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We employ self-consistent mean-field theory to study the phase behavior and the microstructural sizes of AB
diblock copolymers in the presence of a neutral solvent S1 and a slightly B-selective solvent S2. In particular,
the effects of copolymer volume fraction �̄C, the solvent ratio, and the immiscibility parameter between two
solvents �S1S2

, are examined. We find that increasing �S1S2
not only enlarges the ordered microphase region in

the concentrated solutions, but also induces a less concentrated homogeneous solution to form an ordered
structure and even undergo a macrophase separation. This is due to the fact that increasing �S1S2

enhances the
preferentially of S1 for A and S2 for B and, thereafter, the effective segregation between A and B. Hence, we
observe that the structural length results obtained by varying �S1S2

resemble a consequence of varying the
solvent selectivity in the diblock copolymer solutions when only one solvent is added. For example, when �S1S2

is small, the domain spacing decreases with decreasing �̄C while at larger values of �S1S2
, it first shows a

decreasing trend and then an increasing behavior with decreasing �̄C.

DOI: 10.1103/PhysRevE.74.051802 PACS number�s�: 61.25.Hq

I. INTRODUCTION

Block copolymers, because of the immiscibility of the
covalently bonded blocks, can form a rich variety of mor-
phologies �1–5�. These self-assembled ordered structures
typically range between 1–100 nm in size, and have valu-
able nanotechnological applications. One of the major meth-
ods in controlling the structural type as well as the length
scale of these microstructures is by diluting a block copoly-
mer with solvents. Many of the block copolymer systems
with valuable technological applications contain block co-
polymers, oil, and water �4�. Therefore, it is important to
study the phase behavior of a block copolymer in the pres-
ence of two solvents. A few experimental studies on poly-
�ethylene oxide-b-propylene oxide-b-ethylene oxide� �PEO-
PPO-PEO� triblock copolymers mixed with water and oil
have been performed �6–12�. Due to the fact that water and
oil are strongly immiscible, the swelling ability of both hy-
drophilic and hydrophobic groups in the block copolymers
varies with the solvent ratio and solvent amount. As a result,
various microstructures with different interfacial curvatures,
such as lamellae, normal �oil-in-water� and reverse �water-
in-oil� bicontinuous phase, normal and reverse cylinders, and
normal and reverse spheres, form in the ternary mixtures of
block copolymers, water, and oil. Indeed, phase behavior for
a block copolymer in two solvents becomes very compli-
cated as it involves many important parameters, such as the
immiscibility between two solvents, solvent amount, solvent
ratio, and the selectivity of two solvents for each block. To
our knowledge, few of these factors have been fully analyzed
theoretically, although there exist a few studies on the exami-
nation of phase behavior and the interfacial properties for a
surfactant added into very immiscible oil and water by
Monte Carlo simulations �13–16� and dissipative particle dy-

namics �DPD� �17,18�. In this article, we employ self-
consistent mean-field �SCMF� theory to study both the phase
behavior and the microstructural sizes of a diblock copoly-
mer in two solvents. In particular, the effects of the incom-
patibility parameter between two solvents, the solvent ratio,
and the copolymer volume fraction are examined.

It is well known that the SCMF theory has been proven a
powerful technique for the study of the phase behavior in
block copolymer systems. A systematic review of this theo-
retical development has been given by Shi �19�. By introduc-
ing the crystalline symmetry of the ordered phases and solv-
ing the SCMF equations in the reciprocal space, the resulting
equilibrium phase diagram in terms of �ABN and the copoly-
mer composition f �where �AB is the Flory-Huggins interac-
tion parameter between A and B, N is the degree of copoly-
merization, and f =NA / �NA+NB�� for an AB diblock
copolymer melt has been obtained �20�. The composition f
largely determines the geometry of the microstructure, in
which the shorter blocks form the minor domains. When a
solvent S is added to an AB diblock copolymer, its self-
assembling behaviors become more diverse, a result of the
interplay of the effects of N, f , copolymer volume fraction �,
and three independent interaction parameters, �AB, �AS, and
�BS. In the neutral case �i.e., �AS=�BS�, provided the concen-
trated regime and the solvent quality is good, SCMF calcu-
lations have shown that the equilibrium solution phase maps
are almost identical to the melt phase map when replaced
with �ABN with ��ABN�21–24�, the so-called “dilution ap-
proximation” �25�. To explain further, the order-order transi-
tions �OOTs� and order-disorder transition �ODT� for con-
centrated solutions follow ���ABN�ODT,OOT=F�f�, as given in
the melts. Recently, experiments have shown that the dilution
approximation is successful in predicting the OOTs �26–28�
and microdomain spacings �26–30�. However, it fails to de-
scribe the ODT even for the concentrated block copolymer
solutions due to the fluctuation effects �26–28,31�. When a
selective solvent is added �i.e., �AS��BS�, the shape and the
packing symmetry of the ordered structure is determined not
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only by the composition f but also by the solvent selectivity.
Banaszak and Whitmore �32� first employed the SCMF
theory to investigate the lamellar phase in a selective solvent.
They examined the lamellar microdomain spacing as a func-
tion of the copolymer volume fraction, degree of copolymer-
ization, and solvent selectivity. Noolandi et al. �33� applied
the SCMF theory to quantitatively determine the phase dia-
gram of PEO-PPO-PEO triblock copolymers in aqueous so-
lutions. Their calculated results are in significantly good
agreement with experiments �34�. Huang and Lodge �24�
then presented a numerical phase behavior for an AB diblock
copolymer in the presence of a solvent based on the SCMF
theory. Although they only considered the classical phases,
including lamellae �L�, hexagonally-packed cylinders �C�,
and body-centered cubic array of spheres �SBCC�, they ob-
served that both solvent selectivity and copolymer volume
fraction strongly influence the morphology. In contrast to the
neat diblock copolymer microstructures in which the shorter
blocks form the minor domains, block copolymer solutions
may form the “inverted” phases, where the longer blocks
form the minor domains by varying solvent selectivity and
copolymer volume fraction. Furthermore, the formed in-
verted spheres tend to pack from a body-centered cubic to
face-centered cubic order upon increasing the solvent selec-
tivity and/or solvent amount �35�. These theoretical results
have been confirmed experimentally �26,27,36–40�.

In this paper, we employ SCMF theory to examine the
phase behavior and the microstructural sizes of an AB
diblock copolymer mixed with two solvents, S1 and S2. In

particular, the effects of copolymer volume fraction �̄C, the
solvent ratio, and the immiscibility parameter between two
solvents �S1S2

are examined. The model is formulated by a
straightforward extension of our previous study of a block
copolymer in the presence of one solvent in a canonical en-
semble �24�. Using SCMF theory, we determine the equilib-
rium morphology and volume fraction profiles of each com-
ponent. We then analyze how the distribution of each
component affects the related microstructural domain length
scales. As have been reported in the related experimental
studies �6–12�, the formed microstructure types are similar to
those when only one solvent is added into a diblock copoly-
mer. Hence, the possible phases needed to be considered here
include L, gyroid �G�, perforated layers �PL�, C, SBCC, and
SFCC. For simplicity, we restrict consideration to the classical
phases, such as L, C, SBCC, and SFCC, in order to construct the
phase maps. In addition to the ordered microphases, one may
expect that the systems with lower values of copolymer vol-

ume fraction �̄C when �S1S2
is large may macrophase sepa-

rate into S1- and S2-rich phases. In this case, it is better to
adopt a grand canonical ensemble instead of our current
SCMF model in a canonical ensemble approach. We thus use
the Flory-Huggins thermodynamic analysis to locate the bin-
odal coexistence curve between two disordered phases. Our
SCMF results enable a more complete understanding of the
rich and complex phase behavior that block copolymers ex-
hibit when two solvents are added.

II. THEORY

A. Self-consistent mean-field theory

We use a canonical ensemble approach and consider a
monodisperse AB diblock copolymer in the presence of two
solvents S1 and S2 with average volume fractions �̄C, �̄S1

,

and �̄S2
, respectively. The degree of copolymerization is N

and A-monomer fraction in the copolymer is f . We assume
that the system is incompressible both locally and globally,
and each monomer type has the same statistical segment
length b. The local interaction between each pair of mono-
mers I and J is quantified by the Flory-Huggins interaction
parameter �IJ. Each copolymer chain is parameterized by a
variable s that increases continuously from 0 to 1 along its
length. We assume that the A-block starts from s=0 and ter-
minates at s= f , the A-B junction point.

In order to determine the concentration profiles as well as
the free energy in the equilibrium state, we begin with solv-
ing the copolymer partial partition functions, qC�r ,s� and
qC

+�r ,s�, which are defined as the end-integrated distributions
for a chain of sN and �1-s�N monomers, respectively, at r.
The function qC�r ,s� satisfies the following modified diffu-
sion equation:

�qC

�s
= �

1

6
Nb2�2qC − �AqC if s � f ,

1

6
Nb2�2qC − �BqC if s � f ,� �1�

and the initial condition is qC�r ,0�=1. The equation for
qC

+�r ,s� is similar except that the right-hand side of Eq. �1� is
multiplied by −1, and the initial condition is qC

+�r ,1�=1. In
Eq. �1�, �A�r� and �B�r� represent the fields acting on the A
and B segments along the copolymer chains from s=0 to f
and from s= f to 1, respectively. The total partition function
for a single copolymer chain QC is found by integrating all
possible configurations for the chains subject to these fields
and thus equal to

QC =
1

V
�

V

qC�r,s = 1�d3r . �2�

For the solvent particles, the partition functions QS1
and QS2

subject to the fields �S1
�r� and �S2

�r�, respectively, are sim-
ply equal to

QS1
=

1

V
�

V

exp�− �S1
�r�

N
	d3r , �3a�

QS2
=

1

V
�

V

exp�− �S2
�r�

N
	d3r , �3b�

which indeed can be rewritten as

QS1
=

1

V
�

V

qS1

r,s =

1

N
�d3r , �4a�
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QS2
=

1

V
�

V

qS2

r,s =

1

N
�d3r , �4b�

where qS1
�r ,s� and qS2

�r ,s� satisfy

�qS1

�s
= − �S1

qS1
, �5a�

�qS2

�s
= − �S2

qS2
, �5b�

with the initial conditions qS1
�r ,s=0�=qS2

�r ,s=0�=1.
Based on the minimization of free energy to attain ther-

modynamic equilibrium for equilibrium phases, the fields
have to satisfy

�A�r� − �S2
�r� = �ABN�B�r� + �AS1

N�S1
�r� + �AS2

N�S2
�r�

− �AS2
N�A�r� − �BS2

N�B�r� − �S1S2
N�S1

�r� ,

�B�r� − �S2
�r� = �ABN�A�r� + �BS1

N�S1
�r� + �BS2

N�S2
�r�

− �AS2
N�A�r� − �BS2

N�B�r� − �S1S2
N�S1

�r� ,

�S1
�r� − �S2

�r� = �AS1
N�A�r� + �BS1

N�B�r� + �S1S2
N�S2

�r�

− �AS2
N�A�r� − �BS2

N�B�r� − �S1S2
N�S1

�r� ,

�A�r� + �B�r� + �S1
�r� + �S2

�r� = 1, �6�

where the volume fractions of A, B, S1, and S2, respectively,
�A�r�, �B�r�, �S1

�r�, and �S2
�r�, have the following forms of

�A�r� =
�̄C

QC
�

0

f

dsqC�r,s�qC
+�r,s� ,

�B�r� =
�̄C

QC
�

f

1

dsqC�r,s�qC
+�r,s� ,

�S1
�r� =

�̄S1

QS1

exp�− �S1
�r�

N
	 =

�̄S1

QS1

qS1

r,s =

1

N
� ,

�S2
�r� =

�̄S2

QS2

exp�− �S2
�r�

N
	 =

�̄S2

QS2

qS2

r,s =

1

N
� . �7�

Once the above volume fractions are determined and the
self-consistent equations for the fields are satisfied, the free
energy per molecule F is given by

F

kBT
= − �̄C ln�QC

�̄C
	 − �̄S1

N ln�QS1

�̄S1

	 − �̄S2
N ln�QS2

�̄S2

	
−

1

V
�

V

��A�r��A�r� + �B�r��B�r� + �S1
�r��S1

�r�

+ �S2
�r��S2

�r��d3r

+
N

V
�

V

��AB�A�r��B�r� + �AS1
�A�r��S1

�r�

+ �AS2
�A�r��S2

�r��d3r +
N

V
�

V

��BS1
�B�r��S1

�r�

+ �BS2
�B�r��S2

�r� + �S1S2
�S1

�r��S2
�r��d3r . �8�

For a disordered state, �I�r�= �̄I and the fields �I are
constants, I=A, B, S1, S2. The partition functions are
simply QC=exp�−f�A− �1− f��B�, QS1

=exp�−�S1
/N�, and

QS2
=exp�−�S2

/N�. As a result, Eq. �8� is reduced to the
Flory-Huggins mean-field free energy functional per mol-
ecule in the disordered state, i.e.,

F

kBTdisorder
= �̄C ln �̄C + �̄S1

N ln �̄S1
+ �̄S2

N ln �̄S2

+ f�1 − f��ABN�̄C
2 + f�AS1

N�̄C�̄S1

+ �1 − f��BS1
N�̄C�̄S1

+ f�AS2
N�̄C�̄S2

+ �1 − f��BS2
N�̄C�̄S2

+ �S1S2
N�̄S1

�̄S2
. �9�

For a periodic ordered phase, the free energy has to be mini-
mized with respect to the lattice spacing L; to determine the
most stable phase one has to compare free energies of pos-
sible phases. For simplicity, we restrict consideration to the
classical phases, such as L, C, SBCC, SFCC. Other possible
ordered phases such as G and PL are not examined here.

As the block copolymer morphologies are periodic, it is
most efficient to perform the SCMF calculations using the
Fourier-space algorithm. That is, any given function, g�r�, is
expressed in terms of the corresponding amplitudes, gj, with
respect to a series of orthonormal basis function f j�r�, g�r�
=� jgjf j�r�. The basis functions reflect the symmetry of the
ordered phase being considered. The eigenfunctions of the
Laplacian operator are selected as the basis functions

�2f j�r� = − � jL
−2f j�r� , �10�

where L is the lattice spacing for the ordered phase.
The basis functions are ordered starting with f1�r�=1
such that � j is an increasing series. For lamellae
f j�r�=21/2 cos(2��j−1�x /L), j�2, where x is the coordinate
orthogonal to the lamellae. Basis functions for the phases
with other space-group symmetries can be found in Ref.
�41�. Note that the number of basis functions varies much
with the ordered phase and the segregation degree. In any
case, sufficient number of basis functions has to be included
in our computations in order to assure that the results reach
the equilibrium values.

When the amplitudes corresponding to the basis functions
are utilized, Eqs. �1�, �5a�, and �5b�, for solving qC�r ,s�,
qS1

�r ,s�, and qS2
�r ,s�, become
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�qC,i

�s
= ��

j

AijqC,j if s � f ,

�
j

BijqC,j if s � f ,� i = 1,2,3, . . . ,

�11a�

�qS1,i

�s
= �

j

CijqS1,j, i = 1,2,3, . . . , �11b�

�qS2,i

�s
= �

j

DijqS2,j, i = 1,2,3, . . . . �11c�

The equation for qC,i
+ is similar except that the right-hand

side of Eq. �11a� is multiplied by −1. The initial conditions
are qC,i�s=0�=	i1, qC,i

+�s=1�=	i1, qS1,i�s=0�=	i1, and
qS2,i�s=0�=	i1. The matrices Aij, Bij, Cij, and Dij are given
by

Aij = −
Nb2

6L2 �i	ij − �
k

�A,k
ijk,

Bij = −
Nb2

6L2 �i	ij − �
k

�B,k
ijk,

Cij = − �
k

�S1,k
ijk,

Dij = − �
k

�S2,k
ijk, �12�

where 
ijk=V−1
 f i�r�f j�r�fk�r�d3r. �A,k, �B,k, �S1,k, and �S2,k

are the corresponding amplitudes with respect to the kth ba-
sis function for fields �A, �B, �S1

, and �S2
, respectively.

From Eq. �6� it is straightforward that

�A,i − �S2,i = �ABN�B,i + �AS1
N�S1,i + �AS2

N�S2,i − �AS2
N�A,i

− �BS2
N�B,i − �S1S2

N�S1,i,

�B,i − �S2,i = �ABN�A,i + �BS1
N�S1,i + �BS2

N�S2,i − �AS2
N�A,i

− �BS2
N�B,i − �S1S2

N�S1,i,

�S1,i − �S2,i = �AS1
N�A,i + �BS1

N�B,i + �S1S2
N�S2,i

− �AS2
N�A,i − �BS2

N�B,i − �S1S2
N�S1,i,

�A,i + �B,i + �S1,i + �S2,i = 	i1, �13�

where the amplitudes of the volume fractions of A, B, S1, and
S2, respectively, �A,i, �B,i, �S1,i, and �S2,i, are determined by

�A,i =
�̄C

qC,1�1��j,k 
ijk�
0

f

dsqC,j�s�qC,k
+�s� ,

�B,i =
�̄C

qC,1�1��j,k 
ijk�
f

1

dsqC,j�s�qC,k
+�s� ,

�S1,i =
�̄S1

qS1,1
 1

N
�qS1,i
 1

N
� ,

�S2,i =
�̄S2

qS2,1
 1

N
�qS2,i
 1

N
� , �14�

and the free energy per molecule F in Eq. �8� is expressed as

F

kBT
= − �̄C ln�qC,1�1�

�̄C
	 − �̄S1

N ln� qS1,1�1/N�

�̄S1

	
− �̄S2

N ln� qS2,1�1/N�

�̄S2

	
− �

i

��A,i�A,i + �B,i�B,i + �S1,i�S1,i + �S2,i�S2,i�

+ �
i

��ABN�A,i�B,i + �AS1
N�A,i�S1,i

+ �AS2
N�A,i�S2,i� + �

i

��BS1
N�B,i�S1,i

+ �BS2
N�B,i�S2,i + �S1S2

N�S1,i�S2,i� . �15�

In order to examine the effects of the solvent immiscibil-
ity on the structural length scales, as well as the distribution
of each component within the ordered structures, we choose
the particular parameters in which the lamellar phase is the
most stable one. Later we will demonstrate that these lamel-
lar length results when two solvents are added can be quali-
tatively extended by those results of a diblock copolymer in
the presence of one solvent. Based on the fact that the effects
of adding one solvent on the length scales within each or-
dered phase are qualitatively consistent �35�, we believe
similar results in the lamellar phase also hold true qualita-
tively in other structures when a second solvent is added.
Once the lattice spacing L is obtained, we determine the
width of the A-rich regions LA, the interfacial width w, and
the width of the B-rich regions LB, as follows. For example,
when a neutral solvent S1��AS1

=�BS1
=0.4� and a B-selective

solvent S2 ��AS1
=0.6, �BS1

=0.4� are added to a block copoly-
mer with f =0.5, N=200, �=0.5, and �ABN=25, L is the
most stable phase. Figure 1 shows the typical volume frac-
tion profiles �A, �B, �S1

, and �S2
, from which the inflection

points with respect to �A and �B; i.e., d2�I /dx2=0 �I=A ,B�
are determined. Note that these inflection points are identi-
cal. The A-rich domain width LA is determined as the dis-
tance between two intersection points, which are obtained by
plotting the tangent line to �A at the point when �A is a
maximum with those at the inflection points, as shown in
Fig. 1. Similar procedures are performed to determine the
B-rich domain width LB. The interfacial width w is thus
equal to L−LA−LB.
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B. Binodal coexistence curves between disordered phases

For a ternary system, the thermodynamic analysis of de-
termining the phase equilibrium has been described in detail
elsewhere �42�. Here we briefly give the resulting equations
for an AB diblock copolymer in the presence of two solvents
S1 and S2. To determine the coexistence between disordered
phases �� ,� , . . . �, one has to equate the chemical potential of
each component C�=AB�, S1 and S2, in the possible coexist-
ing phases including the mass conservation laws, i.e.,


I
��� = 
I

���, I = C, S1, S2, �16a�

�̄I = ���̄I
� + ���̄I

�, I = C, S1, S2, �16b�

where �m is the volume fraction of phase m and �̄I
m is the

mean volume fraction of component I in the m phase. The
chemical potential of component I is defined as the change of
the total free energy �F� with respect to the number of mol-
ecules of component I, nI,


I =
��F�

�nI
, �17a�

�F� = F � 
nC +
nS1

N
+

nS2

N
� , �17b�

where F is the Flory-Huggins mean-field free energy func-
tional per copolymer molecule and has been given in Eq. �9�.
With a series of mathematical operations �42�, 
I, I=C, S1,
S2, has the form of


C = kBT�ln �C + �1 − N��1 − �C�

+ N�f�AS1
+ �1 − f��BS1

��S1
�1 − �C�

+ N�f�AS2
+ �1 − f��BS2

��S2
�1 − �C�

+ Nf�1 − f��AB�C�2 − �C� − N�S1S2
�S1

�S2
� ,


S1
= kBT�ln �S1

+ �C
1 −
1

N
�

+ �f�AS1
+ �1 − f��BS1

��C�1 − �S1
� + �S1S2

�S2
�1 − �S1

�

− �f�AS2
+ �1 − f��BS2

��C�S2
− f�1 − f��AB�C

2� ,


S2
= kBT�ln �S2

+ �C
1 −
1

N
�

+ �f�AS2
+ �1 − f��BS2

��C�1 − �S2
� + �S1S2

�S1
�1 − �S2

�

− �f�AS1
+ �1 − f��BS1

��C�S1
− f�1 − f��AB�C

2� . �18�

FIG. 1. Volume fraction profiles of �A, �B, �S1
and �S2

for a

system in the lamellar phase with f =0.5, N=200, �ABN=25, �̄C

=0.5, �̄S1
/ �̄S2

=2/8, �AS1
=�BS1

=0.4, �AS2
=0.6, and �BS2

=0.4.

FIG. 2. Phase diagrams of an AB diblock copolymer in the
presence of two solvents S1 and S2 with f =0.5, N=200 �ABN=25,
�AS1

=�BS1
=0.4, �AS2

=0.6, �BS2
=0.4, and �S1S2

= �a� 0.0, �b� 2.0, �c�
2.5, �d� 2.55, and �e� 2.6, respectively. The �----� and �– · – ·� lines
correspond to the 2D coexistence curves and the tie-lines,
respectively.
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Note that the system is always assumed to be incompress-
ible, i.e., �C+�S1

+�S2
=1.

III. RESULTS AND DISCUSSION

To examine how the addition of two immiscible solvents
affects the phase behavior and the microstructural domain
length scales of block copolymers, we choose f =0.5, N
=200, and �AB=0.125. As a result, the block copolymer melt
is a lamellar phase at �ABN=25. The solvent S1 is a neutral
solvent, and S2 is a B-selective solvent. In particular, �AS1
=�BS1

=0.4, �AS2
=0.6, and �BS2

=0.4.
Figure 2 presents a series of corresponding phase dia-

grams, which are obtained by SCMF calculations and shown
in AB-S1-S2 composition triangles, at various values of the
immiscibility parameter between two solvents �S1S2

. The Ith
corner in the triangle represents a system composed of 100%
component I. We first briefly discuss the effects of the addi-
tion of only one solvent �S1 or S2� on the lamellar phase of
diblock copolymers. When a neutral and good solvent S1 is
added to a symmetric lamellar diblock copolymer, in addi-
tion to the slight solvent accumulation behavior at the inter-
faces, it is expected to distribute equally in the A- and B-rich
domains. As a result, the addition of more S1 to block co-
polymers reduces the effective segregation between A and B,
and a transition from L to disordered phase �D� occurs at
�̄C,ODT=0.42, according to the “dilution approximation.” In

the B-selective solvent S2, due to the fact that S2 prefers the
B block and thus acts in a manner that corresponds quali-
tatively to reducing the A composition f , a sequence
L→hexagonally-packed A-formed cylinders �CA�→body-
centered cubic array of A-formed spheres �SA

BCC�→D is ob-

served as �̄C decreases. The values of �̄C at boundaries be-
tween L /CA, CA /SA

BCC, and SA
BCC/D, are equal to 0.403,

0.329, and 0.326, respectively. Note that since S2 is only
slightly selective for B, it is more stable for the spheres
formed by A blocks at lower values of �̄C packed in a bcc
array than fcc, which is in a qualitatively good agreement
with experimental results �38,39�.

When both ideally miscible solvents S1 and S2 ��S1S2
=0�

are added, we observe that the resulting equilibrium phase
behavior �shown in Fig. 2�a�� resembles a consequence of
the effects of a selective solvent S, in which the effective
interaction parameters between A /S and B /S are equal
to �̄S1

/ ��̄S1
+ �̄S2

��AS1
+ �̄S2

/ ��̄S1
+ �̄S2

��AS2
and �̄S1

/ ��̄S1

+ �̄S2
��BS1

+ �̄S2
/ ��̄S1

+ �̄S2
��BS2

, respectively. In particular,

when the volume fraction ratio of S1 and S2 ��̄S1
/ �̄S2

� is
fixed at a value �7/3 such that the effective parameters
0.4��AS�0.46 and �BS=0.4, a transition from L→D occurs
as �̄C decreases, similar to the block copolymer in the pres-
ence of only one neutral S1 solvent. As �̄S1

/ �̄S2
falls below

7/3 �0.46��AS�0.6 and �BS=0.4�, the preferentiality of the
solvent for the B-block becomes significant enough so that a

FIG. 3. Deviation of volume fraction profiles of component A, B, S1, and S2 within the lamellar phase for f =0.5, N=200, �ABN=25,
�̄C=0.8, �̄S1

/ �̄S2
=8/2, �AS1

=�BS1
=0.4, �AS2

=0.6, and �BS2
=0.4 at various values of �S1S2

.
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similar transition to the diblock copolymers in the S2 solvent,
L→CA→SA

BCC→D is observed with decreasing �̄C. As �S1S2
increases to 2.0, we obtain a similar phase diagram shown in
Fig. 2�b�. Though the ordered regime remains somewhat the
same as that for �S1S2

=0, a slight expansion of the stable L
phase region compresses the regime of CA and SA

BCC. This is
not surprising due to the fact that a slight degree of immis-
cibility between S1 and S2 impels the neutral solvent S1 to
move forward into the A-rich domains, and S1 thus behaves
as a slightly A-selective solvent. As a result, a system ini-
tially in the stable CA region when �S1S2

=0 is expected to
form a lamellar phase with increasing �S1S2

.
As �S1S2

�2.0, the significant immiscibility between sol-
vents S1 and S2 not only drives a macrophase separation from
D→ two-phase AB /S1- and S2-rich but also a transition from
D→one ordered microstructure at lower values of �̄C, as
presented in Fig. 2�c� where �S1S2

=2.5. This is reasonable
since increasing �S1S2

enhances the preferentiality of S1 for A
and S2 for B. The addition of more S1 and S2 to the AB,
diblock copolymers is no longer a diluent effect, but instead,
enhances the effective segregation between A and B. Hence,
ordered microphase separation is expected at lower �̄C. In
addition, the ordered microphase region, in which �̄C is
higher, is enlarged. As such, by varying the ratio of solvent
amount �̄S1

/ �̄S2
, we obtain various phase transition behav-

iors with �̄C. For example, systems in which the amount of

S1 �S2� is much larger than that of S2 �S1� undergo a sequence
L�→CA→SA

BCC�→D as �̄C decreases when �S1S2
=2.5 �Fig.

2�c��. When the S1 and S2 amounts are comparable, a se-
quence L�→CA→SA

BCC�→D→1 ordered �O� phase �SA
BCC

→CA→L�→2-phase �AB /S1- and S2-rich� is expected with
decreasing �̄C. The tie-lines in Fig. 2�c� give the equilibrium
volume fractions inside the two-phase regions as one phase
rich in the AB diblock and S1 and the other phase rich in S2.
Note that we did not obtain the exact transition details asso-
ciated with both microphase and macrophase separations.
This difficulty occurs due to the fact that we employ a ca-
nonical ensemble approach of the SCMF theory. That is, the
exact boundary between one ordered �O� phase and two-
phase �1�O�+1�D� or 2�D�� remains undetermined. We only
locate the two-phase regime according to the Flory-Huggins
thermodynamic analysis. As �S1S2

increases, in addition to
the continuous expansion of this two-phase regime at lower
values of �̄C, we also observe that both the upper and lower
ordered regions keep expanding and eventually overlap. For
example, when �S1S2

=2.55 �in Fig. 2�d��, the stable CA in the
upper and the lower regimes overlap leading to a single
interior CA, which also occurs with SA

BCC. As �S1S2
increases

to 2.6 �in Fig. 2�e��, a similar overlapping behavior for the L
phase is observed, which enables the stable CA as well as the
SA

BCC to move toward the right-side of the phase triangle.
When �S1S2

�2.6, both the ordered microstructure and the
two-phase regions continue to enlarge, as expected.

FIG. 4. Deviation of volume fraction profiles of component A, B, S1, and S2 within the lamellar phase for f =0.5, N=200, �ABN=25,
�̄C=0.5, �̄S1

/ �̄S2
=8/2, �AS1

=�BS1
=0.4, �AS2

=0.6, and �BS2
=0.4 at various values of �S1S2

.
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We then examine the effects of copolymer volume frac-
tion �̄C, the solvent ratio �̄S1

/ �̄S2
, and the immiscibility pa-

rameter between two solvents �S1S2
, on the distribution of

each component. Figure 3 demonstrates the deviation of
volume fraction profiles ��I�x�− �̄I� of component A, B, S1,

and S2 at a series of �S1S2
within the L phase for �̄C=0.8 and

�̄S1
/ �̄S2

=8/2. As expected, the B-selective solvent S2 dis-
tributes more in the B-rich domains than in the A-rich do-
mains, regardless of the �S1S2

value. However, though the
solvent S1 is neutral and good to both A and B, its distribu-
tion along the L phase is greatly influenced by the presence
of a B-selective solvent S2 due to the degree of incompatibil-
ity between these two solvents. When �S1S2

=0, S1 acts as a
S2-like solvent, distributing more in the B-rich domains than
in the A-rich domains. With increasing �S1S2

, more S1 mi-
grates toward the A-rich regimes in order to reduce the con-
tacts between S1 and S2. S1 thus acts more selectively for A
blocks. However, as there exist only a small amount of sol-
vents, this increasing degree of solvent selectivity is slight,
and solvent S1 accumulates at the interfaces. As the copoly-
mer volume fraction �̄C decreases, a more pronounced sol-
vent preferentiality at the same degree of �S1S2

is expected.
For example, in Fig. 4 we plot the deviation profiles for the
same series of �S1S2

but �̄C decreases to 0.5 ��̄S1
/ �̄S2

is still
fixed at 8 /2�. Clearly, this S1 accumulation behavior at the

interfaces is not as significant as that observed in Fig. 3 at
�̄C=0.8. Furthermore, the solvent deviation profiles at �S1S2
=4.0 in Fig. 4 reveal the strong selectivity of S1 for A and S2
for B. In general, we find that the solvent preferentiality in-
creases with increasing �S1S2

and/or decreasing �̄C.

Varying �S1S2
and �̄C has a great effect not only on sol-

vent selectivity and the distribution of each component, but
also on the microstructural length scales. For example, Fig. 5
shows the variation in lamellar domain spacing L, the width
of the A-rich domains LA, the interfacial width w, and the
width of the B-rich regions LB, with the changes in �̄C for a
series of �S1S2

at a fixed ratio �̄S1
/ �̄S2

=8/2. We find that the
microstructural length results are almost independent of �S1S2

until �S1S2
�2.6. This is due to the fact that lower values of

�S1S2
affect the solvent selectivity for each block slightly; the

variation of the microstructural lengths with �̄C is similar to
that observed for a diblock copolymer in the presence of a
slightly selective solvent. As expected, decreasing �̄C is sim-
ply a consequence of the decreased segregation, which in
turn reduces the chain stretching degree normal to the inter-
faces. Therefore, both domain lengths LA and LB show a
decreasing behavior, and the interfacial width w increases as
�̄C decreases. As a result, the domain spacing L decreases as
�̄C decreases. At the same time, as �S1S2

increases to �S1S2

=4.0, we observe that both LA and L first decrease with �̄C

FIG. 5. Plot of lattice spacing L, A-rich domain width LA, interfacial width w, and B-rich domain width LB vs �̄C at various values of
�S1S2

for f =0.5, N=200, �ABN=25, �̄S1
/ �̄S2

=8/2, �AS1
=�BS1

=0.4, �AS2
=0.6, and �BS2

=0.4.
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decreasing and then increase significantly as �̄C decreases
further. This increasing behavior at lower values of �̄C is
mainly attributed to the strong selectivity of S1 to A and S2 to
B. Because of the very small amounts of solvent S2, its seg-
regation to the B-rich domains is not significant enough to
enlarge the B-rich domains. As the ratio of S2 in the solvents
increases, the increase of LB becomes more significant. For
example, Fig. 6 plots the variation of L, LA, w, and LB, with
�̄C for the same series of �S1S2

but �̄S1
/ �̄S2

changes to 2/8;
the increasing behavior of L with increasing �S1S2

at lower

values of �̄C is mainly due to the great increase of LB, al-
though the interfacial width w is reduced. To manifest the
effects of solvent ratio on the microstructural lengths at vari-
ous degrees of solvent immiscibility �S1S2

, we present the
corresponding L, LA, w, and LB, as a function of the percent-
age of S2 in the solvents at a series of �S1S2

when �̄C is fixed
at 0.5 in Fig. 7. It is clear that regardless of the solvent ratio,
LA shows an increasing behavior with �S1S2

. However, LB

increases significantly only when the immiscibility �S1S2
reaches at least 4.0. Moreover, we observe that the increasing
degree of the overall domain spacing L at �S1S2

=4.0 becomes
most significant when the volume fractions of S1 and S2 are
comparable. This is due to the fact that both LA and LB are
also enlarged, primarily by the strong segregation of S1 to
A-rich and S2 to B-rich domains.

IV. CONCLUSIONS

We study the phase behavior as well as the microstruc-
tural domain sizes for an AB diblock copolymer in the pres-
ence of a neutral solvent S1 and a B-selective solvent S2, by
self-consistent mean-field �SCMF� theory. As in the diblock
copolymer solutions when only one solvent is added, the
possible formed phases include L, normal and inverted G,
�PL�, normal and inverted C, and normal and inverted
SBCC/SFCC. Though the addition of a second solvent cannot
induce new morphology types, we find that both the phase
behavior and the microstructural sizes are strongly affected
by the immiscibility parameter between two solvents �S1S2

,
the solvent ratio, and the copolymer volume fraction.

With increasing �S1S2
, we observe that the ordered mi-

crophase region, in which �̄C is higher and thus the incom-
patibility between A /B �AB drives the microphase separation,
is expanded. Furthermore, when �S1S2

�2.0, due to the fact
that the two solvents are significantly incompatible, the one-
ordered phase regimes as well as the two-macrophase
AB /S1- and S2-rich regimes are induced in the systems at
lower values of �̄C. It is interesting to find that these two
ordered regimes keep expanding and eventually overlap with
a further increase in �S1S2

. These results are not surprising
since increasing �S1S2

is analogous to enhancing the prefer-
entiality of S1 for A and S2 for B and thereafter the effective
segregation between A and B.

FIG. 6. Plot of lattice spacing L, A-rich domain width LA, interfacial width w, and B-rich domain width LB vs �̄C at various values of
�S1S2

for f =0.5, N=200, �ABN=25, �̄S1
/ �̄S2

=2/8, �AS1
=�BS1

=0.4, �AS2
=0.6, and �BS2

=0.4.
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In the analysis of the lamellar domain lengths, when �S1S2

is not significant, the domain spacing L decreases as �̄C de-
creases. This trend is similar to that observed for a diblock
copolymer in the presence of a slightly selective solvent.
While at larger values of �S1S2

, the domain spacing first

shows a decreasing trend with decreasing �̄C and then an
increasing behavior with a further decrease in �̄C, as in the
diblock copolymer solutions when a strongly selective sol-
vent is added. This domain spacing increasing behavior is
not surprising since when more immiscible solvents are
added �i.e., decreasing �̄C�, more S1 and S2 swell the A-rich
domains and the B-rich domains, respectively. In further, this

swelling behavior is the most significant when the amounts
of these two solvents are comparable. As in the diblock co-
polymer solutions when only one solvent is added, we be-
lieve that these structural length results analyzed in the
lamellar phase also hold true in other structures.
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