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PACS. 05.70Fh – Phase transitions: general aspects.
PACS. 64.75+g – Solubility, segregation, and mixing.

Abstract. – We analyze interfaces between A-righ and B-rich phases in symmetric ternary
polymer blends with a non-selective C minority component. The interfacial tension σ and the
interfacial thicknesses of the composition profiles of ϕA(x) − ϕB(x), and ϕC(x), L1 and L2,
respectively, are calculated by solving the linearized equation resulting from minimizing σ as
a function of the average composition of C, ϕ̄C = 1 − ϕ̄, with ϕ̄/2 = ϕ̄A = ϕ̄B, and the net
interaction per thermal energy between components A and B, χAB = χ (χAC = χBC = ηχ).
As ϕ̄C increases the interfacial thickness increases and the interfacial tension decreases. Our
results are in excellent agreement with the steady-state solution of the non-linear spinodal
decomposition equations.

Most polymer blends are strongly incompatible and will phase separate upon mixing [1].
The mechanical properties of these multiple-phase materials are determined to a large extent
by the interfacial properties, such as the interfacial tension and the interfacial thickness. We
have recently analyzed interfaces of immiscible A and B homopolymers in the presence of a
minority homopolymer C [2]. We found considerable segregation of the C component along
the interfaces between α and β phases rich in A and B, respectively, even if C is not an A-B
copolymer [3], [4]. We studied the degree of the adsorption of C in the α-β interfaces. The
segregation of C along the interfaces can in principle enhance the stability of polymeric phases
by lowering the interfacial tension and increasing the interfacial thickness. In this paper we
study the interfacial properties when a third homopolymer C is added to A and B polymer
blends.

The adsorption of C at the interfaces between α and β phases is a function of the net
interaction per thermal energy (kBT ) between components I and J, χIJ. It has been analyzed
as a function of ϕ̄C < ϕ̄A = ϕ̄B, where ϕ̄I is the mean composition of I, and thermal energy in
symmetric systems with A, B, and C degrees of polymerization equal to N (NA = NB = NC =
N) solving numerically the non-linear spinodal decomposition equations (NLSD) in the steady
state [2]. Here we develop the scaling analysis of the interfacial properties in non-selective C
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systems, where χAC = χBC = ηχAB, in terms of ϕ̄C, χAB, and η minimizing the interfacial
tension. We compare these results with those obtained by solving the NLSD in the steady
state.

Consider a ternary system described by the free-energy functional per site,

∆f = ∆f0 +
∑

I=A,B,C

κ̄II(∇ϕI)2 , (1)

where ∆f0 is the free energy per site of a homogeneous system, and κ̄II is the gradient energy
term coefficient. When ∆f0 is unstable, such that equilibrium is established if two phases
coexist, the compositional gradient terms are required to determine the equilibrium interface
profile. The interface profile is obtained by finding the lowest minimum of the interfacial
tension. In a flat interface between α and β phases of compositions ϕ̄αI and ϕ̄βI , respectively,
the interfacial tension σ is given by the difference per unit area of interface between the actual
free energy and that which it will have if the properties of the two phases were continuous [5],

σ = NV

∫ +∞

−∞

(
∆fm

0 +
∑

I=A,B,C

κ̄II

(dϕI

dx

)2
)

dx , (2)

where NV is the number of monomers per unit volume and

∆fm
0 = ∆f0

(
{ϕI(x)}

)
−
∑

I

ϕI(x)
NI

µ
α(β)
0,I , (3)

where µ
α(β)
0,I is the chemical potential in the equilibrium phases. The composition of C is

eliminated through the incompressibility constraint. An extremum of σ is obtained by solving
simultaneously the resulting two Euler-Lagrange equations [6]. In symmetric systems with a
non-selective C component (ϕA(x) = ϕB(−x)), using the boundary conditions ∆fm

0 = 0 and
dϕA
dx = dϕB

dx = 0 as x→ ±∞, these two Euler-Lagrange equations reduce to

∆fm
0 = κAA

(dϕA

dx

)2

+ 2κAB
dϕA

dx
× dϕB

dx
+ κBB

(dϕB

dx

)2

(4)

with κII = κ̄II+κ̄CC, I = A, B, and κAB = κ̄CC. There are many solutions for eq. (4). Only the
lowest minimum σ will give the actual interface. Though the actual interface profile cannot
be solved analytically, it can be obtained numerically by solving the linearized solution for
eq. (4) [7], [8]. In this paper, the perturbative variational approximation (PVA), developed by
Lifschitz and Freed [7] to study interfaces in symmetric compressible binary blends, is extended
to study interfaces in symmetric incompressible ternary blends (i.e. eq. (4)).

We construct the ternary-blends phase diagrams using the Flory-Huggins mean-field free
energy per lattice (the regular solution model), as in [2]. The gradient energy terms are
functions of the local compositions [9], κ̄II = kBTa

2/36ϕI(x), I = A, B, C, where a is the
monomer size. Two types of phase diagrams result for non-selective C blends with ϕ̄A = ϕ̄B:
i) when η = 0 and/or ηχABN is sufficiently small, a critical point appears at (χABN(1 −
ϕ̄C))crit = 2 increasing ϕ̄C and/or χABN , ii) when ηχABN is sufficiently large, a three-phase
region α, β, and γ appears increasing ϕ̄C (or χABN), where γ is a new phase rich in the
minority C component.

In the non-selective C cases where in general the symmetry ϕA(x) = ϕB(−x) holds, it is
convenient to let ϕA(x) = r2(x) cos2 ϑ(x) and ϕB(x) = r2(x) sin2 ϑ(x) [7]. Equation (4) thus
becomes

∆fm
0 = 4× kBTa

2

36
× r2

0

[ 1
1− r2

(dh
dϑ

)2

+ (1 + h)2
](dϑ

dx

)2

(5)
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with r[ϑ(x)] = r0(1 + h[ϑ(x)]), r2
0 = ϕ̄A

α(β) + ϕ̄B
α(β), and h[ϑ(±∞)] = 0. Assuming

h[ϑ(x)] =
∑n0

1 ε2n−1 sin(λ2n−1ϑ(x)+ω2n−1)¿1 [7] with λ2n−1 = (2n−1)π/(ϑ(+∞)−ϑ(−∞))
and ω2n−1 = −λ2n−1ϑ(−∞), ∆fm

0 can be expanded around (r0, ϑ). Therefore, any extremum
of σ has the form

σ = 2NV ×
(1

2

n0∑
n,m=1

v2n−1,2m−1ε2n−1ε2m−1 +
n0∑
n=1

γ2n−1ε2n−1 +
∫ ϑ(+∞)

ϑ(−∞)

E(ϑ)dϑ
)

(6)

with

v2n−1, 2m−1 =
∫ ϑ(+∞)

ϑ(−∞)

A(ϑ)λ2n−1λ2m−1 cos(λ2n−1ϑ+ ω2n−1) cos(λ2m−1ϑ+ ω2m−1)dϑ+

+
∫ ϑ(+∞)

ϑ(−∞)

B(ϑ) sin(λ2n−1ϑ+ ω2n−1) sin(λ2m−1ϑ+ ω2m−1)dϑ , (7a)

γ2n−1 =
∫ ϑ(+∞)

ϑ(−∞)

C(ϑ) sin(λ2n−1ϑ+ ω2n−1)dϑ (7b)

with (1 − r2
0)A(ϑ) = (kBTa

2r2
0∆fm

0 /9)1/2 = X, B(ϑ) = Xr0

(
r0∆fm(2)

0 /2 + ∆fm(1)
0 (1 −

D/4)
)
/∆fm

0 , and C(ϑ) = X(1+D/2), where D = r0∆fm(1)
0 /∆fm

0 and ∆fm(1)
0 = ∂1∆fm

0 /∂r
1.

The solutions of {ε2n−1} are obtained by minimizing the interfacial tension σ in eq. (6) with
respect to the variations of {ε2n−1}, which can be expressed in the matrix form, [ε2n−1] =
−[v2n−1,2m−1]−1×[γ2n−1]. Once {ε2n−1] are found, ϑ(x) is obtained numerically by integrating
eq. (5), generating r[ϑ(x)] and the compositions ϕI(x), I = A, B, C.

It should be noted that although the global incompressibility constraint,
∫

∆ϕI(x)= 0, where
∆ϕI(x) = ϕI(x)− ϕ̄I, is included in σ (eq. (2)), we do not recover it when we approximate σ up
to second-order terms in ε (eq. (6)). Global incompressibility can be obeyed in different ways.
For example, if we solved the NLSD in the steady state with periodic boundary conditions as in
ref. [2], we obtained that the α and β phases have compositions (ϕ̄A

α(β)+ δ
2 , ϕ̄B

α(β)+ δ
2 , ϕ̄C−δ),

and δ → 0 when the bulk size is very very large. However, if we solved the NLSD in the
steady state with the equilibrium boundary conditions, since δ = 0, ∆ϕC(x) becomes negative
just before entering the interface region and then positive in the interface region. If the
Euler-Lagrange equations could be solved exactly, we believe we will obtain the same results
of the NLSD with the equilibrium boundary conditions. Though the regions of negative values
of ∆ϕC(x) are not obtained with the second-order PVA approach, the values of ∆ϕC(0) with
the PVA approach are nearly equal to the steady-state solution of the NLSD with equilibrium
boundary conditions.

For η = 0 the interfacial tension at a fixed χABN value is a maximum when ϕ̄C = 0. When
the interaction between A and C and B and C (η) increases, since the amount of C segregating
in the interfaces increases, the interfacial tension is even more reduced. In systems with a
critical point (ηχABN ¿ 1), as ϕ̄C increases, σ decreases up to σ = 0 when ϕ̄C reaches ϕ̄C

crit.
In fig. 1 we plot σ vs. Y , where Y = (1− ϕ̄C)( 1

2χABN(1− ϕ̄C)− 1)3/2 at various χABN values
for η = 0. We find that σ is linear with Y when Y is large (i.e. when ϕ̄C ¿ ϕ̄A = ϕ̄B)) with
a slope strongly dependent on χABN . When Y ≈ 0 (around the critical point), on the other
hand, one can show, following Cahn and Hilliard [5], that σ = (2kBT/3

√
Na2)Y , which from

fig. 1 we see only holds for Y infinitesimally near 0.
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Fig. 1. – Plots of σ vs. (1 − ϕ̄C)( 1
2
χN(1 − ϕ̄C) − 1)3/2 in non-selective C systems (χAC = χBC =

ηχAB = ηχ) for η = 0 at various χABN values. The values of σ are in the unit of kBT/3
√
Na2.

Since the symmetry ϕA(x) = ϕB(−x) holds in non-selective C systems, it is natural to
determine the interfacial thicknesses from the composition profiles of ϕA(x)−ϕB(x) and ϕC(x),

L1 =
2.0× (ϕ̄A

α − ϕ̄A
β)∣∣∣d(ϕA(x)− ϕB(x))

dx

∣∣∣
x=0

, (8a)

L2 =
2.0× (ϕC(0)− ϕ̄C)∣∣∣dϕC

dx

∣∣∣
max

, (8b)

respectively, where
∣∣dϕC

dx

∣∣
max

is the maximum of the absolute value of dϕC/dx.
If the adsorption of C at the interfaces is neglected, one can show analytically that, near

the critical point,

L1 =
α
√
Na

3
(1− ϕ̄C)−µ

(χN(1− ϕ̄C)
2

− 1
)−1/2

(9)

with α = 2 and µ = 0. Numerically, where there is adsorption of C we find that µ(η = 0) = 1/2
and µ(η = 1) = 3/2 even when the system is far away from the critical point. Also numerically
we find that L2 has the same scaling results as L1 with α ∼= 2.45, as shown in fig. 2 a) and b)
for η = 0 and η = 1, respectively. For η = 1 at 2.57 < χN < 2.74, however, when the system
is close to the three-phase region, the interface is broader than predicted by eq. (9).

The adsorption of C at the interfaces was found to be in excellent agreement with those
computed by solving the NLSD in the steady state. The scaling with η, χN , and ϕ̄C is given
elsewhere [2].

In summary, with the addition of a third minority C component in immiscible A and B
blends the interfacial tension decreases and the interfacial thickness increases. In symmetric
ternary blends with a non-selective C component, the segregation of C in the interfaces between
the A-rich and B-rich phases increases as η increases. Therefore, the interfacial thickness
increases and the interfacial tension decreases as η increases. We conclude that the perturbative
variational approximation gives basically the same results as the steady-state solution of the
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Fig. 2. – The interfacial thickness L2 in eq. (8b) as a function of ϕ̄C and χN for a) η = 0 and b) η = 1,

respectively. The values of L2 are in the unit of
√
Na
3

.

non-linear spinodal decomposition equations in ternary polymer blends. For systems having
smaller gradient energy term coefficients, such as ternary alloys and small molecules, this
approach breaks down due to the large degree of adsorption along the interfaces [10].

***
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