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Abstract

We employ self-consistent mean-field (SCMF) theory in studying the body-centered cubic (bcc) spheres of block copolymers in the

presence of a neutral solvent. First we examine the accuracy of the dilution approximation then analyze the dependence of the bcc structural

sizes with copolymer volume fraction f, the interaction parameter cAB, and degree of copolymerization N. Our results reveal that both

distribution of each component and the micro-structural length scales are greatly influenced by each parameter f, cAB, and N. As expected,

with decreasing f, more solvent distributes non-uniformally in the segregated domains, therefore deviation from the dilution approximation

increases. This also suggests that when the effective segregation parameter fcABN is fixed, a larger deviation is expected as cABN increases

(i.e. f decreases). Although when both cABN and f are fixed, decreasing N (i.e. increasing cAB) enlarges the deviation from the dilution

approximation. Furthermore, this solvent non-uniformity behavior is so significant that it even affects the dependence of the domain spacing

L* and the matrix lengthL* with respect to (cAB)effNZfcABN near the ODT.When the systems are in molten state and/or in the concentrated

regime, both L* and L* exhibit a sharp increase behavior as ODT is approached, due to many of the minority blocks being pulled from the

spherical domains and swelling the matrix. With increasing solvent amount and/or cABN, we observe that the increase of the degree for the

minority blocks pulled from the spheres into the matrix near the ODT is not as significant as that in the melt. As such, the sharp increase

behavior in L* as well as L* near the ODT smoothens and even disappears.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Block copolymers continue to be an attractive area of

research due to their numerous potential applications with

characteristic domain dimensions in the range of 1–100 nm

by self-organization [1–3]. One of the major methods in

controlling the length scale of microstructures is by diluting

a block copolymer with solvent. Adding solvent S into an A/

B diblock copolymer, both the phase behavior and the

micro-domain length control become more complicated as

they involve the effects of copolymer composition f, degree

of copolymerization N, copolymer volume fraction f, and
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three independent interaction parameters, cAB, cAS, and

cBS.

In the neutral (i.e. cASZcBS), there has been a great deal

of theoretical [4–13] and experimental [14–25] studies on

the resulting equilibrium phase behavior and the scaling

behavior of micro-domain spacing. Provided the concen-

trated regime and the solvent quality are good, the solvent is

distributed almost uniformly between the segregated micro-

domains. Consequently, the solution behaves as a neat

copolymer with the effective A/B interaction parameter

(cAB)eff simply given as fcAB, which is named ‘dilution

approximation’ [4]. Previous self-consistent mean-field

(SCMF) calculations have shown that the equilibrium

solution phase maps are almost identical to the melt phase

map by replacing cABN with fcABN [5,8,9,11]. To explain

further, the order-order transitions (OOTs) and order-

disorder transition (ODT) for concentrated solutions follow

(fcABN)ODT,OOTZF(f), as given in the melts. In the semi-

dilute regime due to the chain swelling effects, both Olvera
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de la Cruz [7] and Fredrickson and Leibler [6] predicted

(f1.59cABN)ODTZF(f). Although experiments have shown

that the dilution approximation fails to describe the ODT

even for concentrated block copolymer solutions due to the

fluctuation effects [17,23–25], it is still successful in

predicting the OOTs [23–25] and micro-domain spacings

[14,15,23–25].

Whitmore and Noolandi [8] examined the lamellar

structure for copolymers in the presence of a neutral good

solvent by SCMF theory. They found that with a small

amount of solvent accumulation at the interface the

dependence of the lamellar domain spacing L with cAB,

N, and f is still approximated by

LwðcABÞ
pNqfr (1)

with py0.33, qy0.8, and ry0.4 being in the weak

segregation regime, and py0.2, qy0.67, and ry0.22 in

the strong segregation regime. Furthermore, Vavasour and

Whitmore [10] showed that the micro-domain spacing for

lamellar, cylindrical, and spherical structures obeys the

dilution approximation, i.e. the spacing L*, which is in terms

of the mean-squared end-to-end distance ð
ffiffiffiffi
N

p
bÞ, scales

approximately as

L*wðfcABNÞ
a (2)

with a equal to 0.2 in the strong segregation regime.

This is independent of morphology, and increases to a

value equal to 0.5 for lamellar phase and 0.4 for

cylindrical phase as the ODT is approached. a for the

spherical phase is close to 0.2 in the whole segregation

regime. These domain spacing scaling predictions have

been observed in agreement with experiments [14,15,

23–25]. For example, Lodge et al. examined a series of

poly (styrene-block-isoprene) diblock copolymers in the

presence of a neutral solvent dioctyl phthalate [23–25].

They found that the characteristic domain spacing scales

as f0.33 and c0.25, which is independent of morphology.

Hashimoto et al. reported the lamellar spacing as

Lw(fcAB)
1/3 [14,15]. However, with the effects of

solvent accumulation at the interface, the question still

remains of just how good the dilution approximation is

by varying cAB, N, and f. Also the detailed analysis for

the length scales of each segregated domain, such as the

A-rich and B-rich phases, as well as the interfacial

width as a function of cAB, N, and f remains

unexplored. Although Naughton and Matsen [13] have

employed SCMF theory to examine the accuracy of the

dilution approximation as a function of solvent quality,

size, and selectivity, they did not analyze the solvent

effects on the behavior for each segregated domain

spacing.

In this paper we address the issue on the body-centered

cubic (bcc) spheres of block copolymers in a neutral good

solvent using SCMF theory. First, we examine the effects of

cAB, N, and f on the resulting volume fraction profiles of
each component. We then analyze how the distribution of

each component affects the related micro-structural domain

length scales, such as the domain lattice spacing L*, the

spherical diameter D*, the interfacial width w*, and the

matrix length L*(ZL*KD*Kw*). It is worth noting that as

the ODT is approached, both L* and L* for the solutions in

the bcc phase exhibit a unique behavior, which has not been

observed elsewhere.
2. Theory

We employ self-consistent mean-field (SCMF) theory to

analyze the structural length scales in the ordered body-

centered cubic (bcc) spheres of block copolymer solutions,

by using a previously established formalism [11]. As the

block copolymer morphologies are periodic, it is most

efficient to perform the SCMF calculations using the

Fourier-space algorithm. That is, any given function, g(r)

is expressed in terms of the corresponding amplitudes, gj,

with respect to a series of orthonormal basis function fj(r),

gðrÞZ
P

j gjfjðrÞ. The basis functions reflect the symmetry

of the ordered phase being considered, and are selected to be

eigenfunctions of the Laplacian operator

V2fjðrÞZKljL
K2fjðrÞ (3)

where L is the lattice spacing for the ordered phase. The

basis functions are ordered starting with f1(r)Z1 such that lj
is an increasing series. For both bcc and fcc phases

fjðrÞZCj cosð2phx=LÞcosð2pky=LÞcosð2plz=LÞ, where x, y,

z are the coordinates and h, k, l are all integers. In particular,

for bcc spheres hCkCl has to be even, and h, k, and l are all

even or odd for fcc. The coefficients Cj are determined by

satisfying 1=L
Ð
f 2j ðrÞdrZ1.

We consider a monodisperse AB diblock copolymer

in the presence of a solvent with average volume

fractions f and 1Kf, respectively, The degree of

copolymerization is N and A-monomer fraction in the

copolymer is f. We assume that the system is

incompressible both locally and globally, and each

monomer type has the same statistical segment length b.

The local interaction between each pair of monomers I

and J, is quantified by the Flory–Huggins interaction

parameter cIJ. Each copolymer chain is parameterized

by a variable s that increases continuously from 0 to 1

along its length. We assume that the A-block starts

from sZ0 and terminates at sZf which is the A–B

junction point. In order to determine the concentration

profiles as well as the free energy in the equilibrium

state, it is necessary to solve two end-segment

copolymer distribution functions, qC(r,s) and qCCðr; sÞ.

These are found by integrating all possible configur-

ations subject to the fields uA(r) and uB(r) for chain

segments running from sZ0 to f and from sZf to 1,

respectively, and the solvent distribution function qS(r,s)
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subject to the field uS(r). The distribution function

qC(r,s) satisfies the modified diffusion equation,

vqC
vs

Z

1

6
Nb2V2qC KuAqC if s! f

1

6
Nb2V2qC KuBqC if sO f

8><
>: (4)

and the initial condition is, qC(r,0)Z1. The equation for

qCCðr; sÞ is similar except that the right-hand side of Eq.

(4) is multiplied by K1, and the initial condition is

qCCðr; 1ÞZ1. Since there is no chain connectivity in the

solvent distribution function qS(r,s) becomes

vqS
vs

ZKuSqS (5)

When the amplitudes corresponding to the basis

functions are utilized, the modified diffusion Eqs. (4)

and (5) in terms of qC,i(s), q
C
C;iðsÞ, and qS,i(s), become

vqC;i

vs
Z

P
j AijqC;j if s! fP
j BijqC;j if sO f

iZ 1; 2; 3;.

(
(6)

vqS;i

vs
Z

X
j

CijqS;j iZ 1; 2; 3;. (7)

The equation for qCC;i is similar except that the right-

hand side of Eq. (6) is multiplied by K1. The initial

conditions are qC,i(sZ0)Zdi1, qCC;iðsZ1ÞZdi1, and

qS,i(sZ0)Zdi1. The matrices Aij, Bij, and Cij are given

by

Aij ZK
Nb2

6L2
lidij K

X
k

uA;kGijk

Bij ZK
Nb2

6L2
lidij K

X
k

uB;kGijk (8)

Cij ZK
X
k

uS;kGijk

GijkZVK1
Ð
fiðrÞfjðrÞfkðrÞdr. uA,k, uB,k, and uS,k are the

corresponding amplitudes with respect to the kth basis

function for fields uA, uB, and uS, respectively. Based

on the minimization of free energy to attain thermo-

dynamic equilibrium for a periodic ordered phase, the

amplitudes of the fields have to satisfy

uA;i KuS;i ZcABNfB;i CcASNfS;i KcASNfA;i

KcBSNfB;i

uB;i KuS;i ZcABNfA;i CcBSNfS;i KcASNfA;i

KcBSNfB;i (9)

fA;i CfB;i CfS;i Z di1
where the amplitudes of the concentrations of A, B and

S, respectively, fA,j, fB,j, and fS,j are expressed in

terms of the distribution functions

fA;i Z
f

qC;1ð1Þ

X
j;k

Gijk

ðf
0
dsqC;jðsÞq

C
C;kðsÞ

fB;i Z
f

qC;1ð1Þ

X
j;k

Gijk

ð1
f
dsqC;jðsÞq

C
C;kðsÞ (10)

fS;i Z qS;ið1=NÞ

Once the above amplitudes are determined and the

self-consistent equations for the fields are satisfied, the

free energy per molecule F is given by

F

kBT
ZKf ln

qC;1ð1Þ

f

� �
K ð1KfÞN ln

qC;1ð1=NÞ

1Kf

� �

K
X
i

ðuA;ifA;i CuB;ifB;i CuS;ifS;iÞ

C
X
i

ðcABNfA;ifB;i CcASNfA;ifS;i

CcBSNfB;ifS;iÞ (11)

which is reduced to the Flory–Huggins mean-field free

energy functional in the disordered state. For a periodic

ordered phase, the free energy has to be minimized with

respect to the lattice spacing L. As our major study is to

examine the structural length scales in the bcc array, we

choose the particular parameters in that bcc is the most

stable phase. Once the lattice spacing L is obtained, we

determine the spherical diameter D, the interfacial width

w, and the matrix length L as follows. For example,

when a neutral solvent (cASZcBSZ0.4) is added into a

block copolymer with fZ0.16, NZ300, fZ0.8, and

cABNZ41.4, the ordered bcc array of A-rich spheres

ðSBCCA Þ is the most stable phase. Fig. 1(a) and (b)

display the corresponding contour plots of A volume

fraction profiles at X–Y plane in the z-axis of z/LZ0

and z/LZ0.5, respectively. As can be clearly seen, the

A-block forms spheres in the bcc array. Fig. 1(c) shows

the typical volume fraction profiles fA, fB and fS at y/

LZz/LZ0.5, from which the inflection points with

respect to fA, fB and fS; i.e. d
2fI/dx

2Z0 (IZA, B, S)

are determined. Note that these inflection points are

identical. As such, both values of the spherical diameter

D and the interfacial width w are determined, as shown

in Fig. 1(c). The matrix domain length L is defined as

LKDKw.

Once the micro-domains are divided into distinct

spherical, interfacial, and matrix regimes, the volume

fractions of each component A, B and S, which are

partitioned into spheres, interface, and matrix, fðSÞ
J , fðWÞ

J ,

and f
ðMÞ
J , respectively, JZA, B, S, are calculated by the

following equations:



Fig. 1. Contour plots ofA volume fraction profiles atX–Y plane in the z-axis of

(a) z/LZ0 and (b) z/LZ0.5, respectively, and (c) volume fraction profiles of

fA, fB, and fS at y/LZz/LZ0.5 for block copolymer solutions in the SBCCA

phase with fZ0.16, NZ300, fZ0.8, cABZ0.138, and cASZcBSZ0.4.
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f
ðSÞ
J Z

1

L3

ð
VS

fJðrÞd
3r

f
ðWÞ
J Z

1

L3

ð
VW

fJðrÞd
3r JZA;B;S (12)
f
ðMÞ
J Z

1

L3

ð
VM

fJðrÞd
3r

where

VS Z 2ð4p=3ÞðD=2Þ3

VW Z 2
4p

3

D

2
C

w

2

� �3

K
D

2

� �3� �

and VMZL3KVSKVW. It is evident that the sum of fðSÞ
J ,

f
ðWÞ
J , and f

ðMÞ
J is equal to the average volume fraction of

component Jð �fJÞ. Therefore, the relative volume fraction of

component J into each regime is equal to

~f
ðSÞ
J Z

f
ðSÞ
J

ðf
ðSÞ
J Cf

ðWÞ
J Cf

ðMÞ
J Þ

Z
f
ðSÞ
J

�fJ

~f
ðWÞ
J Z

f
ðWÞ
J

ðf
ðSÞ
J Cf

ðWÞ
J Cf

ðMÞ
J Þ

Z
f
ðWÞ
J

�fJ

JZA;B;S (13)

~f
ðMÞ
J Z

f
ðMÞ
J

ðf
ðSÞ
J Cf

ðWÞ
J Cf

ðMÞ
J Þ

Z
f
ðMÞ
J

�fJ

Note that in Section 3 we use the dimensionless length

parameters L*, D*, w* and L*, which are in terms of the

mean-squared end-to-end distance of copolymer chains

ð
ffiffiffiffi
N

p
bÞ, i.e. L*ZL=

ffiffiffiffi
N

p
b and similar to D*, w* and L*.
3. Results and discussion

To study the effects of neutral solvent addition on bcc

spheres of block copolymers, we choose a model system

with fZ0.16 and cASZcBSZ0.4, and vary the values of

cAB, N, and f ranging from

0:06%cAB%0:45

150%N%1000

0:2%f%1:0

Typical phase maps in terms of cABN and f are shown in

Fig. 2, where N is equal to 150. In order to examine the

possibility of dilution approximation holding for both order-

order and order-disorder transitions, we also plot the

calculated transition values directly from the dilution

approximation as the dotted curves in Fig. 2. Similar to

melts [26], the trends in phase transitions from hexagonally

close-packed cylinders of A (CA)/bcc spheres of A

ðSBCCA Þ/fcc spheres of A ðSFCCA Þ/disordered phase (D)

with decreasing cABN are preserved. It is clear that the

boundaries between SFCCA =D and SBCCA =SFCCA deviate more

from the dilution approximation with f decreasing. We also

observe that this deviation degree decreases with N

increasing. These results concur with those of Whitmore



Fig. 2. Phase diagram for a diblock copolymer with fZ0.16 and NZ150 in

a neutral solvent (cASZcBSZ0.4) as a function of f and cABN. The dotted

curves correspond to the transition curves simply from the dilution

approximation.

Fig. 3. Free energy per molecule F in Eq. (11) as a function of number of the

basis functions for a copolymer with fZ0.16 in a neutral solvent with

cASZcBSZ0.4 when fcABNZ40 (fZ0.2963, cABZ0.45 and NZ300).
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and Vavasour [9]. It should be noted that although SCMF

theory predicts a very narrow window of SFCCA phase near

the ODT, the most probable order for the minority A spheres

is bcc. In addition, there exists to our knowledge, no

experimental evidence for fcc spheres in the neutral solvent

case. Therefore, we then focus on the analysis of the micro-

structural lengths for SBCCA phase. In particular, the effective

segregation regime for our model system with fZ0.16 is

27.6%(cAB)effNZfcABN%41.4 in order to assure that bcc

is the stable phase. Note that the number of basis functions

in our computations is 60, since the free energy per

molecule F in Eq. (11) obtained for 60 basis functions

already reaches the equilibrium value. For example, Fig. 3

plots F versus number of basis functions for a copolymer

with fZ0.16 in a neutral solvent with cASZcBSZ0.4 when

fcABNZ40 (fZ0.2963, cABZ0.45 and NZ300).

We examine the effects of f, cAB, and N on the

distribution of each component when a neutral solvent is

added. Fig. 4 demonstrates the deviation of volume fraction

profiles ðfIðxÞK �fIÞ of component A, B, and S at y/LZz/LZ
0.5 for a series of f at cABNZ41.4 (cABZ0.138 and NZ
300). As expected, the addition of more neutral and good

solvents into block copolymers reduces the segregation

between A and B, resulting in the A and B profiles become

more cosine-like. Though the solvent is neutral, it

distributes non-uniformally through the segregated

domains. In addition to the solvent accumulation behavior

at the interfaces, we also observe that the solvent distributes

more in the A-rich (minority component-rich) domains than

in the B-rich (majority-rich) domains. With decreasing f the

solvent profile deviates more from the average solvent
volume fraction (1Kf). In Fig. 5 we also plot the deviation

profiles for a series of f but cABN increases to 135 (cABZ
0.45 and NZ300). By comparing the solvent deviation

profiles at the same value of the effective fcABN but

different cABN values in Figs. 4 and 5, we find that even

when the effective AB interaction parameter fcABN is

fixed, the solvent non-uniformity behavior becomes more

significant with increasing cABN (i.e. decreasing f).

Furthermore, even though both cABN and f are fixed, the

distribution of each component is influenced by degree of

copolymerization N. This is shown in Fig. 6 where we plot

the deviation profiles of each component for a series of N

values when cABNZ135 and fZ0.21. In particular, as N

decreases, the non-uniformity degree of solvent distribution

through the domains increases.

Varying each parameter f, cAB, and N hold great

influence not only on the distribution of each component but

also on the micro-structural length scales. Fig. 7(a)–(d)

shows the variation in domain spacing L*, spherical

diameter D*, interfacial width w* and matrix length L*(Z
L*KD*Kw*) with changes in fcABN for a series of f, cAB,

and N values. In Fig. 7 we also present the results for

copolymer melts (shown as the solid curve a) as a

comparison. At a fixed value of cABN equal to 41.4, when

the volume fraction of the added solvent (1Kf) is less than

0.34 so that the solutions are in the same effective

segregation regime as the melts, i.e. 27.6%(cAB)effNZ
fcABN%41.4, the micro-structural length results (shown as

the dotted curves b–d) are almost independent of N and the

same as those predicted by the dilution approximation, i.e.

simply from the melts with (cAB)effZfcAB. As cABN

increases to 135, the length results (shown as the dashed

curves f–i) for the solutions in the same segregation regime

(i.e. 1Kf between 0.693 and 0.797) are deviated from the

dilution approximation results and strongly dependent on N.



Fig. 4. Deviation of volume fraction profiles ðfIðxÞK �fIÞ for component IZ
(a) A, (b) B, and (c) S at y/LZz/LZ0.5 of a copolymer solution with fZ
0.16, cABZcBSZ0.4, and cABNZ41.4 (cABZ0.138 and NZ300) at a

series of f.

Fig. 5. Deviation of volume fraction profiles ðfIðxÞK �fIÞ for component IZ
(a) A, (b) B, and (c) S at y/LZz/LZ0.5 of a copolymer solution with fZ
0.16, cASZcBSZ0.4, and cABNZ135 (cABZ0.45 and NZ300) at a series

of f.
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In particular, the length parameters L*, D*, L* are

significantly smaller than those predicted by the dilution

approximation while the interfacial width w* is larger. The

deviation from the copolymer melts increases with decreas-

ing N (i.e. increasing cAB). We list some typical deviation

values for the length parameters L*, D*, w* and L* with

respect to those obtained from the melts in Table 1. For

example, when cABN is 41.4, the deviations are small to

within 4%. As cABN increases to 135, though the deviations

for L* and D* are within 5%, the deviations for w* and L*

rise significantly up to 9 and 18%, respectively, when N is
300. Fig. 7 also presents the variation of the length results

with cAB for fZ0.7 and NZ150 (shown as curve e), and

fZ0.3 and NZ150 (curve j), respectively. It is clear that

the deviation increases with decreasing f (i.e. increasing the

amount of solvent).

In general, the degree of solvent non-uniformity

correlates well with the deviation of structural lengths

from the dilution approximation. Furthermore, it is worth

noting that this solvent non-uniformity phenomenon has a

great influence on the L* including L* behavior near the

ODT, such that the dependence of L* and L* with respect to

(cAB)effNZfcABN is different from that in melts and varies



Fig. 6. Deviation of volume fraction profiles ðfIðxÞK �fI Þ for component IZ
(a) A, (b) B, and (c) S at y/LZz/LZ0.5 of a copolymer solution with fZ
0.16, fZ0.207, cASZcBSZ0.4, and cABNZ135 at a series of N.
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with f, cAB, and N. If we were to express this difference as a

power law over the short range of fcABN near the ODT, we

would find that L*w(fcABN)
a with the power a varying

from K0.45 to K0.05 and L*w(fcABN)
b with b from K

1.98 toK0.5 dependent off, cAB, and N. In order to explain

this striking behavior, we plot ~f
ðSÞ
J , ~f

ðWÞ
J , and ~f

ðMÞ
J (JZA, B,

S), which correspond to the volume fraction of component J

into spheres, interface, and matrix, respectively, for melts

and solutions as a function of fcABN at a series of cAB and

N in Fig. 8. Recall that for block copolymers in the melt as

cAB decreases because the segregation degree between A

and B becomes smaller, the interfacial width w* increases
and both D* and L* which are characteristic of A-rich and

B-rich domains respectively decrease, as expected. As a

result L* decreases with decreasing cABN and scales as

(cABN)
0.24. However, as cABN decreases further and

approaches the ODT value, both L* and L* increase

significantly. This is mainly attributed to the fact that

many of the minority A blocks are pulled from the spherical

domains and swell the matrix, as can be clearly seen in Fig.

8. For a melt with cABN decreasing from 40 to 28 near the

ODT, we find that the fraction of A in the interfaces ~f
ðWÞ
A

decreases slightly from 0.5 to 0.42, and thus a significant

increase of A fraction into the matrix ~f
ðMÞ
A from 0.2 to 0.52 is

mainly attributed to the fraction of A inside the spherical

domains ~f
ðSÞ
A pulled from 0.3 to 0.06. For component B,

though both ~f
ðSÞ
B and ~f

ðWÞ
B exhibit an increasing and then

decreasing behavior, and ~f
ðMÞ
B an opposite behavior with

decreasing cABN, there is not much variation of B fraction

in each domain. Thus the sharp increase behavior of L* and

L* near the ODT is consistent with the significant increase

of minority A in the matrix domains pulled from the

spherical domains. With the addition of a neutral solvent,

provided that the solvent amount is not large (for example,

(1Kf) is less than 0.34 when cABNZ41.4), the factions of

A and B components into each regime are the same as those

for melts, and the solvent fractions into each regime behave

similar to the A fractions. Therefore, the dependence of L*,

D*, L*, and w* with f near the ODT behaves much the same

as that with respect to cABN for a melt. As the added solvent

amount and/or cABN continues increasing (for example,

when cABNZ138 such that 1Kf is around 0.71–0.80), we

find that the fractions of each component into spheres are

almost the same, but those into interfaces increase and those

into matrix regimes decrease with the values for melts and

for concentrated solutions. As such, the increase of the

degree for the minority blocks pulled from the spheres into

the matrix near the ODT is not as significant as that in the

melt. The sharp increase behavior in L* as well as L* near

the ODT gets smoothened and even disappears.

It should be noted that all of the above results are based

on the self-consistent mean-field theory. It is well known

that near the ODT in the semidilute regime the effects of

chain swelling as well as the fluctuations have to be

considered. If so, these effects may influence the domain

size in two opposite ways. On the one hand, the swelling

chains will lead to larger domain spacing, as one may

naively expect. On the other hand, if the neutral solvent

accumulates at the A/B interfaces, the area per chain

increases which thus leads to a decrease of the domain

spacing. We believe that this solvent accumulation behavior

becomes more significant with the fluctuation effects

considered. Therefore, it is reasonable to expect that the

domain spacing becomes smaller than the mean-field

prediction. As such, the deviation from the dilution

approximation becomes larger and our results near the

ODT become more significant.



Fig. 7. Double-logarithmic plot of (a) lattice spacing L*, (b) spherical diameter D*, (c) interfacial width w*, and (d) matrix domain length L* versus fcABN at

various values of cAB and N for block copolymer solutions with fZ0.16 and cASZcBSZ0.4 in the SBCCA phase.

Table 1

Typical values of deviation for the length parameters L*, D*, w* and L* compared with those obtained from the melts

cABN cAB N fcABN (%)

ðL*ðfZ1ÞK

L*ðfÞÞ=ðL*ðfZ1ÞÞ

ðD*ðfZ1ÞK

D*ðfÞÞ=ðD*ðfZ1ÞÞ

ðw�ðfÞKw�ðfZ1ÞÞ=

ðw�ðfZ1ÞÞ
ðL*ðfZ1ÞK

L*ðfÞÞ=ðL*ðfZ1ÞÞ

41.4 0.207 200 28 1.239 0.423 0.846 3.192

36 0.133 0.250 0.309 0.295

0.069 600 28 0.283 0.042 0.386 0.941

36 0.022 0.072 0.178 0.099

135 0.450 300 28 4.115 3.493 8.960 17.573

36 2.785 3.582 3.776 3.776

0.135 1000 28 2.179 0.042 3.691 7.648

36 1.015 1.296 1.128 1.961
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Fig. 8. Volume fraction of component J (JZA, B, S) into the spheres, interface, and the matrix, fðSÞ
J , fðWÞ

J , and f
ðMÞ
J , respectively, for melts and solutions as a

function of fcABN at various values of cAB and N for block copolymer solutions with fZ0.16 and cASZcBSZ0.4 in the SBCCA phase.
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4. Conclusions

In this paper we analyze the distribution behavior of each

component as well as the micro-structural length scales for

the body-centered cubic (bcc) spheres of A/B diblock

copolymers in a neutral solvent by self-consistent mean-

field (SCMF) theory calculations. In particular, the effects of

cAB, N, and f are examined. Most previous theoretical

studies have shown that with the dilution of a neutral and

good solvent into block copolymers, the domain spacing L*

is simply obtained as a neat copolymer with the effective

A/B interaction parameter (cAB)effZfcAB, i.e. L
* obeys the

so-called dilution approximation. While our SCMF results

for the bcc phase find that the length parameters become

more complicated due to the effects of solvent non-

uniformity and are strongly dependent of each parameter

cAB, N, and f. With increasing solvent amount (1Kf)

and/or cABN, the domain spacing L*, the spherical diameter
D*, and the matrix length L* are significantly smaller than

those predicted by the dilution approximation while the

interfacial width w* is larger. Although when cABN is fixed,

the deviation increases with decreasing N. In general, the

deviation of micro-structural lengths from the dilution

approximation correlates well with the degree of solvent

non-uniformity.

Furthermore, when ODT is approached, both the

dependence of L* and L* with respect to (cAB)effNZ
fcABN for the solutions exhibit a strikingly different

behavior with that for melts. Recall that for melts in the

bcc spheres L* and L* both increase sharply as the ODT is

approached. This sharp increase of behavior near the ODT,

in particular for copolymers with a very short minority

block, is not surprising due to the fact that many of the

minority blocks are pulled from the spherical domains and

thus swell the matrix. With increasing solvent amount

and/or cABN, the fractions of each component into



Y. Chang et al. / Polymer 46 (2005) 3942–3951 3951
interfaces increase and those into matrix regimes decrease

with those values for melts as well as for concentrated

solutions. As such, the increase of the degree for the

minority blocks pulled from the spheres into the matrix near

the ODT is not as significant as that in the melt. The sharp

increase in the behavior of L* as well as L* near the ODT

smoothens and even disappears. If we were to express this

difference as a power law over the short range of fcABN

near the ODT, we would find that L*ðin terms of
ffiffiffiffi
N

p
bÞw

ðfcABNÞ
a with the power a varying from K0.45 to K0.05

and L*w(fcABN)
b with b from K1.98 to K0.5 dependent

off, cAB, and N. It should be noted that this unique behavior

for L* and L* near the ODT in the bcc phase due to the

effects of solvent addition has not been observed elsewhere.
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