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ABSTRACT: We study micelles in salt-free dilute aqueous solutions of diblock copolymers made of long
charged A chains and short hydrophobic B chains. The number density of aggregates with p chains (np)
and the number of condensed counterions in a p-aggregated chain (Nc(p)) are obtained equating the
chemical potentials of the p-aggregated chains (p ) 2, 3, ...) with those of the free chains (p ) 1) and
equating the chemical potentials of the condensed counterions in the aggregates (p ) 1, 2, ...) with those
of the free counterions. The critical micelle concentration (cmc) and the degree of polydispersity are
large in charged diblock copolymer solutions. Since Nc(p) increases as p increases, micelles with p . 1
are nearly neutral. The most populated micelles in experimetally accessible systems, however, have a
small number of chains and their effective charge is not strongly reduced. As the concentration of
copolymer increases above the cmc, the concentration of free chains decreases.

I. Introduction
Diblock copolymers in selective nonpolar solvents

formmicelles.1-4 Micellization occurs when the diblocks
are made of a B block in a poor solvent chemically linked
to a solvated A block. If the degrees of polymerization
of the A and B blocks, NA andNB, respectively, are such
that NA . NB, a homogeneous suspension of rather
monodispersed micelles with a small core radius RB and
a swollen corona radius RA results when the concentra-
tion of copolymer is higher than the critical micelle
concentration (cmc). The micelles have “starlike” con-
formations.1 That is, p chains aggregated in a micelle
have the conformation of p chains chemically linked
(star macromolecule) in solution:5

where a is the characteristic size of the A monomers,
assumed here to be equal to the charcteristic size of the
B monomers, and f ) NA/N, where N ) NA + NB.
A-B diblock copolymers in A-good solvents are ideal

candidates to stabilize colloidal suspensions. Spontane-
ous coagulation is prevented by attaching the short B
block to the colloidal particle. In order to stabilize
colloidal suspensions in polar solvents (such as latex
paint in aqueous solutions), water soluble A blocks must
be used. Highly charged chains at zero or low salt
concentrations are water soluble if the counterions and/
or salt ions are monovalent.6,7 The properties of
charged-neutral diblock copolymers in polar solvents
at zero or low salt concentrations are not understood.
As explained below, it has been argued that if f > (1 -
f) and/or N . 1, micelles cannot form.8 Recent experi-
mental studies, however, suggest the existence of mi-
celles in this limit.9,10 In this paper we study micelli-
zation in charged-neutral diblock salt-free aqueous
solutions and compare our results to micellization in
noncharged A-B copolymers in nonpolar solvents.

In the limit of high salt concentrations, Dan and
Tirrel11 found that the charged-neutral diblock copoly-
mer micelles in polar solvents have similar properties
to those of noncharged diblock copolymers in nonpolar
solvents.12 In salt-free and/or low salt concentration
solutions, however, the electrostatic interactions are not
screened. In this limit, the ions are not homogeneously
mixed but some are strongly attracted to the charged
chains (ion condensation), reducing the effective charge
of the chains.13 The driving force for aggregation in
charged copolymers, a reduction in the inetrfacial
energy between the B monomers and the solvent,
overcomes the electrostatic energy increase in this limit
only if it is strongly reduced by ion condensation. We
find here that for copolymers with fN . 1, only if the
number of condensed ions per chain in a p-aggregated
chain (Nc(p)) increases rapidly as p increases, can the
chains aggregate in micelles. The fluorescence spectra
of diblock copolymer micellar aqueous solutions suggest
that indeed the number of condensed counterions per
chain in the micelles is much larger than that in the
free chains.9

Marko and Rabin constructed a model of monodis-
perse micelles with p . 1 A-B diblock copolymer chains
with fully charged A blocks in salt-free (or low salt
concentration) dilute solutions.8 They assumed that the
micelles are nearly neutral (Nc(p) ≈ NA ) fN) and that
there is no ion condensation in the free chains (Nc(p)1)
) 0). Also, in their model the condensed counterions
were assumed to move freely in the corona of the
micelles, generating a counterion pressure which fully
stretches the corona (RA ) afN). Micelles with fully
stretched A chains are unphysical when f . (1 - f).
Neutral aggregates with f . (1 - f), for example, have
stretched A chains only if p > (fN)2,4 which is an
unphysically large value for the most probable micelle
aggregation number, p* (neutral A blocks in nonpolar
solvents have p* ∝ NR with 0 < R < 1). The model of
Marko and Rabin gives p* ∝ (1 - f)2/(f3N) at the cmc,
contradicting the assumption that p* . 1. Therfore,
only extremely short chains with f , (1 - f) form
micelles in their model. Charged micelles, however, are
not monodisperse, nor are the condensed counterions
free to explore the corona volume, as explain below.
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RA(p) ∝ ap1/4(fN)1/2, for an A-Θ solvent (1a)

RA(p) ∝ ap1/5(fN)3/5, for an A-good solvent (1b)
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Stevens and Kremer recently showed by molecular
dynamics simulations of linear polyelectrolyte solutions
that the counterions follow the path of the charged
chains.14 Furthermore, the simulations showed clearly
that the Debye-Huckel approximation is not valid
because it does not describe ion condensation. We use
here a renormalized Debye-Huckel approach recently
developed to describe solutions of charged chains.15a The
model is known to describe properly salt-free colloidal
suspensions15b and is in agreement with the results
obtained by Stevens and Kremer. We construct the free
energy of a polydisperse micelle system and obtain the
number density of aggregates with p chains, np, equat-
ing the chemical potential of the chains in the micelles
(p ) 2, 3, ...) with that of the free chains (p ) 1). The
number of condensed counetrions per chain, Nc(p), is
obtained equating the chemical potential of the con-
densed counterions with that of the free counterions.
With this model we find that the degree of polydispersity
is large in charged A block micelles because the number
of degrees of freedom of the system increases by allow-
ing the number of condensed counterions to depend on
p. Since aggregation is observed when the chain
concentration is sufficiently high for ion condensation
to occur (in the limit of infinite dilution there is no ion
condensation in finite size chain systems), the cmc is
large in comparison with that for noncharged A block
micelles in nonpolar solvents. We find that if p . 1,
the micelles have nearly zero effective charge and they
have the “starlike” conformation given in eq 1. If p is
small, however, the micelles are stretched. For most
experimentally accessible systems the most populated
micelles have few chains.
In section II we describe the thermodynamic model

used to construct the free energy. As mentioned above,
the electrostatic free energy is constructed following a
recent approach developed to compute the number of
condensed counterions in spherical ion penetrable spheres
as a function of the nondensed (fractal) charge density
from the center of mass,15a with two slight but important
modifications: (i) only the free counterions contribute
to the screening involved in the Debye-Huckel electro-
static contribution to the free energy and (ii) the
correlations between the condensed ions and the mono-
mers induced by the electrostatic interactions are
ignored (these correlations are the result of dipole-
charge terms and higher order terms which are most
important when the counterions have high valency15a
or when the linear charge density of the highly flexible
chains is very high14,15a). In section III we obtain
numerical and analytical results for noncharged A block
polydisperse micelles in nonpolar solvents, minimizing
the free energy with respect to the corona radii RA(p).
In section IV we analyze the results for the charged A
block case. In the last section we summarize the results
and discuss their relation to new experimental results.

II. Thermodynamic Approach
In this section we contruct the free energy of M

identical A-B diblock copolymer chains with N ) NA +
NB monomers inmersed in a solvent at temperature T
with a bulk dielectric constant ε. Each chain has NB )
(1 - f)N neutral nonsoluble monomers and NA ) fN
charged monomers, and the charge per monomer is zm
) -1. There are Mi

T counterions with valency zi ) 1.
The solution must be electrically neutral,

so Mi
T ) MfN/Pz, where Pz ) -zi/zm, and it occupies a

volume V. The total concentration of copolymer in the
system is φ) MN/V, and the concentration of copolymer
aggregated with p chains is φp, such that

Therefore, the number density of aggregates with p
chains, np, is equal to φp/pN. As we discussed in the
previous section, some of the small ions are confined,
i.e., ‘condensed’, within a tube of radius rc , LA ) NAa,
where LA is the length of the tube and a is the size of
each monomer. The condensed ions can move along the
tube, and there is also the possibility of interchanging
the condensed and free ions. We denote by Nc(p) the
average number of ions condensed on one p-aggregated
chain. Therefore, the effective charge of a p-aggregate
is

and the concentration of free, noncondensed, ions if Pz
) 1 and zm ) -1 is

Each p-aggregate is contained within a sphere of aver-
age radius Rp ) RA(p) + RB(p) and volume vp )
4πRp

3/3. Since the cores are densed spheres with only
B monomers,

RA(p), on the other hand, is obtained by minimizing the
free energy with respect to RA(p). We assume that the
concentration of aggregates is very low, ∑npvp , 1.
Therefore the average distance between the aggregates
is much larger than the maximum value of Rp. Fur-
thermore, since the effective charge of the aggregates
is strongly reduced by the condensed counterions, we
neglect the interactions among the aggregates.
The free energy per unit volume of this system is

given by the expression

where F° is the free energy of the system when zm ) 0
and Fc is the contribution to the free energy due to the
charge of the A monomers and the free counterions. We
construct F° using the simplest mean field theory that
reproduces starlike micelle conformations,

where

corresponds to the translational free energy of the
aggregates, λp being the appropriate thermal wave-
length. Since the standard contribution from the en-
tropy of mixing of the solvent at a concentration φs and
the terms linear in np do not influence the numerical
results, they are absorbed in the free energy referenceMfNzm + Mi

Tzi ) 0 (2)

φ ) ∑
p)1,2,...

φp (3)

Zp
eff ) pzm(fN - PzNc(p)) (4a)

φi
f ) ∑

p

npp(fN - Nc(p)) (4b)

RB(p)
3 ) a3p(1 - f)N (5)

F/V ) F°/V + Fc/V (6)

F°/V ) Ftp/V + ∑
p

npFin(p) (7)

Ftp/V ) kBT ∑
p

np ln( λp
3
φp

1 - ∑npvp
) (8)
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state on the left hand site of eq 6. The internal free
energy of a p-aggregate Fin(p) in eq 8 is given by

where Fp
id is the free energy reduction of p chains with

A and B blocks confined to RA(p) and RB(p), respectively,
Fp
int is the interfacial energy between the B monomers

and the water, and Fp
en is the interaction energy in the

corona. We assume that the ideal free energy of the
chain is given by16

where ∆RI ) 2RI(p) is the end to end distance of the I
block, I ) A, B, and the interfacial energy is given by

where γBS is the interfacial energy per unit area
between the B monomers and the water. We include
two-body interactions of strength v ) a3(1 - 2øAS) where
øAS is the net short range interaction per thermal energy
between the A monomers and the water, and three-body
interactions of strengthw ) a6 in the interaction energy
in the corona,

Notice that the internal free energy is constructed as a
Flory free energy to avoid using a two-phase model
which requires introduction of the solvent in the corona
explicity. Instead, the solvent entropy of mixing in the
corona is introduced via the two- and three-body terms.
When the free energy Fin(p) is minimized with respect
to RA(p), we recover eq 1a and 1b for Θ solvents (setting
v ) 0 in eq 12) and good solvents (setting v ) a3 in eq
12), respectively.
The electrostatic contribution to the free energy in eq

6, Fc, contains the translation energy of the free ions
Ff
ti, the electrostatic interactions among all the compo-

nents (aggregates and free counterions), Fel, and the
internal energy due to the charged components of the
aggregates (the A monomers and condensed ions):

We use an ideal translation energy form,

where φi
f is given in eq 4b and λi is the thermal

wavelength of free ions. The excluded volume of the
free ions (M times the volume of the tube encasing each
A block, vt ) πrc

2fNa, with rc ≈ a) was neglected in eq
14 because it is much smaller than V. The electrostatic
interactions between the aggregates are neglected here
because their effective charge is reduced by the con-
densed ions and their mass is much larger than that of
the free ions, so only the Debye-Huckel energy term
from the interactions among the free ions is included
in Fel,

where κf
-1 is the net Debye length determined by

where lB ≡ âe2/ε is the Bjerrum length and â ≡ 1/kBT.
The last term of the free energy of eq 13 takes into
account the internal free energy per aggregate due to
the charge, Fin

c (p), which includes the translation en-
ergy of the Nc(p) condensed ions per chain along their
confined volume vt and the electrostatic interactions
among charged monomers and condensed ions ∆Fp

el,

where the cube of the thermal length of the condensed
ions is set equal to πrc

2a. In order to obtain an expres-
sion for ∆Fp

el, the internal excess free energy of the net
polyion due to Coulombic interactions, we apply argu-
ments similar to those used by P. Gonzalez-Mozuelos
and M. Olvera de la Cruz.15 In principle, screened
Coulombic interaction between a particle of species R
and a particle of species γ inside the aggregate should
be considered. However, κf

-1, the sreening Debye
length produced by the presence of the free ions in the
vicinity of the aggregate, given by eq 16, is nearly zero
in salt-free solutions. Therefore, the interactions be-
tween the R and γ particles separated by a distance r
are approximated as

The excess part of the free energy should include the
interactions and correlations among the charge compo-
nents of the aggregate that are not yet included in eq
9. In analogy to ref 15, we define the correlation
fuctions17

where r and s are position vectors taken with respect
to the center of the aggregate. Due to the spherical
symmetry of the aggregate, these correlation functions
should only depend on the radial distances r ) |r| and
s ) |s| and the total distance R ) |r - s|, so they are of
the form cRγ(r, s, R). The correlation functions defined
in eq 19 have the same general properties as Ornstein-
Zernike correlation functions. In particular, their as-
ymptotic behavior in the limit of large values of R is
also given by cRγ(r, s, R) ) -âuRγ(R), so we can write
each correlation function as the sum of a long range
term, given by the interparticle potential, plus a short
range term (cRγ

sr (r, s, R)):

If we neglect the short range correlation functions,
which for zi ) 1 give only small corrections to the excess
free energy ∆Fp

el, we obtain a mean field approxima-
tion,

Fin(p) ) Fp
id + Fp

int + Fp
en (9)

Fp
id ) kBTp ∑

I)A,B (32 ∆RI
2

NIa
2

+
π2

6

NIa
2

∆RI
2

- 3.1449) (10)

Fp
int ) kBT4πRB

2γBS (11)

Fp
en ) kBT(v2 (pfN)2RA

3
+ w
6
(pfN)3

RA
6 ) (12)

Fc/V ) Ff
ti/V + Fel/V + ∑

p

npFin
c (p) (13)

Ff
ti/V ) kBTφi

f ln(λi
3
φi
f) (14)

Fel/V ) -
kBTκf

3

12π
(15)

κf
2 ) 4πlBφi

fzi
2 (16)

Fin
el(p) ) pKBTNc ln(Nc/fN) + ∆Fp

el (17)

âuRγ(r) ) zRzγ

lB
r

(18)

cRγ(r,s) ) -
â∆Fp

el

δFR(r) δFγ(s)
(19)

cRγ(r, s, R) ) -âuRγ(R) + cRγ
sr (r, s, R) (20)

Macromolecules, Vol. 30, No. 25, 1997 Charged Micelles in Salt-Free Dilute Solutions 8021



where Zp
eff is given in eq 4a. The level of approxima-

tion involved in eq 21 is consistent with the level of
approximation used in Fp

en in eq 12. That is, if the
potential âu(r) is replaced by vδ(r), assuming that the
distribution of monomers inside the globule is uniform,
then the equivalent eq 21 is of the form v(pfN)2/RA

3 ,
which is the two-body term in eq 12.
From now on throughout the paper we work in

adimentional quantities obtained by multiplying F/V in
eq 6 by âa3 and dividing RI by a for I)A, B. Therefore,
np, φp, and φ are given in units of 1/a3, v in units of a3
(throughout this paper v/a3 is equal to 1 and 0 for good
and Θ A solvents, respectively, and w/a6 ) 1), RI and lB
in units of a, and γBS in units of 1/a2. In these units,
for example, for diblocks of poly(ethylenepropylene)
(PEP) and sodium poly(sterenesulfonate) (PSS) in water
γBS ≈ 1.27. The interfacial energy in this units is given
by γBS4π(RB/a)2 KBT ) γTS, where S is the total surface,
and for PEP in water γT ≈ 50 dyn/cm2 so γBS) γT(3v/
4π)2/3â, where v ) mass/density≈1.366× 10-22 cm3. The
value of γT has been estimated following the Fowke’s
relation18 relating the water-air and PEP-air surface
tensions to γT. For poly(tert-butylstyrene) (PtBS) the
value of γT, estimated following the Fowke’s relation,
is also approximately 50 dyn/cm2. Therefore, the γBS
for the diblock copolymer PtBS-PSS in water is of the
same order of magnitude as the one for PEP-PSS.
Experimetal studies on PtBS-PSS diblocks with f and
N values close to the values used in the numerical
solutions given in section IV were recently reported.19
The free energy is minimized when (i) the chemical

potential of the chains in all the aggregates p ) 1, 2, ...
is equal to the chemical potential of the free chains (p
) 1),

where µp ) ∂(F/V)/∂np (this condition is often rewritten
as

where µ°p is the p-aggregate standard pseudochemical
potential, the free energy difference per unit volume
from adding an aggregate of size p to a pure solvent at
a fixed position), (ii) the corona radius RA takes its
minimum value,

and (iii) the chemical potential of the free counterions
is equal to the chemical potential of the condensed
counterions for p ) 1, 2, 3, ...,

where the number density of free ions ni ) φi in our
approach. The standard equal chemical potential equa-
tion (eq 22) is solved here for the first time by minimiz-
ing the free energy with respect to the corona radius
(eq 23), which leads to

and simultaneously finding Nc(p) from eq 24, which
leads to

From these two last equations one can obtain two
limiting RA scaling regimes depending on the value of
p. For p . 1 eq 25 gives (fN - Nc(p)) ≈ 0, giving the
same result for RA as eqs 1, as expected because the
micelles must be nearly neutral in this limit. For
smaller p values, however, eq 25 gives RA(p) ≈ (lB pfN/
3)1/3(fN - Nc(p))2/3, for which, in order to satisfy eq 26,
(fN - Nc(p)) ≈ fN/(lBp)2, giving RA ≈ fN/(lBp). In section
IV these results are obtained by solving numerically eqs
22-24. We also compute pmax, the value at which np
versus p is maximum, and p*, defined by

where E/p ) (1/p)(µ°p - pµ°1). The degree of polydisper-
sity is evaluated by computing the number average, 〈p〉n,
the weight average, 〈p〉w, the z average, 〈p〉z, and the z
+ 1 average, 〈p〉z+1, defined as

where

The moments 〈p〉n and 〈p〉w are accessible by osmotic
measurements and by light scattering, respectively. The
critical micelle concentration (cmc) is the copolymer
concentration at which

In all the figures in this paper we show numerical
results for γBS ) 1.27, NA ) 400, and NB ) 25. In the
figures for nonpolar solvents lB ) 0 and for polar
solvents lB ) 2.8. Notice that since lB is really lB/a, the
value 2.8 is for fully charged PSS. Also, γBS ) 1.27 is
roughly for PEP, as explained above. Though much
larger values of γBS change the results obtained in this
paper, they are unphysical (they will be discussed in
the last section of the paper).

III. Micelles in Nonpolar Solvents (Noncharged
A-Block)
In Figure 1 we show the variation of the concentration

of free chains as a function of the total concentration of
copolymers, ln φ1 versus ln φ, for A-good solvents (a
similar curve is obtained for A-Θ solvents with smaller
cmc and ln φ1 values because more chains aggregate in
A-Θ solvents). In Figure 2 we plot ln np versus p and
show the cmc computed using eq 30, and in Figure 3
we show the degree of polydispersity by plotting the

(fN - Nc)
2lB ) (1/p)[12RA

3 /fN - π2fN/(12RA) -

1.5vp(fN)2/RA
2 - p2(fN)3/RA

5] (25)

ln(nifN/Nc) - lBκf/2 )
-(lBp(fN - Nc)/RA)[2 + ∂RA/∂Nc(fN - Nc)/RA] (26)

[∂(E/p)/∂p]p* ) 0 (27)

〈p〉n ) M1/M0 (28a)

〈p〉w ) M2/M1 (28b)

〈p〉z ) M3/M2 (28c)

〈p〉z+1 ) M4/M3 (28d)

Mi ) ∑
p)1,2,...

pinp (29)

ln np ) ln n1 at p ) pmax (30)

â∆Fp
el ≈ 4π2∑

R
∑

γ
∫0R(p)dr rFR(r)∫0R(p)ds sFγ(s) ×

∫|r-s|r+s
dR RuRγ(R) (21)

≈ lB
RA(p)

(Zp
eff)2

µp/p ) µ1 (22a)

ln φp ) p ln φ1 - â(µ°p - pµ°1) (22b)

∂(F/V)/∂RA ) 0 (23)

∂(F/V)/∂ni ) ∂(F/V)/∂(nppNc) (24)
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moments defined in eqs 28 for A-good solvents. Micelles
of uncharged A-blocks are monodisperse, and the degree
of polydispersity decreases as pmax (γBS and/or N)
increases.
Analytical results can be easily obtained for un-

charged micelles. For example, from eq 23 we recover
eqs 1, and from eq 27 we obtain

for an A-Θ solvent, and

for an A-good solvent. The values for RA(p*) and RB-
(p*) are obtained setting p ) p* in eqs 1. The numerical

solution of eqs 23 and 27 for N ∈ [400, 1500], f ∈ [0.1,
0.9], and γBS ∈ [0.5, 20] above the cmc leads to p* ≈
NRγBS

δ with R ∈ [0.87, 0.92] and δ ∈[ 1.09, 1.1] for an
A-Θ solvent and R ∈ [0.74, 0.84] and δ ∈ [1.19, 1.22] for
an A-good solvent. The variations are due to the
sensitivity of p* to the value of γBS. At the cmc, pmax
computed solving eqs 22 and 23 is smaller than p*, but
as the concentration of copolymer increases, pmax ap-
proaches p*.

IV. Micelles in Polar Solvents (Charged A-block)
We solved numerically eqs 22-24 using the same

parameters as in Figures 1-3 from the previous section,
but with lB ) 2.8. The most spectacular difference
between uncharged and charged systems is the fact that
in charged systems the fraction of free chains above the
cmc decreases as the concentration of copolymer in-
creases, as shown in Figure 4a for A-good solvents and
in Figure 4b for an A-Θ solvent. While in uncharged
A-blocks always ln φ1 in A-Θ solvents is lower than that
in A-good solvents, in charged A-blocks this is only true
below the cmc. For copolymer concentrations above the
cmc, the concentration of free chains in A-good solvents
is lower than that in A-Θ solvents, contrary to the case
for uncharged chains. In Figure 5a and b we plot the
ln np versus p and show the cmc given by eq 30 for
A-good and A-Θ solvents, respectively. The cmc for
charged systems is larger than the cmc of uncharged
systems. However, while in uncharged systems the cmc
for A-Θ solvents is less than that in A-good solvents, in
charged systems, unless γBS is very large, it is the
opposite. Since the population of large micelles is very
low in charged systems above the cmc, pmax in charged
systems is smaller than that in uncharged systems.
Also, contrary to the case for uncharged systems, in
charged systems pmax is almost constant above the cmc
and it does not approach p*. Therefore, for charged
systems a monodisperse model with p* given as a
characteristic aggregation number has no significance.
Charged systems have large deviations between 〈p〉n and
〈p〉w, as shown in Figure 6a and b for A-good and A-Θ
solvents, respectively.

Figure 1. Logarithm of the concentration of free chains (ln
φ1) versus the logarithm of the total concentration of diblock
copolymer chains (ln φ) in nonpolar good solvents for the
A-blocks. The parameters are NA ) 400, NB ) 25, lB ) 0, v )
1, and γBS ) 1.27.

Figure 2. Number of aggregated chains with p chains (ln np)
versus p for systems described in Figure 1.

p* ≈ ((1 - f)N)0.8γBS
1.2 (31)

p* ≈ (1 - f)10/11f-3/11N7/11γBS
15/11 (32)

Figure 3. Average aggregation number versus the logarithm
of the concentration of chains for systems described in Figure
1.
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As previously stated, the number of condensed coun-
terions per chain in a p-aggregate, Nc(p), tends to fN
when p . 1, as shown in Figure 7a for A-good solvents.
That is, large micelles are indeed nearly neutral. The
scaling of their radii, RA(p), tends to the scaling of
neutral micelles, given in eq 1, as shown in Figure 7b.
The polpulation of large micelles, however, is zero, as
can be seen in Figure 5a. Notice in Figure 7 that, above
the cmc, Nc(p) and the scaling of RA(p) are independent
of the total concentration of copolymer, φ. This may
explain why pmax is φ independent above the cmc. Above
the cmc, pmax ) 7 for the systems described in Figure 7,
and the concentration of copolymer aggregated with p
chains, φp ) pNnp, for p ) pmax is approximately 0.002
at the cmc and 0.015 at φ)0.017 47. For p values
around pmax the scaling of RA with p is 1/p for A-good
and A-Θ solvents, as predicted in the previous section

for charged micelles with a small number of aggregated
chains.

V. Discussion and Conclusions

Micelles are predicted in A-B block copolymers with
hydrophobic B blocks and charged A blocks in salt-free
aqueous solutions using a simple thermodynamic model
for polydispersed micellar suspensions which includes
ion condensation. We compare our results to those for
uncharged A-block micellar suspencions. Uncharged
A-block micelles are monodisperse, and pmax tends to
p* (defined in eq 27) as the copolymer concentration
increases above the cmc. Charged A-block micelles,
however, are polydisperse and pmax does not approach
p* above the cmc. The cmc in charged micelles when
γBS is small is larger in A-Θ solvents than in A-good

Figure 4. (a) Logarithm of the concentration of free chains
(ln φ1) versus the logarithm of the total concentration of diblock
copolymer chains (ln φ) in (a) polar good solvents (v ) 1) and
(b) polar Θ solvents (v ) 0) for the A-blocks. The parameters
are NA ) 400, NB ) 25, lB ) 2.8, and γBS ) 1.27.

Figure 5. (a) The number of aggregated chains with p chains
(ln np) versus p for systems described (a) in Figure 4a with
φ) 0.000 11 (dotted line), φ ) 0.001 34 (dashed line), φ )
0.004 15 ) cmc (solid line), and φ ) 0.017 47 (solid-dashed
line) and (b) in Figure 4b with φ ) 0.000 11 (dotted line), φ )
0.0015 (dashed line), φ ) 0.004 83 ) cmc (solid line), and φ )
0.020 12 (solid-dashed line).
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solvents. Uncharged systems or charged systems with
large γBS have smaller cmc values in A-Θ solvents. In
charged systems above the cmc the fraction of free
chains decreases as the concentration of copolymer
increases, and it is smaller in A-good solvents than in
A-Θ solvents, contrary to the case for uncharged sus-
pencions. This is the most striking difference between
charged and uncharged A block micellar suspensions.
Charged and uncharged A block micellar suspensions

have common characteristics. As γBS increases and/or
as f ) NA/N decreases, pmax (and p*) increase and the
cmc decreases. Also, in both suspensions the cmc and
pmax (and p*) decrease as N decreases, and pmax (and
p*) and the degree of polydispersity for A-Θ solvents is
larger than that for A-good solvents. Charged systems,
however, have smaller pmax values and larger cmc
values. Furthermore, in uncharged systems RA(p) is
given by eqs 1 and pmax, which tends to p*, has a well-
defined scaling withN and γBS. Therefore, in uncharged
systems it is possible to know the scaling for the size of

the most populated (pmax) micelles. In charged systems,
however, RA(p) has various scaling regimes: stretched
charged chain scaling for p very small (RA ≈ N/p) and
uncharged chain scaling for p . 1 (given by eqs 1). In
charged systems one cannot obtain scaling forms for p*
(which is useless in charged systems) nor for pmax; their
scaling is very sensitive to the numerical values of γBS
and lB/a. One can conclude simply that, for experimen-
tally accessible γBS andN values, such as the numerical
values used here, pmax for fully charged chains is small.
Therefore, the chains in the most populated micelles are
stretched.
The existence of such micelles is confirmed by light,

neutron, and X-ray scattering.10,19 Furthermore, a
rather large polydispersity was found, like theory
predicts in some range of concentrations. Special care
has to be taken, however, to remove the influence of
scarce big aggregates,10 whose effect is only sensible at

Figure 6. Average aggregation number versus the logarithm
of the concentration of chains for systems described in Figure
4a and b.

Figure 7. (a) Number of condensed counterions per chain in
a p-aggregate (Nc(p)) versus p for systems described in Figure
4a. Nc(p) values for φ ) 0.004 15 ) cmc and φ ) 0.017 47 are
nearly identical. (b) Logarithm of the radius of the corona of a
p-aggregate (RA(p)) versus the logarithm of p for systems
described in part a. ln RA(p) values for φ ) 0.004 15 ) cmc
and φ ) 0.017 47 are nearly identical.
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low angles of scattering (for light), and deduce the true
polydispersity of micelles for comparison with theory.
The existence and state of equilibrium of these ag-
gregates is still a matter of debate, since they do not
seem to be described by our current theory. Other
groups have reported analogous behaviors (see ref 20,
for instance). The measured average aggregation num-
ber for the copolymer PtBS-PSSNa is on the order of
30 as measured by both light and neutron scattering.
This is in excellent agreement with theory, which gives
pw of order 26 for γBS equal to 2.3, a reasonable
theoretical estimation of the surface tension. At last,
the radius of gyration of the micelles can be compared
to the RA value of the micelles given by theory. As
shown in Figure 6b, the polydispersity becomes very low
for concentrations well beyond the cmc, where light-
scattering measurements were performed. We can thus
directly compare RA to Rg, the radius of gyration, by
taking into account the numerical factor linking these
two quantities for a star. This factor is not known with
certainty, since it depends on the statistics of the chain.
For a single chain it is found that Rg ) 2RA/121/2 for a
rod and Rg ) 2RA/61/2 for a Gaussian chain. For stars,
experiments on neutral stars show that the gyration
radius of the star is roughly twice the gyration radius
of a single chain whose star is made of p elements. We
thus find that the experimental Rg (found to be on the
order of 60 nm) should lie in between 4RA/121/2 and 4RA/
61/2, where RA is taken for the value of the aggregation
number pmax, which leads to an interval of 9.9-14 nm.
The discrepancy between theory and experiments can
have a twofold origin: (1) experiments are never in a
range where polydispersity seems negligible (see above)
and (2) theory does not allow for an inner concentration
of the noncondensed ions which is different from the
outer one. Such an osmotic pressure could be respon-
sible for an additional stretching of the arms.
It is important to point out that, for very large values

of γBS and lB/a, the theory predicts very large pmax,

leading to neutral chain scaling (given in eqs 1) for the
chains in the most populated micelles.
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