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AbstractÐInterfaces of A±B±C ternary alloys decomposed into two and three phases are studied. The
e�ect of the gradient energy coe�cients ��II, I � A, B, C, on the interface composition pro®les of ternary
alloys is examined. The adsorption of component C in ternary alloys is obtained numerically by ®nding
steady-state solutions of the nonlinear Cahn±Hilliard equations and by solving the two Euler±Lagrange
equations resulting from minimizing the interfacial energy, and analytically near the critical point. It is
found that the solutions from both numerical methods are identical for a two-phase system. In symmetric
ternary systems (equal interaction energy between each pair of components) with a minority component C,
the gradient energy coe�cient of C, ��CC, can have a very strong in¯uence on the degree of adsorption. In
the a and b two-phase regions, where a and b are the phases rich in the majority components A and B, re-
spectively, as ��CC increases, the adsorption of the minority component C in the a and b interfaces
decreases. Near a critical point, however, the degree of adsorption of minority component C is independent
of the gradient energy coe�cient. # 1999 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

Many commercial alloys are multicomponent and

undergo phase separation. The morphology of the

phases, and in particular the interfaces, determines

the mechanical properties of these multiple-phase

materials. Therefore, the interfaces that develop

during the dynamics of phase separation play a

very important role in commercial applications.

The microstructures and interfaces are a conse-

quence of both the thermodynamics and dynamics

of phase separation. While phase separation

dynamics for systems undergoing spinodal de-

composition have been extensively studied in binary

alloys [1], only a few studies exist in ternary alloys.

For example, the thermodynamic stability and the

early stages of phase separation dynamics in ternary

alloys were analyzed extending the linearized Cahn±

Hilliard equations for binary systems [2±4].

Furthermore, the nonlinear dynamics of the in-

homogeneous morphological evolution during the

spinodal decomposition process have been studied

recently [5, 6]. To our knowledge, however, there

has been no complete study of the properties of

interfaces in ternary alloys.

Ternary A±B±C mixtures can decompose into

two or three phases. Between any two phases rich

in components I and J, the third component K seg-

regates in the interface, even when the equilibrium

composition of component K is equal in both

phases [5±10]. The adsorption e�ect has a strong in-
¯uence on the decomposition patterns into two and
three phases. It can in principle enhance the stab-

ility of these phases by lowering the interfacial
energy and increasing the interfacial thickness [7±
10].
In this paper we study the interfacial properties,

such as the interfacial energy and the interfacial
thickness, when a third minority component C is
added to A and B binary mixtures. Equilibrium

interface pro®les are obtained for a ternary mixture
segregating into a two-phase A-rich and B-rich
region, by minimizing the interfacial energy. We

®nd the degree of adsorption of C. We also analyze
the interfaces in the three-phase region. Our results
are compared with the steady-state solutions of the

nonlinear Cahn±Hilliard equations (NLCH).
Consider a ternary A±B±C system described by

the free energy per lattice site on mixing

Df � Df0 �
X

I�A, B, C

�k II�rjI�2 �1�

where Df0 is the regular solution model free energy
per lattice site, and �k II is the bare gradient energy

coe�cient of component I re¯ecting the unfavorable
nature of compositional inhomogeneities. Df0 is a
function of the local compositions of component I,
jI�r�, I � A, B, and C
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Df0
kBT
� jA ln jA � jB ln jB � jC ln jC

� wABjAjB � wBCjBjC � wACjAjC

�2�

where r is a position vector, wIJ is the e�ective inter-
action energy between components I and J, given
by wIJ � oIJ=kBT, where oIJ is the regular solution
coe�cient between species I and J, kB is

Boltzmann's constant, and T is temperature. The
phase diagrams of ternary polymer blends con-
structed in Refs [7, 8] are appropriate in describing

ternary alloys by setting NI, the degree of polym-
erization of component I, I � A, B, C, equal to one.
The gradient energy coe�cients �k II in equation (1)

of alloys, however, can be much smaller than those
of polymers, leading to larger degrees of adsorp-
tion. Therefore, the linearized solution of the

Euler±Lagrange (E±L) equations that result from
the minimization of the interfacial energy found in
Refs [9, 10] cannot always describe ternary alloys.
In this paper, the non-linear E±L equations are

solved. Though the interfacial properties found in
ternary polymer blends do not always describe the

interfacial properties of alloys, the kinetics of phase
separation and the dynamic scaling laws found in
Refs [7±10] are the same in alloys. Indeed, the phe-

nomenological results on the kinetics of phase sep-
aration in ternary alloys found recently [11], are in

agreement with the results in polymer blends. While
in polymer blends, �k II are composition dependent
terms arising from the nonlocality of polymer con-

®gurational entropy, in alloys the �k II are due mostly
from the short-range atomic interactions, and thus
must be determined via a quantum mechanical cal-

culation. We take the gradient energy coe�cients to
be constants.

In Section 2, we brie¯y describe the thermodyn-
amics and the dynamics of phase separation for
ternary systems. In Section 3, we describe the two

numerical techniques we use to obtain the interface
pro®les; we solve (i) the non-linear Cahn±Hilliard
equations in the long time limit, and (ii) the Euler±

Fig. 1. The phase diagrams of symmetric ternary systems for (a) w � 2:4, (b) w � 2:65, (c) w � 2:7, and
(d) w � 3:0. The symbols (- - - -) and (± � ±) correspond to the spinodal curves and the tie-lines, respect-

ively.
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Lagrange equations resulting from minimizing the
interfacial energy. In this section we also describe a

Landau-type approach to determine the degree of
adsorption of the minority C component at the A-
rich and B-rich interfaces valid around the critical

points of transitions to two phases. In these regions
of the ternary phase diagram, we ®nd that the
adsorption of the minority C component is low and

independent of the gradient energy coe�cients. The
gradient energy coe�cients of ternary alloys have
large e�ects when the system is strongly segregated.

The results and discussion regarding these e�ects
are given in Section 4. In Section 5 we summarize
our studies.

2. THERMODYNAMICS AND DYNAMICS OF
PHASE SEPARATION IN TERNARY SYSTEMS

For simplicity, we determine here the phase dia-
grams of symmetric ternary alloys, i.e. alloys with

oAB � oBC � oAC � o (wAB � wBC � wAC � w). The
phase diagrams and the spinodal curves for sym-
metric ternary systems are shown in Fig. 1 for
di�erent values of w. Note that as T decreases w
increases. The details on how to calculate the phase
diagrams and the spinodal curves from the free
energy function per lattice site in a homogeneous

system, Df0 as given in equation (2), can be found
in Refs [7, 8].
For w < 2, the ternary system is homogeneous for

any alloy, or mean, composition � �jA, �jB, �jC�. A
typical ternary phase diagram is shown in Fig. 1(a),
where w � 2:4. This diagram is qualitatively the

same in terms of the morphology of the two-phase
region for 2Rw < 2:57. In the diagram the A-rich,
B-rich, and C-rich phases are labeled as a, b, and g,
respectively. As w increases from 2.0, there are three

lines of critical points in a temperature vs compo-
sition diagram given by �1=w, 1=w, 1ÿ 2=w�,
�1ÿ 2=w, 1=w, 1=w�, and �1=w, 1ÿ 2=w, 1=w�, deter-

mined by the intersection of the spinodal lines with
the coexistence curves in each a+b, b+g, and a+g
region. The tie lines, which give the equilibrium

compositions in the two-phase regions, are parallel
to the I±J axis. For example, for any alloy compo-
sition along the line DE in Fig. 1(a) the equilibrium
compositions of a and b are given by D �
� �ja

A, �ja
B, �ja

C� and E � � �jb
A, �jb

B, �jb
C�, where

�ja
C � �jb

C � �jC.
When w > 2:57 three-phase regions appear in the

phase diagrams. The single-phase region near the
center of the composition triangle is labeled as d.
There are three three-phase regions, inside the small

triangles shown in Fig. 1(b) where w � 2:65. As
expected by the phase rule, each three-phase region
is separated from single-phase regions by two-phase

regions on the right and left of each small triangle.
These six new two-phase regions each have a
critical point (as w increases, they generate six lines
of critical points emerging from the critical points

at w � 2:57). For example, for any initial compo-
sition inside the triangle HKL, with equilibrium

compositions given by H � � �ja
A, �ja

B, �ja
C�,

K � � �jb
A, �jb

B, �jb
C�, and L � � �jd

A, �jd
B, �jd

C�, the left-
and right-hand sides of the tie-triangle HKL

are a+d and b+d, respectively. When w � 8=3,
the critical lines of a+d, b+d, and g+d
join at (0.5, 0.25, 0.25), (0.25, 0.5, 0.25), and

(0.25, 0.25, 0.5), respectively. For w > 8=3 these two-
phase regions overlap and all the critical points dis-
appear as shown in Fig. 1(c) for w � 2:7. When w is

2.7456, the three-phase regions shown in Fig. 1(c)
touch at the center of the ABC triangle. For w >
2:7456 they overlap leading to a single interior a, b,
and g three-phase triangle with equilibrium compo-

sitions given by the points X, Y, and Z, shown in
Fig. 1(d) for w � 3:0.
The dynamics of phase separation for ternary sys-

tems are studied solving the two non-linear di�u-
sion equations, given by [7, 8]

@

@ t

�
jI�r, t�

�
�MIIr2

�
ms
0,I ÿ ms

0,C ÿ 2kIIr2jI ÿ 2kIJr2jJ

�
�MIJr2

�
ms
0,J ÿ ms

0,C ÿ 2kJIr2jI ÿ 2kJJr2jJ

�
I 6� J; I, J � A, B: �3�

Here we have eliminated the variable jC�r, t� since
jA � jB � jC � 1 and have used the Gibbs±

Duhem relationship locally. These equations are de-
rived in Appendix A in Refs [7, 8]. In equation (3),
ms
0,I � @Df0=@jI is an e�ective di�usion potential of

component I, kII � �k II � �kCC and kAB � �kCC are the
e�ective coe�cients of the gradient energy terms in
the free energy when the component C is elimi-

nated, and MII � �1ÿ �j I�2MI � �j 2
I

P
J6�I MJ, I � A,

B, and MAB � ÿ�1ÿ �jA� �jBMA ÿ �1ÿ �jB� �jAMB�
�jA �jBMC, where MI, the Onsager coe�cient of I,
are e�ective mobilities.

In Refs [7, 8] we analyzed the dynamics of tern-
ary systems with �jA � �jB decomposing into two
and three phases. We solved equation (3) in two

dimensions using periodic boundary conditions
until the very late stages of the decomposition pro-
cess or steady state, where the interfacial properties

are time independent. Here we analyze only the
interfaces in the steady state as a function of �k II

and by using the numerical methods described in
Section 3. In order to study the e�ect of the gradi-

ent energy coe�cients �k II on the interface pro®les,
we vary the two parameters, e1 and e2, which are
de®ned as

e1 � �kBB

�kAA

�4a�
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e2 � �kCC

�kAA

: �4b�

3. THE LIMIT OF SMALL ADSORPTION

The adsorption of the third minority component
C along the interfaces between the two majority

components A- and B-rich phases increases the
interfacial thickness and decreases the interfacial
energy [9, 10]. The degree of adsorption near the

critical points when the interactions between A and
C and B and C are equal (non-selective C com-
ponent) is a simple function of the thermal energy
and the alloy composition only; that is, it is inde-

pendent of the gradient energy coe�cients, and it
can be obtained with a linearized analysis of the
interfacial energy [9, 10], which is possible when the

degree of adsorption is low. We now present a non-
linear Landau-type analysis of adsorption near criti-
cal points where there is only a linearized coupling

between the ¯uctuations of C and both A and B. In
the presence of a non-selective C component with
wAC � wBC � ZwAB, where Z is a constant >0, the

adsorption of C per interfacial thickness in the a
and b interfaces is de®ned in two dimensions as

GC � 1

L

�1
ÿ1
�jC�r� ÿ �j e

C� dx �5a�

where �j e
C � �ja

C � �jb
C, GC is a dimensionless

adsorption, L is the interfacial thickness de®ned as

[9, 10]

L � 2
ÿ
jC�0� ÿ �jC

�����djC

dx

����
max

�5b�

and jdjc=dxjmax is the maximum of the absolute
value of djc=dx. Note that since je

c is equal in the
two phases, Gc is independent of the location of the

dividing surface in a Gibbsian model of the inter-
face. The general case is treated in Refs [7, 8]. In
non-selective C systems with no interactions
between A and C and B and C (wAC � wBC � 0),

one would expect C to segregate in the interfaces
between a and b phases to decrease the bonds
between A and B. In the general case the adsorp-

tion of non-selective (wAC � wBC � ZwAB, Z 6� 0) min-
ority components C in the a and b interfaces as a
function of �jC, �jC < �jA � �jB, can be understood

by analyzing the contribution to the free energy
from in®nitesimal compositional ¯uctuations. A
Taylor's series expansion of Df in the Fourier com-

ponents of c1�r� � �djA�r� ÿ djB�r��=�2 �j � and
c2�r� � ÿdjC�r�, where �j � �jA � �jB, and
djI�r� � jI�r� ÿ �j I, I � A, B, C, in systems with
�jA � �jB is given by

Df
ÿ�
c1�k�, c2�k�

	�
0
X

I�1, 2

X
k

OII�k�
2

c2
I �k�

�
X

k, k 0 , k 00

O112

3!
d�k� k 0

� k 00 �c1�k�c1�k 0 �c2�k 00 �

�
X

k, k 0 , k 00, k 000

O1111

4!
d�k� k 0 � k 00

� k 000 �c1�k�c1�k 0 �c1�k 00 �c1�k 000 � �6�

where

O11�k� � �j 2
ÿ
4=� �j � ÿ 2wAB � 4 �kAAk

2
�
�6a�

O22�k� � 1=� �j �1ÿ �j �� � �0:5ÿ 2Z�wAB � � �kAA

� 2 �kCC�k2 �6b�

O112 � ÿ12 �6c�

O1111 � 32 �j : �6d �
The sign of the coe�cients O11�k � 0� and O22�k �
0� determine the instability with respect to the for-
mation of a+b mixtures and g phase, respectively.

Let us assume that the system is unstable to the for-
mation of two phases, one rich in A (a) and the
other rich in B (b), and stable to the formation of a

phase rich in the minority C (g) (O11�k � 0� < 0 and
O22�k � 0� > 0). This is the case, for example, along
the line halfway and perpendicular to the A±B side
of the triangle shown in Fig. 1(a) inside the two-

phase region. Since C is non-selective, �jC is con-
stant in the two bulk phases far from the interface,
since the phases are compositionally uniform.

However, the third-order term O112 in equation (6)
will induce a composition ¯uctuation in C whenever
there is a composition ¯uctuation of A and B.

Indeed, for a single wave compositional ¯uctuation
of wavelength l1 � 2p=k1, c1�r� � A1 ei ~k1 �~r � c:c:, if
wAB > 2= �j � 2 �kAAk

2
1 a compositional ¯uctuation in

c2�r� � A2 ei ~k2�~r � c:c: of half wavelength, k2 � 2k1,
is induced by the negative O112 term in equation
(6), which is non-zero only if k 0 � k 00 � k 000 � 0 with
k 0 � k1, k 00 � k1, k 000 � k2. For this periodic inter-

face pro®le with a single wavenumber ¯uctuation in
both components A and B, the composition of the
minority C is largest at the points where the compo-

sition ¯uctuations of A and B are at a minimum
(i.e. where djI�r� � 0, I � A, B). This implies that
there is an excess of C at the interfaces. While this

is the situation near the critical point where the
interfaces are very di�use, this can also occur at the
very early stages of spinodal decomposition where

the decomposition process is dominated by compo-
sition ¯uctuations of A and B of a single wave-
length with the maximum growth rate as given by
the linear Cahn theory. In this case, this ¯uctuation
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of A and B will induce an out-of-phase composition
¯uctuation of C with half wavelength. This induced

composition ¯uctuation of C is indeed observed
during the dynamics of phase separation into shal-
low quenches and/or when the degree of adsorption

of C is small, e.g. when the gradient energy coe�-
cients are large (e.g. in ternary polymer blends [9,
10]). The magnitude of the adsorption in steady

state, when the composition has evolved to form
two macroscopic phases (i.e. for in®nite wave-
lengths, k1 � 0), can be obtained by minimizing

equation (6). This gives the most probable ampli-
tude of the induced compositional ¯uctuation in C,
�A 2, that is also proportional to the square of the
amplitude of the composition ¯uctuation of A and

B, leading to

�A 2 � O11�k1�O112

O1111O22�k2� ÿ O2
112=3

�7�

with k1 � 0 and k2 � 0. The degree of adsorption
of C for a composition ¯uctuation of A and B of a
single wavelength near the critical points is obtained
substituting c2�r� � A2 ei ~k2�~r � c:c: with the ampli-

tude given by equation (7) in equations (5a) and
(5b), leading to an adsorption proportional to �A 2.
Therefore, the adsorption of a non-selective min-

ority C, wAC � wBC � ZwAB, is minimum when Z � 0,
and it increases as Z increases, since the other terms
in O22 are greater than zero. When Z increases such

that O1111O22�k2 � 0� ÿ O2
112=3 < 0, however, three

phases will appear at steady state, as shown in Fig.
1(b) for Z � 1. Equations (6) and (7) cannot be

used to describe deep quenches in the steady state
when the compositional ¯uctuations are not small
because the Landau-type expansion cannot be trun-
cated at fourth order in the composition ¯uctu-

ations in this limit and because the mass
conservation laws are not included in our analysis.
These equations suggest that Gc in equation (7),

proportional to �A 2, is linear in �jC for �jCWjcrit
C .

This can be found by expanding �A 2 for small �jC in
the limit �jCW �j crit

C and using �j � 1ÿ �jC. When Z
is small, however, a critical point appears when �jC

increases towards �j crit
C � 1ÿ 2=wAB, and the adsorp-

tion of C near the critical point should decrease as
�jC increases, GC0A2(k1=0)0jC(1ÿjC)(jC

critÿjC).

Thus the adsorption of C is independent of the gra-
dient energy coe�cients. This suggests a maximum
of the adsorption at a certain �jC < �j crit

C . The

results are in good agreement with the solution of
the NLCH equations in the steady state [9, 10].
The above linear-response analysis, however,

breaks down for large degrees of adsorption, such
as for ternary alloys having very small gradient
energy coe�cients. These compositional gradient

terms have a very strong in¯uence on the interfacial
properties. For example, the terms are very import-
ant in determining the equilibrium interface compo-
sition pro®le. In this section we obtain the interface

composition pro®le ®nding the minimum of the
interfacial energy, and compare the results with

those obtained solving the NLCH equations in one
dimension in the steady state.

4. NUMERICAL METHODS

For a ¯at interface between the a- and b-phases
of compositions �ja

I and �jb
I , respectively, the inter-

facial energy s is given by the di�erence, per unit

area of interface, between the actual free energy
and that which it will have if the properties of the
two phases were continuous [12]

s � NV

�1
ÿ1

0@D f m
0 �

X
I�A, B, C

�k II

�
djI

dx

�2
1A dx �8�

where NV is the number of lattice sites per unit

volume and

Dfm0 � Df0�jI�x�� ÿ
X

I

jI�x�ma�b�0,I

where ma�b�0,I is the chemical potential evaluated at
the bulk compositions of the equilibrium the a- and
b-phases. The composition of C has been eliminated

using the constraint, jA�x� � jB�x� � jC�x� � 1.
Hence an extremum of s in equations (4a) and (4b)
is obtained solving simultaneously the resulting two
Euler±Lagrange (E±L) equations [13]

@I

@jA

ÿ d

dx

 
@ I

@
ÿ
djA=dx

� ! � 0 �9a�

@I

@jB

ÿ d

dx

 
@ I

@
ÿ
djB=dx

�! � 0 �9b�

where x is a position perpendicular to the interface

I � Dfm0 �
X

I�A, B, C

�k II

�
djI

dx

�2

ÿl1
ÿ
jA�x� ÿ �jA

�
ÿ l2

ÿ
jB�x� ÿ �jB

�
and l1, l2 are two Lagrange multiplier constants,

included to assure that the global mass conservation
constraints, i.e.�1

ÿ1

ÿ
jI�x� ÿ �j I

�
dx � 0, I � A, B

are satis®ed. The Lagrange multipliers l1 � 0 and
l2 � 0 when the boundary conditions, Dfm0 � 0 and

djB=dx � djB=dx � 0 as x421, are applied in
equations (9a) and (9b). Hence, equations (9a) and
(9b) reduce to
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d2jA

dx 2
� 1

2
ÿ
kAAkBB ÿ k2AB

��@Dfm0
@jA

kBB

ÿ @Df
m
0

@jB

kAB

�
�10a�

d2jB

dx 2
� 1

2
ÿ
kAAkBB ÿ k2AB

��@Dfm0
@jB

kAA

ÿ @Df
m
0

@jA

kAB

�
: �10b�

We solve equations (10a) and (10b) in one dimen-
sion by applying the equilibrium boundary con-

ditions. These equations are solved numerically
using COLSYS as a system of second-order non-lin-
ear ordinary di�erential equations [14].

We also determine numerically the steady-state
interfacial composition pro®les using the NLCH,
equation (3), in one dimension with the equilibrium
boundary conditions, jI�x � 1� � �ja

I and

jI�x � ÿ1� � �jb
I , and djA=dx � djB=dx � 0 as

x421 (instead of periodic boundary conditions).
We solve equation (3) in terms of reduced distance

and time parameters, x � �o=4 �kAA�1=2r and
t � �MAAo2=4 �kAA�t. The values of Dx and Dt are
chosen to satisfy the conditions for numerical stab-

ility and have su�cient numbers of meshpoints to
resolve the composition pro®les through the inter-
face. To reach the steady-state solution e�ciently,

initial composition pro®les are provided. For
example, the initial composition pro®les of a tern-
ary system into two phases a and b assuming that
each phase coarsens and reaches the equilibrium

compositions are given by

DjA�x� � Dja
A tanh

24ÿ " 2
ÿ

�jAwÿ 1
�

�jAw�1� e1 �

#1=2

x

35 �11a�

DjB�x� � Dja
B tanh

24ÿ " 2
ÿ

�jBwÿ 1
�

�jBw�1� e1 �

#1=2

x

35 �11b�

DjC�x� � 0 �11c�

where DjI�x� � jI�x� ÿ �j I, and Dja
I � �ja

I ÿ �j I,

I � A, B, C. Indeed, equations (11a)±(11c) are
obtained analytically near critical points [12] when
the adsorption of C is neglected. As discussed in

Section 3, the adsorption in these regions is indeed
negligible. Similarly for three-phase systems,
between any two phases rich in components I and
J, the compositions of I and J are taken to have

initially tanh pro®les. The initial forms of the com-
position pro®les do not a�ect the steady-state inter-
face pro®les.

5. RESULTS AND DISCUSSION

We compare the interface pro®les determined

using the two E±L equations and the NLCH

equations in the steady state. We ®nd that the pro-

®les determined from both methods are identical.

However, we have not determined interfacial pro-

®les in a system with three phases using the E±L

equations. In this case, the solutions to the E±L

equations are very sensitive to the initial guess,

which frequently yields pro®les that are not global

minima. This sensitivity was not observed with the

NLCH equations. We analyze systems with �jC <
�jA � �jB quenched into the two- and three-phase

regions. In particular, the systems at points 5 and 6

with initial compositions (0.45275, 0.45275, 0.0945)

and (0.45, 0.45, 0.1) at w � 3:0, see Fig. 1(d), are

studied. System 5 is unstable to the formation of a
and b with compositions given by

X � �0:811, 0:0945, 0:0945�, and

Y � �0:0945, 0:811, 0:0945�, respectively; while sys-

tem 6 is unstable to the formation of the a- and b-
phases and metastable to the formation of g-phase
with compositions given by X, Y, and

Z � �0:0945, 0:0945, 0:811�, respectively.
In Figs 2(a)±(c), we show the composition pro-

®les of system 5 for e2 � 0, 1, and 10, respectively,

when e1 is ®xed to be 1.0. As expected, when e1 is

equal to 1 (the gradient energy coe�cients contribu-

ted from A and B are the same), the pro®les

jA�x� � jB�ÿx� and jC�x� is symmetric about

x � 0. The composition of C is the largest at x � 0.

As �kCC�e2� increases the value of DjC�x � 0�
decreases and the interface becomes broader. When
�kCC�e2�41, since even an in®nitesimal amount of

C segregating in the interfaces increases the inter-

facial energy, we expect no adsorption of C along

the interfaces. When e1 is not equal to 1, jA�x� 6�
jB�ÿx� and therefore the symmetry of jC�x� breaks
down, as shown in Figs 2(d) and (e) at e1 � e2 � 0,

and e1 � 50, e2 � 1, respectively. We ®nd that the

maximum adsorption of C [the largest DjC�x�
value] occurs when �kCC � �kBB � 0 or
�kCC � �kAA � 0.

The gradient energy coe�cients not only a�ect

the adsorption of the minority component C in the

interfaces between the two majority A-rich and B-

rich phases, but also have a strong in¯uence on the

formation of a third phase that is rich in the min-

ority component C. In Figs 3±5, we plot the steady-

state interface pro®les of system 6 for e1 � e2 � 0,

e1 � e2 � 1, and e1 � e2 � 1, e2 � 10, respectively.

The interfaces plotted on a larger scale are shown

in parts (d) and (e) of each ®gure. The initial com-

position pro®les used assume that the phases a, b,
and g form and that the g-phase forms between the

a- and b-phases, as shown in Fig. 6. In the case of

e1 � e2 � 0 (see Fig. 3), the formation of each

phase is observed in the steady state. We observe

the adsorption of C in the interfaces between the
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Fig. 2. Equilibrium composition pro®les of system 5 in Fig. 1(d) for (a) e1 � 1 and e2 � 0, (b) e1 � 1
and e2 � 1, (c) e1 � 1 and e2 � 10, (d) e1 � 0 and e2 � 0, and (e) e1 � 50 and e2 � 1. The symbols
(ÐÐ), (� � �� � �), and (- - - -) correspond to components A, B, and C, respectively. The values of x are in

the unit of �4 �kAA=o�1=2.



Fig. 3. Equilibrium composition pro®les of system 6 in Fig. 1(d) for e1 � 0 and e2 � 0. The interfaces
plotted in a larger scale are shown in parts (d) and (e). The values of x are in the unit of �4 �kAA=o�1=2.

Fig. 4. Equilibrium composition pro®les of system 6 in Fig. 1(d) for e1 � 1 and e2 � 1. The interfaces
plotted in a larger scale are shown in parts (d) and (e). The values of x are in the unit of �4 �kAA=o�1=2.
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a- and b-phases, and the adsorption of B between

the a- and g-phases. However, the component A

does not segregate in the interfaces between the B-

rich and the C-rich phases; even a small amount of

A segregating in the interfaces increases the inter-

facial energy since �kBB � �kCC � 0. When all of �k II

are equal, i.e. e1 � e2 � 1, each component K segre-

gates in the interfaces between the I-rich and J-rich

phases (see Fig. 4). Note that there is still the for-

mation of g-phase, it does not reach the equilibrium

compositions as given by the phase diagram. No

adsorption of the A and B components is observed

as �kCC increases, as shown in Fig. 5, and the g-
phase seems to disappear since the maximum of the

composition C is much smaller than the equilibrium

composition given by the phase diagram.

In order to see if these results are due to the ®nite

size e�ect, we determine the pro®les of system 6 by

doubling the size for e1 � e2 � 1, and e1 � 1,

e2 � 10, respectively. That is, the initial amounts of

the a-, b-, and g-phases are doubled. In the case of

e1 � e2 � 1, we observe that the compositions of

the g-phase reach the equilibrium compositions

given by the phase diagram. While in the case of

e1 � 1 and e2 � 10, the g-phase comes closer to the

equilibrium compositions but still does not attain

the values given by the phase diagram. If, however,

the system size is made still larger, the g-phase will

reach the equilibrium compositions given by the

phase diagram. The dynamics (i.e. the solution of
the NLCH equations in two dimensions) show that
the third g-phase always forms at the junctions of

the interfaces between the a- and b-phases, where
the nucleus rich in the minority C component
reaches the equilibrium composition ®rst.

Therefore, it is much harder for the g-phase to
reach its equilibrium compositions when �kCC is
large.

It should be noted that in equilibrium due to the
gradient energy coe�cients, the g-phase will not
always form between the a- and b-phases. Consider
two possible spatial distributions of the a-, b- and
g-phases: a±g±b and g±a±b with total interfacial
energies s1 and s2, respectively. When there is no
gradient coe�cient for the C component (i.e.
�kCC � 0), s1 is always less than s2 and therefore the
formation of the g-phase between the a- and b-
phases is the most stable in this case. However, this

is not the case if �kCC is large. In this case s1 can be
larger than s2, which implies that g±a±b is the most
stable con®guration.

6. SUMMARY

The interface pro®les of ternary alloys decom-
posed into two- and three-phase regions are
obtained solving the non-linear Cahn±Hilliard
equations (NLCH) in the steady-state limit. We

Fig. 5. Equilibrium composition pro®les of system 6 in Fig. 1(d) for e1 � 1 and e2 � 10. The interfaces
plotted in a larger scale are shown in parts (d) and (e). The values of x are in the unit of �4 �kAA=o�1=2.
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also determine the interfacial energy minimizing

composition pro®les by solving the two Euler±
Lagrange equations. We concluded that the steady-

state solution of the NLCH equations are identical

to the solutions obtained from the E±L equations
for two-phase systems. In the three-phase systems,

the NLCH approach is most e�cient.

We study the e�ect of the gradient energy coe�-
cients, �k II, on the two-phase and three-phase inter-

face pro®les. In ternary alloys with a minority
component C, we ®nd that �kCC can have a strong

in¯uence on the degree of adsorption. In two-phase

regions, the scaling of the maximum in DjC�x� is
properly given by the Landau-type analysis near the

critical points and when the gradient energy coe�-
cients are large. Near the critical points GC is inde-

pendent of �kCC. This result is also true for
conditions not near the critical point where the

adsorption is small [9, 10]. As �kCC decreases the
maximum of DjC�x� increases leading to large
degrees of the adsorption of C along the interfaces.

In this case, as in deep quenches, only the non-lin-
ear E±L equations or the steady-state solution of
the NLCH equations can give the interface pro®le.

For a ternary system unstable to the formation of
the two majority a- and b-phases and metastable to
the formation of the third minority g-phase, the g-
phase does not necessarily form between the a- and
b-phases when �kCC is large.
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