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ABSTRACT: We present a theoretical study of the influence of solvent on ordered block copolymer
solutions. The phase behavior is examined as a function of solvent selectivity, temperature, copolymer
concentration, composition, and molecular weight. Phase maps are constructed using self-consistent mean-
field (SCMF) theory, via the relative stability of the “classical” phases, lamellae (L), hexagonally packed
cylinders (C), and a body-centered cubic array of spheres (S). Solvent selectivity and polymer concentration
strongly influence phase transitions in copolymer solutions. When a neutral good solvent is added to a
symmetric block copolymer, a direct (lyotropic) transition from L to disordered (D) is expected, analogous
to the (thermotropic) L f D transition in melts. Indeed for neutral good solvents the dilution
approximation is followed: the phase map is equivalent to that in the melt, once the interaction parameter
is multiplied by the copolymer volume fraction. In contrast, for a symmetric block copolymer in the
presence of a slightly selective solvent, the progression L f C f S f micelles f D is expected, although
the micellar phase is not treated here. For asymmetric copolymers more elaborate sequences are
anticipated, such as the progression CB f L f CA f SA f micelles f D. The stability limit of a
homogeneous block copolymer solution is also examined via the random phase approximation (RPA)
method. The effect of polymer concentration on the spinodal instability falls into two regimes. When
the solvent is not very selective, the stable microphase separation region is reduced as polymer
concentration decreases, whereas for very selective solvents, whereas for very selective solvents decreasing
polymer concentration broadens the region of stable ordered microstructures.

Introduction

Block copolymers have attracted considerable atten-
tion due to their ability to self-assemble into various
ordered structures. Much of the research to date has
emphasized bulk block copolymers.1-4 Consequently,
the factors governing the self-assembly of AB block
copolymer melts are well understood, although some
interesting questions remain. In general, the im-
miscibility of the A and B blocks (quantified by the
interaction parameter ø) drives the system to segregate
as temperature decreases (ø ∼ T-1). Due to the con-
nectivity of the blocks, the system undergoes an order-
disorder transition into A-rich and B-rich microdomains
at a certain value of øN, where N is the degree of
polymerization. The composition of the copolymer, f )
(NA/[NA + NB]), largely determines the shape and
packing symmetry of the ordered microstructures. The
so-called “classical” phases, such as lamellae, hexagonal
cylinders, and body-centered cubic spheres, and more
complicated phases, such as the gyroid, double diamond,
and perforated layered phases, have been examined
both theoretically and experimentally. However, it is
often difficult to achieve the order-disorder transition
temperature with useful (i.e., high) molecular weight
samples. Microphase-separated samples can be pre-
pared from solution, where the unfavorable monomer-
monomer interactions are partly screened. The addition
of a second, lower molecular weight component may also
impart desirable properties, e.g., as tackifiers in pres-
sure-sensitive adhesives. With the addition of a diluent,
the phase behavior becomes more complicated due to
the extra degrees of freedom. In addition to order-

order and order-disorder transitions, macrophase sepa-
ration and regions of two-phase coexistence are ex-
pected.
Previous theoretical studies of block copolymer solu-

tion phase behavior have addressed some of these
issues.5-15 For example, Hong and Noolandi considered
neutral solvents and demonstrated the possibility of
macrophase separation into solvent-rich and copolymer-
rich phases when the solvent is poor.5,6 However, they
did not consider order-order transitions within the
ordered phase or the inhomogeneous distribution of
solvent. Whitmore and Noolandi employed a self-
consistent mean-field (SCMF) scheme to examine lamel-
lar copolymers in neutral good solvents and quantified
the solvent inhomogeneity as well as the concentration
dependence of the lamellar spacing.10 Whitmore and
Vavasour extended these calculations to the cylindrical
and spherical microphases.14 In the concentrated re-
gime and when the solvent is neutral and good, the
solution phase behavior follows the “dilution approxi-
mation”:16 for any composition f, the mean-field order-
disorder transition (ODT) and order-order transitions
(OOT) can be obtained from the melt phase map by
replacing øABN with φøABN, where φ is the copolymer
volume fraction. Thus, (φøABN)ODT,OOT ) F(f), where øAB
is the A-B interaction parameter. In semidilute solu-
tions chain swelling effects cannot be ignored, and
Olvera de la Cruz8 and Fredrickson and Leibler7 have
predicted a different result for the ODT: (φ1.59øABN)ODT
) F(f). Birshtein and Zhulina considered the effects of
swelling for strongly segregated copolymers.15 Ban-
aszak and Whitmore initiated the investigation of
slightly selective solvents with the lamellar phase, and
examined the domain spacing as a function of φ, ø, and
N.13* To whom correspondence should be addressed.
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Experimental studies of concentrated copolymer solu-
tion phase behavior in nominally neutral solvents have
largely focused on poly(styrene-b-isoprene) copolymers
in toluene and dioctyl phthalate.17-20 The results are
in good agreement with SCMF theory in some respects,
e.g., the concentration dependence of the lamellar
period, but not in others; for example, the ODT concen-
tration for symmetric diblock copolymers does not follow
the “dilution approximation”,19 even though the addition
of solvent stabilizes the disordered phase. Selective
solvents have been more extensively studied, such as
poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)
in water21 and styrene-diene copolymers in, e.g., hexa-
decane and dibutyl phthalate.22-25 Recently, we dem-
onstrated a simple SANS method to quantify the
distribution of neutral and selective solvents in ordered
block copolymer solutions.26 This study revealed that,
inter alia, even a very slight degree of selectivity could
lead to a measurable preferential swelling of one
component and that this selectivity could be quantified.
In addition to solvent selectivity, the effects of other

parameters, such as concentration, temperature, co-
polymer composition, and molecular weight, also need
to be considered. In this paper we employ SCMF theory
to examine the phase behavior of block copolymers in
the presence of a solvent. These results extend the
previous work of Whitmore and co-workers,10,13,14 al-
though the numerical scheme is actually based on that
applied to melts by Matsen.27 For simplicity, we restrict
consideration to the classical phases in order to con-
struct the phase maps; the effect of solvent on the
nonclassical phases will be defered to a future report.
We also locate the spinodal instability of the disordered
phase by using the random phase approximation (RPA),
from which the effect of solvent on both microphase and
macrophase transitions is revealed.

Theory
We use self-consistent mean-field (SCMF) theory to

examine block copolymer solution phase behavior. Al-
though this mean-field approach ignores the potentially
important contributions of both chain swelling7,8 and
thermal fluctuations,28-30 we anticipate that the SCMF
theory should enjoy similar success in predicting the
qualitative phase behavior in concentrated block co-
polymer solutions as it does in melts, at least for high
concentrations. The applicability of the SCMF theory
to copolymer systems has recently been reviewed.31,32
We extend the recent SCMF scheme of Matsen, which
was developed to study phase behavior in melts.27 The
method introduces a series of orthonormal basis func-
tions, fj(r), to express any given function, g(r), in terms
of the corresponding amplitudes, gj, i.e., g(r) ) ∑jgjfj(r).
The basis functions reflect the symmetry of the ordered
phase being considered, and are chosen to be eigenfunc-
tions of the Laplacian operator

where L is the length scale for the ordered phase. The
basis functions are ordered starting with f0(r) ) 1 such
that λj is an increasing series. For lamellae fj(r) ) 21/2
cos(2π j x/L), j g 1, where x is the coordinate orthogonal
to the lamellae. Basis functions for the phases with
other space-group symmetries can be found in ref 33.
We consider a solution of AB diblock copolymer and

solvent, present at average volume fractions φ and 1 -

φ, respectively, and assume the system is incompress-
ible, both locally and globally. Each polymer chain has
degree of polymerization N, and A-monomer fraction f.
It is assumed that each monomer type has the same
statistical segment length b. The local interaction
between each pair of units R and â is quantified by the
Flory interaction parameter øRâ. Each polymer is
parametrized with a variable s that increases from 0 to
1 along its length. We assume that the A-block starts
from s ) 0 and terminates at s ) f, which is the A-B
junction point. Using this parametrization, it is con-
venient to define two end-segment copolymer distribu-
tion functions, qC(r,s) and qC+(r,s) which are found by
integrating all possible configurations subject to the
fields ωA(r) and ωB(r) for chain segments running from
s ) 0 to f and from s ) f to 1, respectively. The
distribution function qC(r,s) satisfies the modified dif-
fusion equation

and the initial condition, qC(r,0) ) 1. The equation for
qC+(r,s) is similar except that the right-hand side of eq
2 is multiplied by -1, and the initial condition is qC+-
(r,1) ) 1. Since there is no chain connectivity in the
solvent case, the equation governing the solvent distri-
bution function qS(r,s) becomes

When the amplitudes corresponding to the basis
functions are utilized, the amplitudes of the fields have
to satisfy

In turn, the amplitudes of the concentrations of A, B,
and S are expressed in terms of the distribution func-
tions

where

and the modified diffusion eqs 2 and 3 in terms of qC,i(s),
qC,i+(s), and qS,i(s), become

∇2fj(r) ) -λj L
-2fj(r) (1)

∂qC
∂s

) {16Nb2∇2qC - ωAqC if s < f

1
6
Nb2∇2qC - ωBqC if s > f

(2)

∂qS
∂s

) -ωS(r)qS (3)

ωA,i - ωS,i ) øABNæB,i + øASNæS,i - øASNæA,i -
øBSNæB,i

ωB,i - ωS,i ) øABNæA,i + øBSNæS,i - øASNæA,i -
øBSNæB,i

æA,i + æB,i + æS,i ) δi0 i ) 0, 1, 2, ... (4)

æA,i )
φ

qC,1(1)
∑
j,k

Γijk ∫0fds qC,j(s) qC,k+(s)

æB,i )
φ

qC,1(1)
∑
j,k

Γijk ∫f1ds qC,j(s) qC,k+(s)

æS,i ) qS,i( 1N) (5)

Γijk ) 1
V ∫ dr fi(r) fj(r) fk(r) (6)
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The equation for qC,i+ is similar except that the right-
hand side is multiplied by -1, and

with the initial conditions, qC,i(s ) 0) ) δi0, qC,i+(s ) 1)
) δi0, and qS,i(s ) 0) ) δi0. The matrices Aij, Bij, and
Cij, are given by

Once the above amplitudes are determined and the
self-consistent equations for the fields are satisfied, the
free energy per molecule F is given by

which reduces to the Flory-Huggins mean-field free
energy functional in the disordered state. For a periodic
ordered phase, we minimize the free energy with respect
to the lattice spacing L; to determine the most stable
phase one compares free energies of different possible
phases.
The stability limit of a disordered phase, i.e., the

spinodal, is determined by applying the random phase
approximation (RPA) to diblock copolymer solutions; the
details have been provided.7 In block copolymer solu-
tions, it is convenient to expand free energies in terms
of two-order parameters Ψ1(r) and Ψ2(r), given by

where δφR(r) is the fluctuation in concentration about
the mean value of component R. The order parameter
Ψ1(r) is a nonzero periodic function if the solution is
microphase separated, and the parameter Ψ2(r) de-
scribes the nonuniformity in solvent concentration.
In terms of these two order parameters, the resulting

Landau expression for the free energy of a diblock
copolymer in a solvent is

where ψR(k) is the Fourier transform of the ΨR(r), and
Fo is the Flory-Huggins mean-field free energy func-
tional per molecule. The coefficients RIJ, I, J ) 1, 2,
are related to the correlation functions of noninteracting
Gaussian diblock chains SRâ(k), where R, â ) A, B, and
are given by

with

where x ) k2Rg
2 (Rg is the radius of gyration), and g(f,x)

is the modified Debye function, given by

Hence, the spinodal line of a disordered state is
obtained by solving

Results and Discussion
In contrast to copolymer melts, for which a universal

phase map34 can be constructed in terms of øABN and f,
the phase maps of copolymer solutions depend on f, N,
φ, øAB, øAS, and øBS. The selectivity of the solvent is
determined by the relative values of øAS and øBS. For
example, the solvent is neutral when øAS ) øBS, whereas
the solvent is selective for B when øAS > øBS. A
schematic “phase cube” can be constructed in terms of
f, φ, and øABN for block copolymers with a particular
value of N in the presence of a solvent with the

∂qC,i

∂s
) {∑

j

Aij qC,j if s < f

∑
j

Bij qC,j if s > f
(7)

∂qS,i

∂s
) ∑

j

CijqS,j (8)

Aij ) -
Nb2

6L2
λiδij - ∑

k

ωA,kΓijk

Bij ) -
Nb2

6L2
λiδij - ∑

k

ωB,kΓijk

Cij ) - ∑
k

ωS,kΓijk (9)

F

kBT
) -φ ln[qC,1(1)

φ
] - (1 - φ)N ln[qS,1(1/N)1 - φ

] -

∑
i

(ωA,iæA,i + ωB,iæB,i + ωS,iæS,i) + ∑
i

(øABNæA,iæB,i +

øASNæA,iæS,i + øBSNæB,iæS,i) (10)

Ψ1(r) ) 1 - f
φ

δφA(r) - f
φ

δφB(r)

Ψ2(r) ) δφA(r) + δφB(r) (11)

F

NkBT
)

Fo

NkBT
+
1

2!
V-2 ∑

k,R,â
RRâ(k)ψR(k)ψâ(k) +

higher order terms (12)

R11(k) ) φ[ Σ(k)
W(k)

- 2øABφ]
R12(k) ) R21(k) )

f(SBB(k) + SAB(k)) - (1 - f)(SAA(k) + SAB(k))

W(k)
+

(1 - 2f)øABφ - øASφ + øBSφ

R22(k) )

(1 - f)2SAA(k) + f2SBB(k) - 2f(1 - f)SAB(k)

φW(k)
+

1
1 - φ

+ 2f(1 - f)øAB - 2føAS - 2(1 - f)øBS (13)

Σ(k) ) SAA(k) + 2SAB(k) + SBB(k)

W(k) ) SAA(k)SBB(k) - SAB
2(k)

SAA(k) ) Ng(f,x)

SAB(k) ) 1
2
N[g(1,x) - g(f,x) - g(1 - f,x)]

SBB(k) ) Ng(1 - f,x) (14)

g(f,x) ) 2
x2
(fx + exp(-fx) - 1) (15)

det R ) |R11(k) R12(k)
R21(k) R22(k) |k* ) 0

∂

∂k
(det R)|k* ) 0 (16)
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interaction parameters øAS and øBS (see Figure 1). The
four vertical faces of the prism correspond to: the
copolymer melt as a function of f (rear face), solutions
of A and B homopolymers in S (side faces), and the pure
solvent S (front face); the vertical axis is temperature.
Three orthogonal planes across the cube are indicated:
constant copolymer concentration φ, constant copolymer
composition f (i.e., a particular copolymer molecule) and
constant temperature (or øN). However, one cube is
insufficient to incorporate all the possibilities, because
the three ø parameters will have different dependences
on T and because N and øΑΒ can have separable effects.
We first examine how solvent selectivity affects the

stability of a disordered block copolymer solution, by
constructing the spinodal curves in the phase cube for
different values of øAS at constant øBS. We then study
the effect of the solvent selectivity on the resulting
ordered block copolymer microstructures. As noted
above, equilibrium phase maps are developed based on
the stability of the classical phases only: spheres of A
(SA), cylinders of A (CA), lamellae (L), cylinders of B (CB),
and spheres of B (SB).
Spinodal of a Homogeneous Solution. In Figures

2-4, N is fixed at 200 and øBS ) 0.4, and the stability
limits are examined in terms of φ, f, and øABN, for øAS
equal to 0.4, 0.6, and 0.8, respectively. We present two-
dimensional spinodal curves at constant φ and constant
øABN in parts a and b of each figure, respectively.
Figure 2 thus corresponds to a neutral good solvent, as
ø ) 0.4 is a typical value for a polymer in a good solvent.
As expected, for any composition of a block copolymer
in the neutral solvent, the stability limit of a homoge-
neous copolymer solution can be obtained directly from
the melt curve, (øABNφ)s ) F(f). This prediction, the
dilution approximation discussed in the Introduction,
is illustrated in Figure 2a. Because the value of k*
obtained from eq 16 is greater than 0, the spinodal
instability corresponds to an ordered phase. As φ
decreases, (øABN)s increases: decreasing φ thus expands
the disordered phase. For øABN < 10.495, any block
copolymer in a neutral good solvent will form a homo-
geneous solution. For a constant øABN > 10.495, there
exists a spinodal curve as shown in Figure 2b, within
which a block copolymer system exhibits a stable
ordered structure. As øABN increases, this ordered

region broadens. It should be noted that the dilution
approximation is expected to fail when φ is small, as
chain swelling becomes important. It should also break
down when the solvent is neutral but poor, as the
resulting spinodal curves may correspond to a mac-
rophase separation between solvent-rich and copolymer-
rich phases when φøABN is large.
When øAS increases from 0.4 to 0.6, the region of

stable ordered microdomains is enlarged, as shown in
parts a and b of Figure 3. The solvent is thus of lower
quality than a Θ solvent for the A block. Nevertheless,
due to the high polymer volume fractions phase separa-
tion is not predicted (recall that the critical concentra-
tion for a homopolymer solution occurs at very low
concentration). Although the stability limits do not
follow the dilution approximation in terms of φ, f, and
øABN when the solvent is slightly selective, the trends
are similar to those in the neutral solvent (Figure 2),
with the spinodals skewing to f > 0.5. However, when
the solvent becomes more strongly selective, e.g., when
øAS increases to 0.8, the two-dimensional spinodal curves
at constant φ and øABN in parts a and b of Figure 4,

Figure 1. Phase cube for diblock copolymer solutions in terms
of polymer concentration φ, copolymer composition f, and
degree of copolymer segregation øABN, for a polymer with
degree of polymerization N in the presence of a solvent with
interaction parameters øAS and øBS. The horizontal plane
denotes a constant temperature slice (φ vs f), and the vertical
planes denote a phase diagram for a particular copolymer (φ
vs T) or a phase map for a given concentration (T vs f).

a

b
Figure 2. Two-dimensional spinodal curves for a disordered
block copolymer solution with N ) 200, øAS ) 0.4, and øBS )
0.4, for constant φ (a), and øABN (b).
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respectively, become quite different from the results in
Figures 2 and 3. In Figure 4a, the effect of polymer
concentration φ on the spinodal exhibits two regimes.
When f is small (<0.33 in this case), (øABN)s increases
with decreasing φ, as in Figures 2a and 3a. In contrast,
for f > 0.33, (øABN)s decreases as φ decreases. In this
region, the addition of a strongly B-selective solvent can
induce either macro- or microphase separation, even
when øABN < 10.495. As shown in Figure 4b, corre-
sponding spinodal curves are observed for constant øABN
< 10.495. The intersection of these curves with the
vertical axis (f ) 1.0) indicates that there exists a region
of the homopolymer A solution which is unstable to
macrophase separation between the A-rich and the
solvent-rich disordered phases, as expected with a poor
solvent for A. As øABN increases, the area bounded by
the spinodal curve continues to expand and touches the
horizontal axis (φ ) 1) for a symmetric block copolymer
melt when øABN ) 10.495. When øABN continues to
increase, the spinodal curve splits into two. For any
system between these two lines, when φ is close to 1.0,
the system is unstable to the formation of an ordered

microstructure. As φ continues to decrease and/or when
f is close to 1.0, the wave vector associated with the
instability, k*, approaches zero and the system can
undergo a macrophase separation into the solvent-rich
and the copolymer-rich disordered phases. It can also
separate into solvent-rich disordered and copolymer-rich
ordered phases.
As noted above, the effect of solvent selectivity on the

stability limit of a homogeneous solution falls into two
regimes. For a given diblock copolymer (f,N), there
exists a crossover value ø*AS determined from the inter-
section of the two-dimensional spinodal curves as a
function of øABN, φ, and øAS. For example, in Figure 5
the spinodal curves for f ) 0.5 and N ) 200 are shown,
and the value of ø*AS is around 0.7. When the solvent is
only slightly selective, øAS < ø*AS, decreasing φ will
stabilize the homogeneous solution. In contrast, when
the solvent is more strongly selective, øAS > ø*AS, the
regions of stable ordered microstructures and/or mac-
rophase separation are enlarged as φ decreases. The

a

b

Figure 3. Two-dimensional spinodal curves for a disordered
block copolymer solution with N ) 200, øAS ) 0.6, and øBS )
0.4, for constant φ (a) and øABN (b).

a

b

Figure 4. Two-dimensional spinodal curves for a disordered
block copolymer solution with N ) 200, øAS ) 0.8, and øBS )
0.4, for constant φ (a) and øABN (b). The arrows in part a
indicate the order of curves for decreasing φ.
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value of ø*AS depends on N: as N increases, ø*AS becomes
smaller, as shown in Figure 6a for f ) 0.5. This is
understandable, as the solubility of A homopolymers
decreases with increasing N for a given øAS. This N
dependence is underscored in Figure 6b, where the two-
dimensional spinodal curves are plotted for the same
interaction parameters as in Figure 3, but with N
increased from 200 to 1000; the character of the curves
changes significantly.
Phase Maps of Block Copolymer Solutions: Neu-

tral Solvents. To study the effect of the solvent in the
ordered state, we constructed the phase maps for N )
200, as macrophase separation is not predicted for the
segregation regime studied here. However, macrophase
separation may be anticipated under certain circum-
stances for largerN. Although the value ofN will affect
the solution phase maps both quantitatively and quali-
tatively, the trends in phase behavior for fixed N ) 200
are general.
In Figure 7a, we constructed the phase behavior of

block copolymers in the presence of a neutral solvent
for two different copolymer concentrations φ. We replot
these data in Figure 7b rescaled as øABφ values to
examine if the “dilution approximation” holds for both
order-order and order-disorder transitions. We also
compare our rescaled results with the melt phase map
of Matsen,27 which includes the gyroid (G) phase. It is
clear that the boundaries between D/S and S/C and the
spinodal of the disordered phase (D) follow the dilution
approximation in the segregation regime studied here.
These results agree with those of Whitmore and Vava-
sour, who considered the classical phases over the
concentration range 0.1 e φ e 0.8.14 Although the
complex phases are ignored in our calculations, we
suspect that the dilution approximation will still be a
reasonable approximation for G and that the rescaled
phase map should reduce to Matsen’s melt phase map
in the weak and/or intermediate segregated regions;
calculations involving the G phase in solution are
currently in progress. As noted above, the dilution
approximation should fail when øABφ is large and when
φ is small, as macrophase separation may occur and/or
the excluded-volume interactions need to be considered.

Also, the as-yet not fully understood experimental
failure of the dilution approximation in concentrated
solutions19 should be recalled.
Hong and Noolandi predicted qualitative macrophase

separation of this system into a solvent-rich disordered
phase and a copolymer-rich disordered phase.5,6 They
also predicted a separation into a solvent-rich disordered
phase and a copolymer-rich ordered phase, where they
assumed the ordered microstructure to be lamellar. Our
calculations extend their results, and those of Whitmore
and Vavasour,14 and the qualitative effects of solvent
quality and solvent amount on the phase behavior of
neutral block copolymer solutions (øAS ) øBS) can be
summarized as follows.
When the solvent is poor (i.e., øAS > 0.5), for a system

at a constant φ, as øABN increases, a phase transition
from a single, homogeneous disordered phase into a two-
phase region of solvent-rich and copolymer-rich disor-
dered phases is expected. This is not surprising since
we are dealing with a poor solvent. As øABN continues
to increase, the disordered copolymer-rich phase tends
to form an ordered microstructure (O), and a further

Figure 5. Two-dimensional spinodal curves for a disordered
block copolymer solution as a function of φ, øAS, and øABN for
f ) 0.5, N ) 200, and øBS ) 0.4.

a

b

Figure 6. (a) The crossover ø*AS as a function of degree of
copolymerization N. (b) Two-dimensional spinodal curves for
a system as in Figure 3b but with N ) 1000.
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phase transition from a two-phase D/D into a two-phase
D/O is expected. It should be noted that inside the two-
phase D/O region, a transition of ordered microdomains
from S f C f G f L is possible (although we do not
consider G explicitly). When øABN is fixed at a value
in the weak and intermediate segregation regime, as φ
continues to decrease, a transition from O (L f G f C
f S) to D is expected according to the dilution ap-
proximation. Furthermore, due to the poor solvent
quality, a macrophase separation from D f two-phase
D/D occurs when φ is very small. When øABN is very
large, there should be a sequence of O (L f G f C f S)
f two-phase D/O as φ decreases.
On the other hand, when the solvent is good (i.e., øAS

< 0.5), no macrophase separation occurs. Therefore, at
a constant φ, a sequence D f O (S f C f G f L) of
transitions may be expected by increasing øABN. If øABN
is fixed in the weak and intermediate region, as φ
decreases, only the transition from O (L f G f C f S)
f D is observed.

Phase Maps of Block Copolymer Solutions: Se-
lective Solvents. In reality, it is rare to find a perfectly
neutral solvent, and thus it is of importance to examine
how a small degree of solvent selectivity affects the
phase behavior of block copolymer solutions. Further-
more, larger selectivities may be expected to produce
larger qualitative changes in the phase behavior relative
to the melt than in a neutral solvent. For a neutral
solvent, increasing solvent concentration is analogous
to increasing T, whereas addition of a selective solvent
is similar to varying T and f simultaneously. In Figure
8, we show the phase map of a diblock copolymer in the
presence of a selective solvent at φ ) 0.5. The interac-
tion parameters øAS and øBS are set equal to 0.6 and
0.4, respectively. An interesting phenomenon is ob-
served when f ) 0.5-0.56. Although the A block is
longer than the B block, the diblock still forms the
“inverse” ordered bcc array of A-rich spheres, SA, and
inverse hexagonal A-rich cylinders, CA, in the minority
B matrix in the weak segregation regime. This is due
to the fact that the solvent prefers the B block and thus
acts in a manner that corresponds qualitatively to
reducing f. To examine the solvent selectivity effect
further, we set øBS equal to 0.4, and vary øAS. In Figure
9 we show the resulting phase map for symmetric block
copolymers (f ) 0.5) at φ ) 0.5 as a function of øABN
and øAS. As shown in Figure 9, even a very slightly
selective solvent can induce first-order phase transitions
from D f SA f CA f L as øABN increases. In contrast,
only the D f L transition would be expected upon
increasing øABN in a perfectly neutral solution or melt.
As the solvent becomes more selective, the ODT and
OOT values of øABN decrease: the solvent selectivity
enlarges the regime of ordered microdomains. If øABN
is fixed at a certain value such that the copolymer in a
neutral solvent would exhibit a single disordered phase,
increasing øAS reveals a very narrow region of D f SA
f CA before the stable L phase is reached. This is due
to the fact that when the solvent is not very selective,
the copolymer composition still dominates the interfacial
curvature. Since the blocks are symmetric, L is the
most stable phase. However, when the solvent becomes
very poor for A, the A blocks prefer to be near each other
rather than the solvent. Therefore, L f CA f SA is

a

b
Figure 7. (a) Two-dimensional phase map for a diblock
copolymer with N ) 200 in a neutral good solvent (øAS ) øBS
) 0.4) for constant φ. (b) Rescaled phase maps from part a in
compared with the melt. The melt calculation includes the G
phase, whereas the solution ones do not. The dashed curves
correspond to the spinodal instability of the disordered state.

Figure 8. Two-dimensional phase map for a diblock copoly-
mer with N ) 200 in a selective solvent with øAS ) 0.6 and øBS
) 0.4 for φ ) 0.5.
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expected upon further increasing øAS. Finally, this
ordered block copolymer system demixes with a solvent-
rich phase separating from an ordered microstructure.
For the parameters in Figure 9, only a transition to the
hexagonal phase is observed by the time øAS has
increased to 1.0. However, when the degree of copo-
lymerization N increases, and/or when more solvent is
added, the system will undergo the above phase transi-
tions at smaller øAS values. We point out that varying
T for a given copolymer depicted in Figure 9 would
correspond to a diagonal trace across the phase bound-
aries, as both axes depend on T.
The effect of solvent selectivity for asymmetric diblock

copolymers is illustrated by the phase map for f ) 0.7
and φ) 0.3 shown in Figure 10. When a neutral solvent
is added to copolymers with f ) 0.7, only SB and CB
would be stable in the ordered regime, as in the melt.
With the addition of a good solvent selective for A (øAS
< øBS, both phases remain stable in the ordered state,

with the SB region enlarged. When a solvent selective
for B is added, there exist additional phase transitions
to the lamellar and the inverse hexagonal cylinders, CA
in this case, as øAS continues to increase. Further
transitions to SA and macrophase separation may be
expected when the solvent is even more strongly selec-
tive for B. In general, similar behavior is expected for
f < 0.5, but with A and B exchanged. For example,
when f < 0.5 and øAS < øBS, inverse structures such as
CB and SB may be observed. However, as is apparent
from Figure 11, when f ) 0.4 and φ ) 0.5, we observe
no such stable phases when øAS decreases to 0. Rather,
with øAS < øBS, L is found to be stable over most of this
regime. This is not surprising since both interactions
øAS and øBS are very small, and there is no driving force
for the formation of the inverse structures. A similar
result was obtained by Banaszak and Whitmore.13 On
the other hand, when the solvent is selective for the
longer B block (øAS > øBS ) 0.4), increasing the solvent
selectivity enlarges the CA microstructure, as shown in
Figure 11. Furthermore, we expect that when the
copolymer is more asymmetric and/or when more sol-
vent is added, both the CA and SA microdomains are
broadened due to the effect of solvent selectivity.
To isolate the effect of concentration on the phase

behavior, we calculate the two-dimensional phase map
for copolymers in terms of φ and f when øABN ) 45, øAS
) 0.6, and øBS ) 0.4 in Figure 12. As expected, when φ
decreases, the inverse hexagonal cylinders CA and bcc
spheres SA are observed before the disordered phase is
reached for the system 0.5 < f < 0.746. In general, the
effect of solvent concentration on the phase behavior
depends on both the selectivity of the solvent and øABN.
To summarize this effect, we set øBS ) 0.4 and calculated
the phase maps of symmetric diblocks as a function of
øABN, øAS, and φ. Phase transitions similar to those in
Figure 9 where φ ) 0.5 are obtained for other values of
φ. Therefore, in Figure 13 we only show the ODT values
of øABN between D and S phases as a function of øAS
and φ. From Figure 13, the concentration effect on the
values of øABN at the ODT (and OOTs) is similar to its
effect on the stability limit of a homogeneous phase in
Figure 5. Therefore, when the solvent is not very

Figure 9. Two-dimensional phase map for a block copolymer
solution with f ) 0.5, N ) 200, φ ) 0.5, and øBS ) 0.4 as a
function of øAS and øABN.

Figure 10. Two-dimensional phase map for a block copolymer
solution with f ) 0.7, N ) 200, φ ) 0.3, and øBS ) 0.4 as a
function of øAS and øABN.

Figure 11. Two-dimensional phase map for a block copolymer
solution with f ) 0.4, N ) 200, φ ) 0.5, and øBS ) 0.4 as a
function of øAS and øABN.
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selective, e.g., øAS < 0.7, if we start with a block
copolymer melt at a øABN value where the most stable
phase is L, as we add more solvent, there should be a
sequence of L f CA f SA f D transitions. On the other
hand, when the solvent selectivity is large, if we start
with a disordered symmetric copolymer melt, a sequence
of transitions from D f SA f CA f L f CA f SA f
two-phase D/S f D is possible.
These predictions can be modified for the effect of

solvent amount on the phase behavior of asymmetric
block copolymer systems. When the diblock copolymer
with f > 0.5 is at a constant value of øABN, where the
melt exhibits the L phase, as more solvent, neutral or
selective for A or slightly selective for B, is added, a
sequence of L f CB f SB f D is expected. It should be
noted that the lamellar phase predicted above is elimi-
nated for very asymmetric copolymer systems. In
contrast, when the solvent is strongly selective for B, if
we start with a disordered melt at a value of øABN, as φ
decreases, the possible phase transition sequence is
modified to D f SB f CB f L f CA f SA f two-phase
D/S f D.

Summary

We have employed self-consistent mean-field (SCMF)
theory to examine the phase behavior of block copoly-
mers in the presence of a solvent, focusing on the effects
of solvent selectivity and concentration; these results
extend the previous studies of Whitmore and co-work-
ers.10,13,14 We also applied the RPA method to examine
the stability limit of disordered (D) solutions. Phase
maps are constructed by comparing free energies of the
classical phases: lamellae (L), hexagonal cylinders (C),
and bcc spheres (S). Other possible ordered phases,
such as the gyroid, are not considered explicitly, and
disordered micellar solutions are not examined quan-
titatively.
In block copolymer melts, the copolymer composition

f determines the interfacial curvature, whereas in
solutions both solvent selectivity and f strongly influence
the morphology. When a neutral solvent is added to a
copolymer, the same trends in phase behavior as in
melts are expected. The phase maps thus obtained
follow the dilution approximation, i.e., by simply replac-
ing øABN in melts with φøABN. On the other hand, when
a slightly selective solvent is added, the dilution ap-
proximation fails and different sequences of phase
transitions are obtained. For example, in a symmetric
copolymer melt or in the presence of a neutral solvent,
a transition from D f L is expected as øABN increases.
In contrast, for the same copolymer in the presence of
a selective solvent, e.g., one good for B but poor for A,
the progression D f SA f CA f L is expected. This
transition sequence is also predicted when the solvent
is made more selective for B for a fixed value of øABN.
As the solvent selectivity continues to increase, a further
transition from L f CA f SA f two-phase occurs. In
an asymmetric copolymer system, such as with f > 0.5,
if the solvent is neutral or selective for A or even slightly
selective for B, a sequence of transitions as in melts from
D f SB f CB is expected as øABN increases. In general,
this solvent selectivity effect enlarges the ordered mi-
crostructure regions: as the solvent becomes more
selective, the block copolymers tend to form ordered
structures at lower øABN values. This trend is consis-
tent with the work of Banaszak and Whitmore on
lamellar copolymers in slightly selective solvents.13
This effect is very significant when the solvent is
strongly selective for the minority B block. In that case,
the most stable phase is observed to be L, CA, or SA as
the selectivity continues to increase. For a constant
value of øABN, a sequence of transitions due to the effect
of increasing solvent selectivity can be summarized as
D f SB f CB f L f CA f SA f two-phase.
The effect of polymer concentration can be sum-

marized as follows. When the solvent is neutral or
slightly selective, the øABN values at the ODT and OOT
increase as φ decreases. Therefore, transitions from L
f C f S f D are expected as φ decreases. On the other
hand, when a strongly selective solvent (for A) is added
to a disordered copolymer melt, there can be a sequence
of transitions D f SA f CA f L f CB f SB f (two-
phase) f D. It should be noted that the two-phase
macroscopic separation may not occur if the selectivity
of the solvent is not large enough. This phenomenon
has been observed recently in the PS-PI diblock in the
presence of the selective solvent di-n-butyl phthalate
(DBP).25 The copolymers are asymmetric with fPS )
0.16. DBP is good for PS, but it is a Θ solvent for PI
near 80 °C. As temperature decreases, DBP becomes

Figure 12. Two-dimensional phase map for a block copolymer
solution with N ) 200, øAS ) 0.6, øBS ) 0.4, and øABN ) 45.0.

Figure 13. Value of øABN at the ODT as a function of øAS
and φ for f ) 0.5, N ) 200, and øBS ) 0.4.
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more selective for PS. Therefore, at room temperature,
as φ decreases from 1.0, the transitions CA f L f CB f
SB f micellesf D were observed. This micellar struc-
ture is known to be part of the disordered phase. Since
in our calculations the disordered phase is assumed to
be homogeneous, this SCMF approach fails to predict
this micellar regime. Disordered micelles as well as
complex phases will be examined in future work.
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