respectively, to the junction point of s= s1, and
then continues to diffuse along one B-arm to the spatial position
rB at s (see Figure 1). To summarize the above definition, qC(rB,s)
can be written as follows,

qCðrB, sÞ

¼

Z
drBo QCðrBo, 0; rB, sÞ when 0 < s < s1Z

drB1 QCðrB1, s1; rB, sÞ½qCðrB1, s-1 Þ�m½qþ
C ðrB1, sþ1 Þ�n- 1 when s1 < s < s2

8>>><
>>>:

ð1Þ
where QC(rBi,si;rBf,sf) is the so-called chain propagator, which
represents the distribution probability of the chain from mono-
mer si at the spatial position rBi to monomer sf at rBf in the presence
of the external field ω(rB). In eq 1 qC(rB1, s1

-) is the limit of the
function as s approaches s1 from the A-arm; while qC

þ(rB1, s1
þ) is

computed by taking the limit s f s1 from the B-arm. Similarly,
qC
þ(rB,s) can be expressed in the following equation:

qþ
C ðrB, sÞ

¼

Z
drB2 QCðrB2, s2; rB, sÞ when s1 < s < s2Z

drB1 QCðrB1, s1; rB, sÞ½qðrB1, s-1 Þ�m- 1½qþðrB1, sþ1 Þ�n when 0 < s < s1

8>><
>>:

ð2Þ
Because qC(rB,s) and qC

þ(rB,s) are defined in terms of the chain
propagator QC(rBi,si;rBf,sf), they satisfy the following modified
diffusion equations:

∂qCðrB, sÞ
∂s

¼
1

6
Nb2r2qCðrB, sÞ-ωAðrBÞqCðrB, sÞ if 0 < s < s1

1

6
Nb2r2qCðrB, sÞ-ωBðrBÞqCðrB, sÞ if s1 < s < s2

8>><
>>:

ð3Þ

-
∂qþ

C ðrB, sÞ
∂s

¼
1

6
Nb2r2qþ

C ðrB, sÞ-ωAðrBÞqþ
C ðrB, sÞ if 0 < s < s1

1

6
Nb2r2qþ

C ðrB, sÞ-ωBðrBÞqþ
C ðrB, sÞ if s1 < s < s2

8>><
>>: ð4Þ

where ωA(rB) and ωB(rB) represent the external fields acting on
the A segments and B segments along the copolymer chains,

respectively. The boundary conditions for qC(rB,s) and qC
þ(rB,s) are

given by

qCðrB, 0Þ ¼ 1

qCðrB, sþ1 Þ ¼ ½qCðrB, s-1 Þ�m½qþ
C ðrB, sþ1 Þ�n- 1 ð5Þ

qþ
C ðrB, s2Þ ¼ 1

qþ
C ðrB, s-1 Þ ¼ ½qCðrB, s-1 Þ�m- 1½qþ

C ðrB, sþ1 Þ�n ð6Þ

The total partition function for a single miktoarm copolymer
chain QC is found by integrating all possible configurations for
the chains subject to the external fields and thus equal to

QC ¼ 1

V

Z
V

drBqCðrB, s ¼ s2Þ ð7Þ

For the solvent particles, we adopt the previously established
formalism in the AB linear block copolymer solutions.31 The
partition function QS subject to the field S(rB) is simply equal to

QS ¼ 1

V

Z
V

drBexp
-ωSðrBÞ

N

" #
ð8Þ

which indeed can be rewritten as

QS ¼ 1

V

Z
V

drBqS rB, s ¼ 1

N

� �
ð9Þ

where qS(rB,s) satisfies

∂qSðrB, sÞ
∂s

¼ -ωSðrBÞqSðrB, sÞ ð10Þ

with the initial condition qs(rB,s = 0) = 1.
For arbitrary volume fraction profiles of each component,

φI(rB); I=A, B, S, which depend on the segment distribution
functions subject to the external fieldsωI(rB); I=A, B, S, the free
energy per molecule F is given by28

F

kBT
¼ -φ ln

QC

φ

� �
- ð1-φÞN ln

QS

1-φ

� �

-
1

V

Z
V

drB ½ωAðrBÞφAðrBÞþωBðrBÞφBðrBÞþωSðrBÞφSðrBÞ�

þ 1

V

Z
V

drB ½χABNφAðrBÞφBðrBÞþ χASNφAðrBÞφSðrBÞ

þ χBSNφBðrBÞφSðrBÞ�þ
1

V

Z
V

drBηðrBÞ½φAðrBÞþ φBðrBÞþφSðrBÞ- 1�
ð11Þ

where η(rB) is the effective pressure field to ensure the local
incompressibility of the system. On the basis of the minimization
of the free energy in eq 11 with respect to φI(rB) andωI(rB); I=A,
B, S, the external fields and the volume fraction profiles have to
satisfy

ωAðrBÞ-ωSðrBÞ ¼ χABNφBðrBÞþ χASNφSðrBÞ
- χASNφAðrBÞ- χBSNφBðrBÞ

ωBðrBÞ-ωSðrBÞ ¼ χABNφAðrBÞþ χBSNφSðrBÞ
- χASNφAðrBÞ- χBSNφBðrBÞ
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φAðrBÞ ¼ φm

QC

Z s1

0

ds qCðrB, sÞqþ
C ðrB, sÞ

φBðrBÞ ¼ φn

QC

Z s2

s1

ds qCðrB, sÞqþ
C ðrB, sÞ

φSðrBÞ ¼ 1-φ

QS
exp

-ωSðrBÞ
N

" #
¼ 1-φ

QS
qSðrB, s ¼ 1=NÞ

φAðrBÞþφBðrBÞþφSðrBÞ ¼ 1 ð12Þ

For a disordered state, the volume fractionsφI(rB) and the fields
ωI(rB) are constants, I=A, B, S. The partition functions are
simplyQC=exp(- fωA- (1- f )ωB) andQS=exp(-ωS/N). As
a result, eq 11 is reduced to the Flory-Huggins mean-field free
energy functional per molecule in the disordered state, i.e.

F

kBTdisorder

¼ φ ln φþð1-φÞN lnð1-φÞþ f ð1- f ÞχABNφ2

þ f χASNφð1-φÞþ ð1- f ÞχBSNφð1-φÞ ð13Þ
As only one characteristic size is involved with the periodic

morphologies concerned here, it is most efficient to perform the
SCMF calculations using the Fourier-space algorithm. That is,
any given function, g(rB), is expressed in terms of the correspond-
ing amplitudes, gj, with respect to a series of orthonormal basis
function fj (rB)

gðrBÞ ¼
X
j

gjfjðrBÞ

The basis functions reflect the symmetry of the ordered phase
being considered and are selected to be eigenfunctions of the
Laplacian operator

r2fjðrBÞ ¼ - λjL
- 2fjðrBÞ ð14Þ

where L is the lattice spacing for the ordered phase. The basis
functions are ordered to start with f1(rB) = 1 such that λj is an
increasing series. For lamellae fj(x) = 21/2 cos(2π( j - 1)x/L),
jg 2, where x is the coordinate orthogonal to the lamellae. Basis
functions for the phases with other space-group symmetries can
be found in ref 32. Note that the number of basis functions varies
with the ordered phase and the segregation degree. In any case,
the sufficient number of basis functions has to be included in our
computations in order to ensure that the results reach the
equilibrium values.

Next, we give the resultant Fourier-space implementation of
the SCMF calculations. When the amplitudes corresponding
to the basis functions are utilized, eqs 3, 4, and 10 for solving
qC(rB,s), qC

þ(rB,s), and qS(rB,s) become

dqC, i

ds
¼

P
j

AijqC, j if 0 < s < s1

P
j

BijqC, j if s1 < s < s2

i ¼ 1, 2, 3, :::

8>>><
>>>:

ð15Þ

dqþ
C, i

ds
¼

-
P
j

Aijq
þ
C, j if 0 < s < s1

-
P
j

Bijq
þ
C, j if s1 < s < s2

i ¼ 1, 2, 3, ...

8>>><
>>>:

ð16Þ

dqS, i

ds
¼

X
j

CijqS, j i ¼ 1, 2, 3, ::: ð17Þ

The matrices Aij, Bij, and Cij are given by

Aij ¼ -
Nb2

6L2
λiδij -

X
k

ωA, kΓijk

Bij ¼ -
Nb2

6L2
λiδij -

X
k

ωB, kΓijk

Cij ¼ -
X
k

ωS, kΓijk ð18Þ

with

Γijk ¼ 1

V

Z
V

drBfiðrBÞfjðrBÞfkðrBÞ

ωA,k, ωB,k, and ωS,k are the corresponding amplitudes with
respect to the kth basis function for fields ωA(rB), ωB (rB), and
ωS(rB), respectively. The initial conditions for solving eqs 15-17
are qC,i(s=0)= δi1, qC,i

þ(s=s2)= δi1, and qS,i(s=0)= δi1. In
addition, the corresponding amplitude with respect to the ith
basis function for qC(rB,s) and qC

þ(rB,s) at the junction point of
s = s1 is determined by

qC, iðsþ1 Þ ¼ 1

V

Z
V

drB ½qCðrB, s-1 Þ�m½qþ
C ðrB, sþ1 Þ�n- 1fiðrBÞ

qþ
C, iðs-1 Þ ¼ 1

V

Z
V

drB ½qCðrB, s-1 Þ�m- 1½qþ
C ðrB, sþ1 Þ�nfiðrBÞ

ð19Þ

Once the amplitudes of qC(rB,s), qC
þ(rB,s), and qS(rB,s) are solved,

the amplitudes of the volume fraction profiles and external fields
of each component can be obtained as follows

φA, i ¼
mφ

qC, 1ðs2Þ
X
j, k

Γijk

Z s1

0

ds qC, jðsÞqþ
C, kðsÞ

φB, i ¼
nφ

qC, 1ðs2Þ
X
j, k

Γijk

Z s2

s1

ds qC, jðsÞqþ
C, kðsÞ

φS, i ¼
1-φ

qS, 1ð1=NÞ qS, i
1

N

� �

φA, i þφB, i þφS, i ¼ δi1

ωA, i -ωS, i ¼ χABNφB, i þ χASNφS, i - χASNφA, i - χBSNφB, i

ωB, i -ωS, i ¼ χABNφA, i þ χBSNφS, i - χASNφA, i - χBSNφB, i

ð20Þ
The free energy per molecule F is thus given by

F

kBT
¼ -φ ln

qC, 1ðs2Þ
φ

" #
- ð1-φÞΝ ln

qS, 1ð1=ΝÞ
1-φ

" #

-
X
i

ðωA, iφA, i þωB, iφB, i þωS, iφS, iÞ

þ
X
i

ðχABNφA, iφB, i þ χASNφA, iφS, i þ χBSNφB, iφS, iÞ

ð21Þ
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For a periodic ordered phase, the free energy has to be mini-
mizedwith respect to the lattice spacingL. For example, inFigure3a
we show a typical plot of the free energy term in eq 21 versus
the lattice spacing L when an AB2 miktoarm copolymer melt
is assumed to form a lamellar phase at f = 0.5, N = 150, and
χABN=40. Similarly, theminimumvalues of the free energywith
respect to the lattice spacing L for other possible phases can be
obtained. Then, to determine the most stable phase one has to
compare free energies of possible phases. In Figure 3b we compare
the free energies of two typical ordered phases of L and CA

HEX

as an example to determine the most stable phase at various
values of composition f for AB2 copolymer melt when N = 150
and χABN = 40. It is clear that the phase boundary between
L and CA

HEX occurs at f = 0.485.

III. Results and Discussion

In order to examine the solution phase behavior of ABn

miktoarm star copolymers, we first choose AB2 with N = 150
and χABN=40 in the presence of a B-selective solvent S with the
interaction parameters χAS=0.7 and χBS=0.4. Figure 4 presents
the corresponding phase map in terms of f and φ. As expected,
when the solutions are concentrated, the formation of equilibrium
morphology ismainly dominated by the composition f, similar to
that in the AB2 copolymer melt.14

As the solutions become less concentrated, due to the fact that
the S solvent prefers the B block and acts in a manner that
corresponds qualitatively to reducing the A composition, the
formation of A-formed cylinders as well as spheres is expected
even for f> 0.5. It is interesting to find that a region of SFCC

always occurs near the ODT in the phase diagram. When f is
small, this ordered SA

FCC regime is very narrow, as observed in
both the AB linear and ABn miktoarm copolymer melts. When
considering the disordered micellar structure as part of the
disordered phase, the FCC packing is likely to disappear in the
copolymer melts.33,34 Accordingly, as it has been discussed in the
ABn miktoarm copolymer melt, a spherical ordering of BCC or
A15 is favored over FCC when the minority block forms the
spheres in the solutions. However, as f increases to g0.5 so that
the majority A blocks form the spheres when φ is small, the
corona layers become thinner with increasing f. This enables the
spheres to adopt a more dense packing order such as FCC. Thus,
we observe a significant expansion of the ordered SA

FCC regime
near the ODTwith an increase in the composition of unfavorable
A blocks f (Figure 4). Furthermore, the stable SA

BCC and SA
A15

regions are reduced and even disappear with an increase in f,
indicating that the so-called inverted spheres formed by the
majority blocks (i.e., with smaller corona layers) prefer a more
dense FCC over a BCC or A15 packing. Note that due to the
immiscibility betweenAblock and solvent, amacrophase separa-
tion into an ABn copolymer-rich phase and a S-rich phase occurs
when f>0.5 and ψ<1. For simplicity, we use the Flory-
Huggins thermodynamic analysis to locate the binodal coexis-
tence curve between 2 disordered ABn-rich and S-rich phases.

Next we would like to examine the effects of solvent selectivity
and solvent amount on the microstructure formation of ABn

miktoarm star copolymers. For this purpose, two types of
A-selective and B-selective solvents are respectively added into
the AB2 copolymer with f < 0.5 and f > 0.5, respectively.
Accordingly, there are four possible types of microstructures,
A-formed normal, A-formed inverted, B-formed normal, and
B-formed inverted structures. We first choose an AB2 with
f = 0.25 and N = 150 so that the minority A component forms
the spheres, which adopts a BCC (21.9< χABN<26.2) and then
A15 packing order (χABN> 26.2). By adding a B-selective
solvent (χAS g χBS = 0.4), we can see how the packing order of
these A-formed normal spheres is affected. Parts a-c of Figure 5
display the two-dimensional phase maps in terms of χABN and φ

when χAS = 0.4, 0.7, and 0.75, respectively. As it is shown in
Figure 5a, when a neutral and good solvent (χAS= χBS= 0.4) is

Figure 3. (a) Plot of the free energy term in eq 21 versus the lattice
spacing L for an AB2 miktoarm copolymer melt to form a lamellar
phase at f = 0.5, N = 150, and χABN = 40. (b) Comparison of the
free energy between lamellae (L) and hexagonally packed A-formed
spheres (CA

HEX) at various values of composition f for AB2 copolymer
melt when N = 150 and χABN = 40.

Figure 4. Two-dimensional phase map as a function of f and φ for an
AB2 star copolymer solution withN=150, χABN=40, χAS=0.7, and
χBS = 40.
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added to this asymmetric copolymer atχABN>26.2, a sequential
lyotropic transition from SA

A15f SA
BCC (fSA

FCC)fD is observed.
Based on the fact that the incompatibility between the A and B
blocks is reduced by the presence of a neutral and good solvent,
this lyotropic transition is analogous to the thermotropic transi-
tion bydecreasing the χABN value in themelt phasemap at a fixed
f = 0.25. When the solvent S becomes B-selective, since it prefers
theBblocks and thus expected to partition into theB-rich domains,
the same transition trend as that in the melt by decreasing the
f composition from SA

A15 f SA
BCC (fSA

FCC) f D is also expected.
When the selectivity of the added solvent increases to χAS = 0.7
(Figure 5b) or 0.75 (Figure 5c), we observe that though each
ordered regime is enlarged slightly, the phase transitions are similar
to those in the neutral solutions.

In examining the solvent effects on the formation of A-formed
inverted structures, we choose anAB2with f=0.6 in the presence
of a B-selective solvent S. In particular,we set χBS equal to 0.4 and
vary χAS g 0.4. Figure 6 displays the resultant phase map
as a function of χAS and φ for AB2 copolymer with f = 0.6 and

N=150 at χABN equal to 40. As it is expected, upon dilution by
adding a B-selective solvent (i.e., decreasing φ), a sequence from
L f CA

HEX f SA f D is observed. More interestingly, the
packing order of A-formed spheres is dependent on the solvent
selectivity. When the selectivity of the added solvent for B is not
significant enough (such as χAS<0.68 here), these A-formed
spheres prefer the BCC packing. But, they tend to move toward
intoA15orFCCarraywith increasing the solvent selectivity and/or
dilution. The transition mechanism of SBCC f SFCC induced
by increasing the solvent amount/solvent selectivity has been
proposed in the AB linear block copolymer solutions.30,35 Pre-
viously, we have theoretically shown that for the spheres formed
in the slightly selective solvent, though the solvent partitions
preferentially to the matrix domains, there still remains a con-
siderable amount of solvent inside the cores.30 Furthermore, not
100% copolymer chains aggregate to form the micelles. Conse-
quently, the intermicellar interactions become softer and thus
these spheres adopt a BCC array. Upon increasing the solvent
selectivity, thoughmore solvents are expelled from the corewhich
may cause a decrease in the micellar diameter, the fact that more
free chains remaining in the matrix are driven to aggregate into
the spheres enables an increase in the spherical diameter. As a
result, these formed spheres become more impenetrable and
adopt a FCC lattice. In further, the increase in segregation to
minimize the unfavorable A-S interactions enables a decrease in
the interfacial width between domains and consequently the area
per chain. This requires an increase in chain stretching normal to
the interface, resulting in an increase in the size of the matrix
domains.When extended to the case of ABn copolymer solutions,
one should consider that when more chains aggregate to form
cylinders or micelles upon increasing the solvent selectivity, this
chain stretching penalty for the B-arms on the matrix domains
becomesmore significant. Thus, a greater degree of the interfacial
distortion froma round into a polygonal shape is accompanied in
order to relax the stretching penalty for the B multiarms on the
outside domains. As it can be seen clearly in Figure 7a, where we
display the corresponding spherical patterns when χAS varies
from 0.69 (SA

BCC) to 0.8 (SA
A15) for AB2 copolymer solutions with

f = 0.6, N = 150, χABN = 40, χBS =0.4, and φ = 0.2, all the
A-formed spheres are round-like when they pack into a BCC
ordering, but they become oblate-like on the faces of the Pm3n
unit cell when they pack into an A15 array. Each oblate spheroid
is characteristic of the equatorial diameter b larger than the polar
diameter c, as it is shown in Figure 7a. Here we define the
interfacial shape parameter R as the ratio b/c to quantify the
degree of the distortion of the AB interface. Figure 7b plots the

Figure 6. Two-dimensional phasemap as a function ofφ and χAS for an
AB2 star copolymer solution with f = 0.6, N = 150, χBS = 0.4, and
χABN = 40.

Figure 5. Two-dimensional phase map in terms of φ and χABN for an
AB2 star copolymer solutionwith f=0.25 andN=150 at a fixed value
of χBS = 0.4 and χAS = (a) 0.4, (b) 0.7, and (c) 0.75, respectively.
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corresponding value of R as a function of χAS for the solutions in
Figure 7a. As expected, with increasing the solvent selectivity
(χAS), the interfacial shape parameter R is very close to 1.0 in
the SA

BCC ordered phase; it then significantly jumps to a larger
value and keeps increasing in the SA

A15 phase. On the basis of the
fact that the AB interface experiences a greater degree of distor-
tion into the polygonal Voronoi cell upon increasing the solvent
selectivity for the B multiarms on the matrix domains, it is
reasonable to observe that both the CA

HEX and SA
A15 ordered

regimes are greatly enlarged with χAS.
If we choose the same AB2 copolymer system as in Figure 6

( f = 0.6, N = 150, and χABN = 40) but in the presence of an
A-selective solvent (χBS > χAS = 0.4), the resultant microstruc-
tures are thus formed by the minority B-arms, i.e., B-formed
normal structures.As it is shown inFigure 8, wherewedisplay the
corresponding phase map as a function of χBS and φ, a transition
of Lf CB

HEX f SB f D occurs with increasing dilution. Due to
the fact that the multi B-arms experience more lateral crowding
than the linearAblock, they needmore space to get stretched and
thus hard to be confined within the minor domains. Hence, we
observe a significantly large region of the ordered lamellae.
Moreover, when the B-arms curl to form the spheres, the tension
of the highly stretched inner domains prefers a more spherical
interface than a polygonal interface. Accordingly, the A15 phase
is not stable here. The fact that these B-formed normal spheres
prefer the BCC packing and move toward into a FCC array with
increasing the solvent selectivity and/or dilution is simply attri-
buted to the same solvent effects as in the AB linear block
copolymer systems. Even when the copolymer composition f
decreases to <0.5 so that the corona layers for these B-formed
inverted spheres become thinner, we still do not find any stable
region of the A15 phase. Only the FCC packing is observed. As it
is displayed in Figure 9, where we plot the phase map as a func-
tion of χBS (χAS=0.4) and φ for AB2 copolymer with f=0.4 and

N=150 at χABN equal to 40, a sequential transition of CA
HEX f

L f CB
HEX fSB

FCC f D occurs upon dilution.
So far, with the simplest miktoarm copolymer of AB2 as a

model system, we have illustrated the significant effects of solvent
addition on the resultant morphological behavior. Now, we
extend our study to ABn copolymers, and investigate whether
the formed microstructure type is strongly dependent on the
number of B arms, n, at the same composition f and degree of
copolymerization N. Here we also include the results for AB
linear diblock copolymer (n = 1) as a comparison. Figure 10a
presents the two-dimensional phase map in terms of n and φ for
anABn copolymerwith f=0.25 andN=150 at χABN equal to 40
in the presence of a B-selective solvent by setting χBS = 0.4 and
χAS=0.7. It is clear that in the concentrated regimewhen n varies
from1 tog2, the ordered region ofCA

HEX is replaced bySA
A15. This

reflects the fact that the presence of the component with more
arms (B) on the outside domains is enhanced when the molecules
vary from a linear to an asymmetric miktoarm architecture;
moreover, the AB interface tends to distort and reach the
polyhedral shape in order to relax the stretching penalty for the
multi B-arms. When n g 2, the same lyotropic transition from
SA
A15 f SA

BCC f SA
FCC f D occurs, as we have explained in

Figure 7. (a) Density plots of theA-formed spherical patterns in a BCC
andA15ordering, respectively, for anAB2 star copolymer solutionwith
f=0.6,N=150, φ=0.2, χABN=40, χBS=0.4, and χAS equal to 0.69
and 0.8, respectively. (b) Variation of the interfacial shape parameter R
with χAS for the solutions as in part a.

Figure 8. Two-dimensional phasemap as a function ofφ and χBS for an
AB2 star copolymer solution with f = 0.6, N = 150, χABN = 40, and
χAS = 0.4.

Figure 9. Two-dimensional phase map as a function of φ and χBS for an
AB2 star copolymer solutionwith f=0.4,N=150,χABN=40,χAS=0.4.
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Figure 5 (n=2). In a further comparison of the phase boundary
between each spherical order as a function of n, we find that the
ordered SA

A15 region does not change significantly with φ and n,
indicating that even when cutting the B component into more
arms, the formed polygonal interfaces seem to saturate at this
level of segregation.However, the stability of SA

FCCnear theODT is
greatly enhancedby suppressing theSA

BCC regionwith an increase in
the molecular asymmetry (i.e., n). This can be rationalized by
considering that at a fixed value of f = 0.25 and the same chain
length, when the number of B-arms n increases from 1 to 4, the
composition of each B-arm decreases from 0.75 to 0.19. To clarify,
these A-formed spheres when n = 1-2 are the normal ones with
thicker corona layers, which are likely to pack into BCC array;
while they become inverted with thinner corona layers when n
increases to 4-5 and thus tend to adopt a more dense packing of
FCC. If we choose a copolymer with longer A blocks (i.e., f>0.5)
in the presence of aB-selective solvent so that theA-formed spheres
even when n= 1-2 are inverted, it is reasonable that the effect of
varying n on the stability of FCC packing, as we have observed in
the case of smaller f, disappears. For example, in Figure 10b, we
plot the phase map as a function of n and φ for an ABn copolymer
with f = 0.6 and N = 150 at χABN equal to 40 in the presence
of a B-selective solvent by setting χBS= 0.4 and χAS= 0.75. Each
ordered region of L, CA

HEX, SA
A15, and SA

FCC remains almost un-
changed with n and φ. Finally, we examine how the resultant phase
behavior of ABn miktoarm star copolymer in the presence of one
A-selective solvent is influenced with n. Parts a and b of Figure 11
display the corresponding phase map for f = 0.4 and 0.6,
respectively, and the same N = 150, χABN = 40, χAS = 0.4, and
χBS= 0.7.When the copolymer varies from a linear to amiktoarm

architecture, since themulti-B armsprefer less tobe confinedwithin
the minor domains, we observe a significantly large region of the
CA
HEX and/or L, and thus only a small region of the B-formed

cylinders and spheres.When increasing the number of B arms n, we
observe similar phase transition behavior induced by solvent
amount and solvent selectivity. However, increasing the number
of B-arms n has a similar effect on the enhancement of the stability
of the ordered phases, where the B-arms remain on the matrix
domains. Thus, we observe that the CA

HEX region slightly expands
with n in Figure 11a.

IV. Conclusions

We have employed the Fourier space implementation of self-
consistent mean-field (SCMF) theory to examine the phase
behavior of ABn miktoarm star copolymers in the presence of a
solvent. Inparticular,we focus on the effects of solvent selectivity,
copolymer volume fraction φ, A composition f, and molecular
asymmetry (in our case, the number of B-arms per molecule).
Generally speaking, the significant effects associated with the
addition of one solvent on theAB linear diblock copolymers, as it
is reported in literatures, have also been observed on the ABn

miktoarm star copolymers.
When the solvent is selective for the multi-B arms, a series of

transition from the equilibrium phase in the melt into the
A-formed spheres occurs upon dilution. This is analogous to
decreasing the composition f in the melt case. Three packing
arrays of A-formed spheres, A15, BCC, and FCC, are possible. If
f<0.5 so that these A-formed spheres are the normal ones, they
tend to adopt the A15 and then BCC ordering before entering
into the disordered region. When f increases to >0.5 so that the

Figure 10. Two-dimensional phase maps in terms of φ and n for ABn

star copolymer solutions with N = 150, χABN = 40, χBS =0.4, and
(a) f = 0.25, χAS = 0.7, (b) f = 0.6, χAS = 0.75.

Figure 11. Two-dimensional phase maps in terms of φ and n for ABn

star copolymer solutionswith f=(a) 0.4 and (b) 0.6,N=150, χABN=
40, χAS = 0.4, and χBS = 0.7.
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A-formed spheres become inverted, a more dense packing of
FCC is quite possible in addition to A15 and BCC. Similar to the
AB linear diblock solutions, FCC is more favored than BCC
upon increasing the solvent amount and/or solvent selectivity.
Moreover, we find that whenmore ABn chains aggregate to form
cylinders or micelles upon increasing the solvent selectivity,
a greater degree of the interfacial distortion from a round into
the polygonal shape is often accompanied in order to relax the
stretching penalty for the B arms on the outside domains. Hence,
we observe a transition of BCC/FCCf A15 with increasing the
solvent selectivity, and a significantly enlarged region of SA

A15 and
CA
HEX.
On the other hand, in the A-solvent case, a series of transition

into the B-formed spheres is induced upon dilution. Since the
multi-B arms experience more lateral crowding than the linear A
block and thus prefer less to be confined within the minor
domains, we observe a narrow region of the B-formed cylinders
and spheres. Furthermore, because of the tension of the highly
stretched B within the inner domains, the AB interface tends to
preserve a more spherical shape; thus we do not observe any
stable region of the A15 phase, but only BCC and FCC for the
B-formed spheres.

Finally, based on the fact that increasing the number ofB-arms
n enables the B component preferable to stay on the matrix
domains, the stability of the A-formed cylinders and spheres is
enhancedwith increasing n.Moreover, when aB-selective solvent
is added to ABn with shorter A blocks, since the A-formed
spheres become more inverted with increasing n, we observe a
significantly enlarged region of the SA

FCC by suppressing the SA
BCC.
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