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ABSTRACT: The dynamics of phase separation of ternary mixtures into two and three phases are 
analyzed numerically by solving the nonlinear spinodal decomposition equations in two dimensions. We 
find interesting interface effects during the decomposition process. Between any two a + p phases rich 
in components I and J respectively, the third component K segregates in the interface between a and /3. 
We study the interface segregation effects in symmetric ternary polymer blends (Le., with equal Flory 
interaction parameters between each pair of monomers and equal degrees of polymerization). This 
segregation phenomenon influences strongly the growth of a third phase with lowest equilibrium volume 
fraction. In the absence of hydrodynamics, the kinetics of the minority phase is determined by the topology 
of the segregation pattern initiated by the decomposition of the most unstable phases. Coarsening of the 
minority phase occurs a t  the junction of four or more majority phase domain boundaries. We examine 
the dynamical scaling and the growth laws for the late stages of separation into two and three phases. 
The growth law R(t)  - t1I3 is always obeyed even when the structures are not self-similar. The self- 
similar regime is achieved very slowly in ternary systems. 

I. Introduction 
For many years blending polymers with a high degree 

of polymerization has been of commercial interest since 
it may lead to new materials with more favorable 
performance than the pure components. Most polymer 
mixtures are immiscible leading to the formation of 
multiple phases. Therefore it is important to study the 
phase behavior for polymer blends. While phase sepa- 
ration has been extensively studied in binary systems,l 
only a few studies exist in multicomponent  system^.^,^ 
In this paper we describe phase separation in ternary 
polymer blends. 

We study immiscible blends of long, highly flexible 
molecules, which obey Gaussian statistics in the molten 
states4 We construct the free energy of the blends using 
the simplest mean field model, the Flory-Huggins-de 
Gennes free energy, which de Gennes pointed out 
describes properly immiscible high degree of polymer- 
ization polymer  blend^.^>^ The immiscibility between 
components I and J in polymer blends is described by 
the Flory interaction parameter, XIJ, which is generally 
positive and favors segregation. For example, above a 
critical value of XB = 21N a symmetric A-B bindary 
system of degree of polymerization N separates into two 
 phase^.^,^ When a system is unstable against infini- 
tesimal fluctuations in composition, the separation 
process is termed spinodal decomposition. 

The phase behavior of ternary polymer blends, how- 
ever, is more complicated. These systems can decom- 
pose into two or three phases. In this paper we study 
the kinetics of phase separation when the mixture 
decomposes into two and three phases. We find that 
between any two phases rich in components I and J, 
the third component K segregates in the interface, even 
when the equilibrium composition of the third compo- 
nent K is equal in both phases. This interface segrega- 
tion phenomenon influences the decomposition patterns 
into two and three phases in ternary systems. 
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We also explore the dynamical scaling and the growth 
behaviors in ternary systems, which have been widely 
accepted in binary systems. In binary systems the 
decomposition pattern into two phases is generally 
bicontinuous. The resulting structure is self-simi1ar.l 
The structure function S(k,t), accessible by the scatter- 
ing radiation experiments, scales as (R(z)IdG(kR(z)) 
where R(z) is associated with the domain size, d is the 
space dimensionality, and G is a function independent 
of time. The bicontinuous structure coarsens asymp- 
totically in time according to the growth law R - z1I3. 
Recently this universality in the scaling and the growth 
behaviors was observed in ternary mixtures with sym- 
metric compositions, i.e., PI= l13, I = A, B, C, decompos- 
ing into three  phase^.^ In these systems, however, the 
segregation of the third component along the interface 
was not observed. Here we find that even when there 
is segregation along the interface, the growth law is 
always obtained, the scaling regime, however, is reached 
in the very late stages of the decomposition process. 

For simplicity, we study symmetric A-B-C ternary 
polymer blends, i.e., XAB = XBC = XAC = x and N A  = N B  
= Nc = N. We numerically solve the nonlinear diffusion 
equations during spinodal decomposition, extending the 
method used to study binary systemsg to ternary blends. 
In section I1 we outline the mean field thermodynamics 
of ternary polymer blends, from which the phase dia- 
grams for symmetric ternary polymer blends are con- 
structed. In section I11 the dynamic model and the tech- 
niques for numerically solving the diffusion equations 
are described. The decomposition patterns are given 
and discussed in section N.a, and the dynamical scaling 
and the growth laws are investigated in section N.b.  
The conclusions of our studies are given in section V. 

11. Thermodynamic Analysis 
The Flory-Huggins-de Gennes mean field free en- 

ergy per site of an A-B-C ternary polymer blend is 
given by 
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The phase diagrams and the spinodal curves for 
symmetric ternary polymer blends,  AB = XBC = XAC = x 
and N A  = NB = Nc = N ,  calculated using eqs 11.3 and 
11.5 are shown in ABC composition triangles for differ- 
ent xN values. The I-th corner in the triangle repre- 
sents a system of 100% of component I. For xN < 2, 
the ternary system is homogeneous at any composition 
(@A,@B,@c) in the triangle ABC. A typical ternary phase 
diagram for 2 5 xN < 2.57 is given in Figure l a  where 
xN = 2.4. In the diagram the A-rich, B-rich, and C-rich 
phases are labeled as a, ,!?, and y ,  respectively, and the 
one-phase region around the center of the composition 
triangle is labeled as 6. As xN increases from 2.0 to 
2.57 we find three lines of critical points given by 
WxN, VxN, 1-2/xN)1, [l -2/xN),l/xN, VxN , and WXN, 1 - 
2/xN),l/xNl. We show the three critical points at xN 
= 2.4 in Figure la;  they are determined by the inter- 
section of the spinodal lines with the coexistence curves 
in each a + ,!?, ,!? + y ,  and a + y region. The tie lines, 
which give the equilibrium compositions in the two- 
phase regions, are parallel to the I-J axis. For example, 
for any composition along the DE line the equilibrium 
compositions are given by D = (@i,@&@c), and E = 

When xN > 2.57 three-phase regions appear in the 
phase diagrams. There are six three-phase regions 
shown inside small triangles in Figure l b  where xN = 
2.65. As expected by phase rules, each three-phase 
region is separated from the single phase regions by the 
two-phase regions on the right and left of each small 
triangle. These six new two-phase regions each have a 
critical point (as xN increases, they generate six lines 
of critical points emerging from the critical points at xN 
= 2.57). For example, for any initial composition inside 
the triangle HKL, with equilibrium compositions given 
by H = (@i,@i,@E), K = (&,q{,&, and L = 
(@:,@;,@:), the left and right of the triangle HKL are a + 6 and /3 + 6, respectively. When xN = 8/3, the critical 
lines of a + 6, ,!? + 6, and y + 6 join at (0.5, 0.25, 0.25), 
(0.25, 0.5, 0.251, and (0.25, 0.25, 0.51, respectively as 
shown in Figure IC. For xN > 8/3 these two-phase 
regions overlap and all the critical points disappear as 
shown in Figure Id for X N  = 2.7. When xN is 2.7456, 
the three-phase regions shown in Figure Id touch at 
the center of the ABC triangle (see Figure le). For xN 
> 2.7456 they overlap leading to a single interior a, p, 
and y three-phase triangle with equilibrium composi- 
tions given by the points X, Y, and Z shown in Figure 
If where xN = 3.0. 

We analyze systems which are symmetric in A and 
B, i.e., systems along a line perpendicular to the A-B 
axis such as points 1, 2, and 3 in Figure Id, and points 
4 and 5 in Figure If. In ternary systems with @A = @B, 
it is convenient to expand the free energy Afi in two 
order parameters ql(r) and q2(r) given by 

(II.7a) 

yj2(r) = &A(r) + d q B ( r )  (II.7b) 

with @ = @A + @B, f = @A/@, and 6 q d r )  = &) - @I. 
$ ~ 2 ( r )  = 0 if C is homogeneous. If we expand Afi in terms 

(11.8) 

where rll = [@/f(l - flNl - 2g2x and T22 = [l/@(l - 
@)N] + (Zf(1  - f ,  - 2 ) ~ .  The signs of the coefficients 
rll and r22 determine the instability of the formation 

(&,(7g,@c). 

ql(r) = 1-f - 6qA(r) - =6qB(r) f 
v1 q 

o f q l  and q 2  

Afi 0~ rlly$ + T 2 2 ~ i  + (higher order terms) 

where Af. is the regular solution model free energy per 
site. Afi is a functional of the local compositions of 
component I, pl(r), I = A, B, and C, 

Q)A In q A  + Q)B In Q)B + q C  In 9 C  + XABQ~AQ~B + k,T= N A  NB NC 
XBCVBQ)C + X A C ~ A V ~ C  (II.lb) 

where NI is the degree of polymerization of component 
I, I = A, B, C. The blend is assumed to  be incompress- 
ible: qA(r) + q&) + qc(r-1 = 1. The gradient energy 
term coefficients iT11 in blends are computed using the 
Random Phase Approximation:lo 

211 = k,T(U2/36@1) (11.2) 

where a is the monomer size and @I is the mean 
composition of I in the whole system.ll (For simplicity 
KII is assumed to be independent of the local composition 
pI(r), this approximation, however, does not affect the 
results obtained here.12) 

The equilibrium state of the system is determined by 
equating the chemical potential of each component I, 
p;, in the possible coexisting phases m, m = a, ,!?, y ,  
including the mass conservation laws, i.e., 

po,I - ,u.,~) I = A, B, C (II.3a) 

(II.3b) 

where vm is the volume fraction of phase m and @? is 
the mean composition of I in the m phase. The chemical 
potential is defined as the change of the total free energy 
AFo with respect to the number of component I, n ~ ,  
without the gradient energy terms, 

a - P - v  

PI = vat$ + #d(+ v'@,f) I = A, B, C 

am. 
F , I  = an, 

It has the form of (see Appendix A) 

(II.4a) 

JsI  

(I t K # L, I, J, K' = A, B, C )  

For ternary systems the spinodal curves (the limits 
of instability of the homogeneous phase) are determined 
by13 

fM f4B = o  
IfBA f B B  1 (11.5) 

with 

f - (- a - -)(- a a  - -)Afi a I, J = A ,  B 
(I1.6a) I J -  aq1 a q C  aFJ a q C  

By eqs II.lb and II.6a 
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Figure 1. The phase diagrams of symmetric ternary systems for (a) xN = 2.4, (b) xN = 2.65, (c) xN = 8/3, (d) xN = 2.7, (e) xN = 
2.7456, and (f') xN = 3.0. The symbols (- - -) and (- - -) correspond to the spinodal curves and the tie lines, respectively. 

of a + p and y ,  respectively. At point 1 in Figure 
Id the system has composition (0.25,0.25,0.5) and it 
is unstable t o  the formation of y and 6 with S = 
(0.202,0.202,0.596) and T = (0.298,0.298,0.404), respec- 
tively (rll > 0; r 2 2  < 0). At point 2 the composition is 
(0.45,0.45,0.1) and the system is unstable to the forma- 
tion of a and p with compositions U = (0.7539,0.1461,0.1) 
and V = (0.1461,0.7539,0.1), respectively (I'll < 0; r22 
> 0). At point 3 the system has composition (0.4,0.4,0.2) 
and is unstable to the formation of two majority a + p phases, and metastable to the formation of one 
minority 6 phase with equilibrium compositions N = 
(0.6107,0.2033,0.186), 0 = (0.2033,0.6107,0.186), and 
P = (0.3636,0.3636,0.2728), respetively (I'll < 0; T22 
> 0). Finally systems at  points 4 and 5 in Figure If 
of compositions (0.4,0.4,0.2) and (0.25,0.25,0.5), re- 
spectively, form a, p, and y phases with compositions 
X = (0,811,0.0945,0.0945), Y = (0.0945,0.811,0.0945), 
and Z = (0.0945,0.0945,0.811), respectively. System 
4 is unstable to the formation of a + ,8 and meta 
stable to the formation of y (rll < 0; r22 > 0); 
while system 5 is metastable to the formation of a 
+ ,B and unstable to the formation of y (rll > 0; r 2 2  < 
0). 

where M I  is the Onsager coefficient of I. p: is deter- 
mined including the compositional gradient terms in Af 
(see Appendix B). We ignore the thermal fluctuations 
because they are negligible for quenches far away from 
the critical points and/or spinodal lines,14 where the 
driving force for phase separation is much larger than 
the thermal fluctuations. 

In constructing the nonlinear diffusion equation for 
polymer blends, two theories have been used, one 
proposed by de Gennes,6 and the other by Kramer et 
al.15 We adopt the results of Kramer et al. who propose 
that there is a net vacancy flux during the diffusion 
process with the constraint of local thermal equilibrium 
of vacancies, which has been shown16 to agree better 
with experiments.17 The net flux of each component I, 
SI, is equal to 

JI = JI + 9IJV (III.3a) 

where JV is the vacancy flux, 

111. Dynamic Model and Numerical Methods 

by a continuity equation 

We eliminate the variable qc(r,t) using the incompress- 
ibility condition and use the Gibbs-Duhem relationship 
locally, EI=A,B,c@'J d& 

The kinetics of spinodal decomposition are described 0; eqs 111.1 become 

apj,/at = -vJI I = A, B, -[q~(T',t)] a = M11V2(/49,1 - p:,, - 2K11V2Vj, - 2K1jV2qj) + at 
where the flux is proportional to the gradient of the M,jV2(p9,j - p?,c - 2Kjlv2V1 - 2KjjV2~j) 
chemical potential of I per site p; ,  I f J; I, J = A, B (111.4) 

where p:.I = aAfi./aqI is given in eq A.5 J, = -MIVp; (111.2) 
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KII = + K C C ,  I = A, B, and KAB = KBA = K C C ,  given in 
eq 11.2. In long polymer blends the mobility is given 
byls 

(111.6) 

where D,  is the diffusion coefficient of monomers, and 
Ne is the effective number of monomers per entangle- 
ment length. 

We solve eqs 111.4 in terms of dimensionless param- 

reduced mIJ = MIJ/M and PIJ = KIJ/K, where M = (1/4N)- 
(DoNdkBT) and K = kBT (4a2/36). The eqs 111.4 in 
dimensionless forms are solved using the finite-differ- 
ence method for the spatial and the temporal deriva- 
t i v e ~ . ~  The values of Ax and AT are chosen to simulate 
continuous dynamics avoiding artificial numerical slow- 
ing down effects. (Since according to eqs 111.4 the local 
compositions p ~ ( r , t ) ,  I = A, B, and C, will evolve in time 
provided that there is a gradient in composition, the 
interfacial thickness should be larger than Ax.) The 
simulations are done in 2D. We have considered a 
square lattice with L2 grids, L = 64. The periodic 
boundary conditions have been used to  avoid surface 
effects. Since the initial high temperature state is a 
homogeneous mixture, the initial compositions p~ and 
I ~ B  for each grid are chosen to  be uniformly random 
number distributed in the interval [ q A - v , q A + v ]  and 
[ & B - v , q B + v I ,  respectively. We choose 7 = 0.01 here. 
We have run 10 times from t = 0 up to t = 2 x lo4 and 
10 runs are averaged. Each run is started from a 
different random seed (i.e., a different initial composi- 
tion field over the same average fluctuation). For 
systems 2-5 in Figure 1, parts d and f, a time step AT 
= 0.01 and a grid size Ax = 1.2. Since for system 1 in 
Figure Id the equilibrium interfaces are broader, we 
choose a larger grid size, Ax = 1.6, and a time step A t  
= 0.02. 

eters, x = ( k ~ T / 2 ~ N ) l / ~ r  and t = M(k~T)~t/zKw, and 

IV. Results and Discussion 

Il7.a. Decomposition Patterns. The density maps 
of components A, B, and C for systems 1-5 are shown 
in Figures 2-6. In Figures 3-6, the local composition 
p1 from 0.0 to 1.0 is represented as from purely white 
to  purely red, green, and blue for I = A, B, and C, 
respectively. In Figure 2 for system 1 the color from 
completely white to completely red represents the local 
composition p~ from minimum to  maximum at that 
snapshot, and the same for p ~ ,  and qc, rather than 
using actual composition colors. 

The density maps of A, B, and C as a function of time 
during spinodal decomposition for system 1 in Figure 
Id are shown in Figure 2, parts a, b, and c, respectively. 
As time increases, the A-rich and B-rich regions are 
always identical; the system separates into A-B-rich 
and C-rich phases with equal amount. In general the 
decomposition dynamics for a ternary system with 
= PB < @c in Figure Id are identical to the results for 
a symmetric binary system, Le., a ternary system with 

@A = FB @C decomposes into a two-phase mixture in 
the same way as a symmetric binary system because A 
and B act like a single component of composition GA + 
@B. 

On the other hand for system 2 in Figure Id where 
@A = @B > @c, the two-phase decomposition hnetics are 
more complicated. In Figures 3a and 3b we show that 
the spinodal decomposition occurs mainly along the 
direction to the A- and B-rich phases, and in Figure 3c 
we show the segregation of the minority component C 
in the interface between the A- and B-rich phases as a 
function of time. Even though the equilibrium composi- 
tion of C in both phases is predicted to be equal to the 
average composition of C, i.e., = = @c, we show 
here that the minority component C is not homogeneous. 
We find = @{ = @C - E and the composition of C at  
the center of the interface ip; > pc. In order to see if 
this is a finite size effect, we have run the simulation 
doubling the size of the system, i.e., with grids L2 = 
128*128. We find that although E is smaller, qc; and 
the interfacial thickness 1 are almost the same as the 
values with L2 = 64*64. Therefore as L - -, E - 0 
while pg and 1 tend to be size-independent constants. 
This shows the segregation of the minority component 
C in the interface should be observed. 

For a flat interface one can show that a net decrease 
of the gradients at the interface provided by an excess 
of minority composition decreases the specific interfacial 
energy of the system u. In a flat interface between a 
and /3 of compositions and p:, u is given by the 
difference per unit area of interface between the actual 
free energy and that which it will have if the properties 
of the two phases were c o n t i n u o ~ s ~ ~  

o = NVJ-:(Af? + .ifj’) dx (IV.1) 
I=A,B,C 

where NV is the number of monomers per unit volume 
and 

The composition of C is eliminated through the incom- 
pressibility constraint. An extremum of u is obtained 
solving simultaneously the resulting two Euler-Lagrange 
equations,20 which using the boundary conditions, 
A T  and dp1Id.x tend to zero as x - f-, leads to 

When the composition of the minority component C is 
a constant everywhere = qc, the composition 
profile pi(x) is an extremum of u. There are, however, 
many extrema of a; only the lowest minimum u will give 
the actual interface. In general, an infinitesimal excess 
in &x) can only be an extremum of u if it breaks the 
symmetry, ~ A ( x )  - @A = @B - ~ B ( x ) ,  i.e., for a nonselec- 
tive minority component, a profile pc(x) = 9 d - x )  with 
pdx) = q@) - &(x), I = A, B, must obey ~ A ( x )  * t o  
be able to minimize u. For example, in system 2 it is 
found numerically that ~ B ( x )  < 0 and 0 < /&&x)I < (A(z) 
when x < 0. With a linear expansion in &(x) of the 
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. .  ~ - . , . .  
Figure 2. The density maps as a function of time for (a) component A, (b) component B, and (e) component C of system 1 in 
Figure Id during the decomposition process. Rows 1 and 2 correspond to r = 800 and 7 = 20 000, respectively. 

1 
Figure 3. The density maps as a function of time for (a) component A, (b) component B, and (e) component C of system 2 in 
Figure Id during the decomposition pmeess. Rows 1 and 2 correspond to r = 400 and 7 = 10 000, respectively. 

integrand in eq W.1 we find that &(x) t 0, I = A, or B, 
decreases u. Although the resulting profile is clearly 
not an extremum of u, it explains the interkce segrega- 
tion phenomenon observed. 

The segregation of the minority component in the 
interface has a strong influence in the decomposition 
pattern of a ternary system unstable to the formation 
of two majority phases and metastable to the formation 
ofa minority phase. The dynamica of system 3 in Figure 
Id are shown in Figure 4, parta a, b, and c. The pattern 
is like that of system 2 with a thicker interface. The 
decomposition is driven by the instability of the system 

to the formation of two majority a + p phases. Although 
there is segregation of the minority component C at the 
interface betwen a + p, it does not lead to the formation 
of the 6 minority phase. That is, it is not possible to 
distinguish a third phase from the interface in Figure 
4, parts a, b, and c, because the interfacial thickness 1 
is large and a growth of the 6 phase is not observed. 
Since the d phase is metastable, the formation of a 
nucleus of a critical size is required for the S phase to 
coarsen. The closer the initial compositions to &, 
the larger the critical nucleus. In the classical theory, 
this nucleus should be spherical (circular in 2D). Since 
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Figure 4. The density maps as a hction of time for (a) component A, (b) component B, and (e) component C of system 3 in 
Figure Id during the demmposition process. Rows 1 and 2 mrrespond to r = 400 and 7 = 10 OOO, respectively. 

the interface is rich in C, a spherical (or circular) 
nucleus forms only at  the junction of the interfaces. For 
shallow quenches, however, the nucleus still cannot 
reach the critical size at  these junctions. Therefore at  
this thermal energy we observe no coarsening of the 
third phase, and the segregation of C at  the interface 
can be considered simply as increasing the interfacial 
thickness. 

We study deeper quenches to determine ifthe minor- 
ity phase can coarsen. Since the interface is sharp for 
deep quenches and the critical size of the nucleus to 
grow is small, we expect that for low enough thermal 
energy, the minority phase should be distinguished from 
the interface in the region that separates the a and p 
majority phases and get coarsened. In Figure 5, parts 
a, b, and c, we show the density maps of A, B, and C for 
system 4 in Figure If as a function of time, respedively. 
As shown in Figure 5, parts a, b, and e, the decomposi- 
tion process occurs primarily along the direction to the 
A- and B-rich phases. As spinodal decomposition pro- 
ceeds, a and p phases get coarsened very quickly. One 
can observe that the coarsening of the third minority 
phase is only possible when a critical volume of the 
minority phase forms. The critical volume is achieved 
at the junction of four or five domains rich in the 
majority components. In this case, we observe in the 
later stages that between any two p + y phases rich in 
component I and J respectively the third component K 
segregates in the interface. For example in Figure 5a, 
A segregates in the interface between the B- and C-rich 
phases even though the C-rich phase has the lowest 
volume fraction. 
This segregation behavior of the third component in 

the interface between any two phases rich in the other 
two components is also observed in the dynamics for 
systems with two minority components, PA = p~ < pc, 
metastable to the formation of a + j? and unstable to 
the formation of y, such as system 5 in Figure If. The 
dynamics of system 5 are shown in Figure 6, parts a, b, 
and c. One can observe that A and B act like one com- 

ponent of composition p~ + p~ and the system separates 
into A-B- and C-rich phases for the initial decomposi- 
tion stages (z = 400). At larger times (2 = 1600) the @A + p~ rich regime decomposes into a + j? phases. 

W.b. Scaling and Growth Behaviors. In ternary 
systems the structnre function of the various compo- 
nents SII(k,z), where the other two components are 
assumed to have identical atomic scattering factors, are 
computed to determine the growth law of the segregated 
domains during the decomposition, 

SIl(k,z) = S&zY (N.4a) 
Ikl=k I l k  ' 

with 

where the sums are over all of the L2 grids, and is the 
$ave vector which belongs to the first Brillouin zone in 
the reciprocal space 

k = (2dLn/L6z)2 (IV.5a) 
- 

where -. 
e =(e,, e,) e,, ey = 0, i,2, ..., L - 1 (N.5b) 

We compute the mean magnitude of the vector (k)u to 
determine the characteristic domain size Ulhr 

@)I1 * W ) I I  ( N . 6 4  

with 

(k)Il = z k S I l ( k , d / ~ S I I ( k , d  (N.6b) 

In Figure 7, parts a and b, we plot (R)cc vs zm 
and Scc(k,T)/@)ic vs k(R)cc for system 1 in Figure 
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. . .. . .  . . . .  

Figure 5. The density maps BS a function of time for (a) component A, ID, component B, and (e) component C of system 4 in 
Figure If during the d m m ~ i t i m  pmeeas. Rows 1,2, and 3 correspond to z = 400, z = W, and z = 10 000, respectively. 

Id, respectively. We find that Scc(k,r) scales as 
(R)&,G(k(R)m) and (Rh - ryg in the scaling regime. 
Clearly the same results as for component C are 
expected for the minority components A and B. It is 
not surprising that the dynamical scaling law and the 
growth law for each component hold in this ternary 
system deeomposing into two phases, because the 
dynamics are identical to the results for a symmetric 
binary system. 

The dynamical scaling and the growth behaviors in 
systems decomposing into three phases, such as system 
3,4, and 5, are analyzed below. It should be noted that 
the growth of the minority phase in system 3 is not 
analyzed since it does not warsen as time increases. The 
rescaled structure functions are not self-similar while 
the segregation at  the interface has not reached the 
steady state. The growth power law, however, analyzed 
in terms of the mean magnitude of the wave vector in 
eqs lV.6 is always obeyed in each system, as shown in 
Figure 8, parta a and b, where we plot (R)n vs r* for 
the majority component A and the minority component 
C of system 4 in Figure lf, respectively. The self-similar 
regime is observed a t  the very late stages, as shown in 
Figure 8, parts c and d, where we plot S d k ,  rX(R);; vs 
k(R)n, I = A and C, respectively for system 4. This 
scaling regime during phase separation is obtained 
when the structure is self-similar. In ternary system 
decomposing into three phases, the segregation at  the 

interface breaks the self-similarity obsemed even at  the 
early stages of the decomposition in binary systems. 
Self-similarity is obtained when the interface segrega- 
tion reaches the steady state. The steady state in 
ternary systems decomposing into three phases by 
spincdal decompsition is reached more slowly than in 
binary systems. These results should also be found in 
ternary systems with FA = @ > @c decomposing into 
two phases such as system 2 in Figure Id, where the 
minority component C segregates in the interface 
between A-rich and B-rich phases. 

V. Conclusions 

The dynamics of phase separation into two and three 
phases of symmetric A-B-C ternary polymer blends, 
i.e., XB = ~c = XAC = x and NA = NB = Nc = N, have 
been studied. The extra degree of freedom provided by 
the third component in ternary systems makes the 
interface between any two phases more complicated 
than in binary system. We show here that between 
any two phases a + j3 rich in components I and J, 
respectively, the third component K segregates in the 
interface between a + j3. This interface segregation 
behavior is quite general; it is also observed in nonsym- 
metric ternary polymer blends, which will be discussed 
elsewhere.a1 The segregation at  the intefice innuences 
the pattern of the decomposition process. It determines 
the gmwth of a third phase with lowest volume fraction 
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Figure 6. The dem.., 11~1 -4 a function of time for (a) wmponent A, (b) wmpent  B, and (e) wmpnent C of sysEm 5 in 
Figure If during the demmposition process. Rows 1,2, and 3 correspond to r = 400, r = 1600, and z = 10 OOO, respectively. 

-. 

k < b m  

Figure 7. plots of (a) (R)cc va r* and (b) Scc(k,rY(R)* vs 
k o c C  of system 1 in Figure Id. Scc(k,r) and are de%& 
in eqa IV.4 and IV.6, respsctively. The scaling resulta shown 
in b arevalid from r = 4800. 

and turns the warsening kinetics into a topological 
problem. In systems unstable to the formation of two 
majoriw phases and metastable to the formation of one 

minority phase, the minority phase, formed a t  the 
interface between two majority phases, does not coarsen 
when the interface is very broad, it can be considered 
simply as increasing the interfacial thickness between 
the two majority phases. When the thermal energy 
d e c r e e  even further, since the interface is sharper 
in the later stages of the decomposition process, the 
minority phase cannot be considered any longer as 
thickening the interface but it appears as a new phase 
that separates these two majority phases. The coarsen- 
ing of a third phase rich in a minority component is not 
always observed. It can only coarsen at  the junction of 
multiple majority phase domain boundaries in a biwn- 
tinuous patternaa for deeper quenches. In two dimen- 
sions the critical volume of the third phase required 
for its growth is achieved when four or more majority 
phase domain boundaries join. Therefore the incubation 
time for the minority phase growth is a function of the 
space dimensionality d. The segregation of a third 
component in the interface between two phases rich in 
the other components, however, is not expected to be a 
function of d in mixtures well described by mean field 
theories. 

We find that ternary systems undergoing two-phase 
and three-phase separations always obey the growth 
law R - TW even when the decomposition patterns are 
not self-similar. Ternary systems, however, do reach a 
scaling regime at  the very late stages, where the 
segregation of the third component in the interface 
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Figure 8. Plots of (R)II versus 7ll3 for (a) I = A, (b) I = C, and 
SII(~,T)/(R);~ vs ~ ( R ) I I  for (c) I = A, (d) I = C, of system 4 shown 
in Figure If. S I I ( ~ , ~ )  and (R)II are defined in eqs IV.4 and IV.6, 
respectively. The scaling results shown in c and d are valid 
from 7 = 8400. 

reaches the steady state. As in binary systems, the 
domain growth law R - t1I3 is expected to be indepen- 
dent of the space dimensionality d. We neglect here the 
hydrodynamic flow which may lead to the domain 
growth R - T in connected fluid  microstructure^.^^ 
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Appendix A 

II.4a, p , ~ ,  can be obtained using the relationships, 
The chemical potential of component I defined in eq 

AFo = Afo&NI (A.1) 
I 

n1N1 
VI = ~ I = A , B , C  (A.2) 

By chain rules 

where 

with aAfdaqJ and aVJ/anI obtained using eqs ILlb and 
A. 2 

and 

Substituting eqs A.4-A.6 into A.3, p , ~  has the final form 
given by eq II.4b. 

Appendix B 

polymer blends, AF, is given by 
The total free energy of nonhomogeneous ternary 

AF = N v A p A f  rl d r  (B.1) 

where NV is the number of sites per unit volume, A is 
the cross sectional area of the system, and Af is given 
in eq II.la. 

For a system in equilibrium, the total free energy A F  
will be a minimum. Therefore we have to determine 
the variations of PA, I ~ B ,  and pc, with respect to r which 
minimize AF with the constraints that the average 
compositions of A, B, and C remain constants, Le., 

p(qI - GI) dr  = 0 I = A, B, C (B.2) 

To add these constraints to the total free energy, we 
multiply undetermined constants AI, I = A, B, C, to  eqs 
B.2 and subtract to  the total free energy function in eq 
B.l. The final form is 

71 

The determinations of the variations of p1, I = A, B, and 
C with respect to r are obtained from20 
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a1 
8% avY;, - - V ( L )  = 0 I = A, B, C (B.4) 

Therefore 

aAf. ; 1 - - -2 -  K ~ ~ V ~ Y ; ~  I = A, B, C (B.5) 
I -  aY;, 

where aAfilaq1 is given in eq A.5, and 211 is in eq 11.2. 
It is apparent that 21 in eq B.5 is the chemical 

potential of component I per site, pus, in nonhomoge- 
neous systems. 
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