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ABSTRACT: The thermodynamics and the dynamics of incompatible polydisperse polymer blends are 
analyzed. The free energy is constructed following the Flory-Huggins approach, where the degree of 
incompatibility is characterized by the Flory interaction parameter x. The Cahn-Hilliard approximation 
is used to analyze the early stages of spinodal decomposition dynamics of a polymer blend quenched into 
the unstable region. A blend of polydisperse A polymers with the Schulz-Flory distribution and monodisperse 
B polymers is analyzed by treating polymer A as a one-, two-, and three-component system with a weight- 
average degree of polymerization and a polydispersity index, which we refer to as two-, three-, and four- 
component models, respectively. The thermodynamics and the dynamics of incompatible monodisperse 
A-monodisperse B polymer blends are consistent no matter which model is used. When polymer A is 
polydisperse, however, [S(k,t) -S(k,O)]/S(k,O), whereS(k,t) is the characteristicstructure function, is definitely 
different in the three different models due to kinetic effects. The differences are dependent on the functional 
form of the Onsager coefficients. For wavevector-independent Onsager coefficients, the reduced wavevector 
for which [S(k,t) - S(k,O)]/S(k,O) is a maximum, k k ,  is always equal to l / f i  in the two-component model, 
while k h  increases as x increases in the three- and four-component models. While for wavevector- 
dependent Onsager coefficients, kL decreases as x increases in the three different component models. As 
x - a, the difference in k L  between two- and three-component models and between three- and four- 
component models is 0.05 and 0.02, respectively, independent of the weight-average degree of polymerization 
when the polydispersity index of polymer A is equal to 2.0. When the polydispersity index of polymer A is 
reduced to 1.5, the difference in k k  becomes 0.04 and 0.01, respectively. 

I. Introduction 

Since most commercial polymers are polydisperse, a 
description of the thermodynamics and the dynamics of 
the phase separation process that includes polydispersity 
effects is required. Incompatible A-B polymer blends have 
long been described by the mean field theory which 
assumes that the chains obey Gaussian statistics and the 
monomers are placed at random in space without cor- 
relations. Edwards' showed that long polymer chains in 
the molten state obey Gaussian statistics. Furthermore, 
de Gennes pointed out2 that the mean field theory is a 
good approach for incompatible high degree of polymer- 
ization (P) polymer blends. When a polydisperse polymer 
blend is analyzed, the mean field theory may not be 
applicable since theshort chains may swell the longchains. 
However the swelling effect can be neglected if the 
polydisperse polymer samples of high weight-average 
degree of polymerization are chosen to have a small fraction 
of short chains. To study the effect of polydispersity on 
the thermodynamics and the dynamics of the phase 
separation process of incompatible polymer blends, we 
concentrate our attention on a blend of an incompatible 
polydisperse polymer A sample with weight-average degree 
of polymerization  PA^ and with polydispersity index YA 
and a monodisperse polymer B sample with degree of 
polymerization PB. We construct the  thermodynamics 
using the Flory-Huggins mean field theory. The free 
energy of mixing per lattice site is therefore given by 
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where 

is the usual Flory interaction parameter and 4 and are 
the average compositions of polymers A and B, respec- 
tively. In eq 1, qb is the average composition of polymer 
A whose degree of polymerization is equal to P. In the 
x-q plane, there exists a spinodal curve which is the 
boundary between the metastability and instability of the 
system. Inside the spinodal curve, the mixture is always 
unstable and breaks up into two phases by spinodal 
decomp~sition.~~~ 

We use the n-component system method developed by 
de Fontaines to find the instability limits and the critical 
point. In an A-B blend where the polymer A sample has 
n - 1 different degrees of polymerization and polymer B 
is monodisperse, an (n - 1)*(n - 1) matrix with matrix 
elements f i j  defined as 

must be obtained to find the instability limits of the blend. 
The effect of polydispersity on the critical point, on the 
other hand, is easily obtained.6 The critical point is given 
by 

where PA, is the z-average degree of polymerization of 
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polymer A defined by 

T W ( f l  X p2 

T W ( P ,  x P 
PA, = (4) 

W(P) is the weight distribution of polymer A. This result 
will be corroborated with a technique described later. 

Our dynamics studies are concentrated on the early 
stages of the phase separation process by spinodal 
decomposition. The theory of spinodal decomposition 
dynamics for binary systems has been developed by Cahn 
and Hilliard.s*4 The kinetics of spinodal decomposition 
are described by a nonlinear differential equation for the 
rate of change of the composition. For simplicity, Cahn 
and Hilliard developed a linearized differential equation 
to describe the early stages of the phase separation, which 
was proved to be correct later by Larger, Baron, and Miller7 
in systems well described by the mean field theory. Cook* 
included in the linearized Cahn-Hilliard theory the effect 
of the thermal fluctuations, or the "heat bath" term. This 
term, however, can be neglected if the system is quenched 
into the deep region for which x is much larger than xc. 
The most useful point of the linearized Cahn-Hilliard 
theory is that a time-dependent structure function, 
proportional to the scattering intensity by small angle 
X-ray scattering experiments? can be derived from it. 

de Fontaine has developed the linearized Cahn-Hilliard 
equations for a multicomponent system. These equations 
could be used to analyze the early stages of the spinodal 
decomposition process of the incompatible polydisperse 
A-monodisperse B polymer blends with n components. 
In practice, however, his approach generates n(n - 1)/2 
independent partial structure functions and the numerical 
values of these partial structure functions are difficult to 
get since a n(n - 1)/2 X n(n - 1)/2 matrix must be 
constructed. Therefore, we try here to approach the real 
sylstsm by treating the polydisperse polymer A as a mixture 
of one, two, and three monodisperse polymer samples and 
constructing in this way the spinodal decomposition 
dynamics as two-, three-, and four-component models, 
respectively. It should be noted that the idea of the three- 
component model was first proposed by Takenaka and 
Hashimotolo to see the effect of polydispersity on the 
validity of the dynamic scaling law in the late stage of 
spinodal decomposition. However they use the Onsager 
coefficients derived by assuming that in the incompressible 
liquid the motion of the monomers occurs only by 
exchanging their positions. Here, instead, we use vacancy 
driven diffusion (see section 11). 

In section I1 we find the compositions that describe the 
mean field thermodynamics and Cahn-Hilliard dynamics 
of polydisperse polymer A-monodisperse polymer B 
blends. We construct the two-, three-, and four-component 
models in section 11.1-3, respectively. In section 11.1, 
polydisperse polymer A is regarded as a monodisperse 
polymer with degree of polymerization equal to PA,. The 
early stages of spinodal decomposition dynamics for 
different x values will be obtained using the Cahn-Hilliard 
approximation for binary systems. In section 11.2, the 
polydisperse polymer A is assumed to be composed of two 
monodisperse polymer samples, 1 and 2. The method to 
obtain the compositions of samples 1 and 2 will be described 
in this section. Then we analyze the thermodynamics and 
the dynamics of the systems described in section I1 
according to the Cahn-Hilliard approximation for ternary 
systems and compare with the results in the two- 
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component model. In section 11.3, polymer A was con- 
sidered to be composed of three monodisperse polymer 
samples, 1-3. We describe the method to obtain the 
compositions of these samples in this section. The 
thermodynamics and the dynamics will be analyzed in the 
four-component model and will be compared with the two- 
and three-component models. In section 11, we also 
describe the thermodynamics and the dynamics of in- 
compatible monodisperse A-B polymer blends in the 
different models for a comparison with polydisperse 
A-monodisperse B polymer blends. The discussion and 
conclusions are given in sections I11 and IV, respectively. 

11. Theory and Results 

Incompatible polydisperse polymer A-monodisperse 
polymer B blends are described by the weight-average 
degree of polymerization and polydispersity index of 
polymer A (PA, and ?A, respectively), and degree of 
polymerization of polymer B (PB). The weight distribution 
W(P) of polymer A is described by the Schulz-Flory 
distribution:11J2 

U + l  

W ( P ,  = p" 2-nP P = 1,2, . . . I  (5) ryU + 1) 

where q and u are constants related to PA, and ?A. If u 
is an integer, 

(7) 

The weight distribution of polymer A of a given PA, and 
?A can be determined using eqs 6 and 7 by solving for u 
and q. The critical compositions are determined by using 
eqs 3 and 4. Two incompatible polymer blend systems (1 
and 2) are analyzed. System 1 has 

'Aw 1 
y A = p A n = l + -  U 

PA, = PB = lo00 

plC = 0.5505 

hC = 0.4495 

xp = 2.020 62 
and system 2 

P A w  = PB = 

qLc = 0.5359 

& = 0.4641 

xJ' = 2.010 36 

The monodisperse A-B polymer blend (?A = 1) to be 
analyzed for comparison with the incompatible polydis- 
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perse A-monodisperse B polymer blends has 
PA = P B  = 1000 

qLc = 0.5 

4, = 0.5 

X p = 2  
11.1. Two-Component Model. In this model the 

polydisperse polymer A is characterized by the degree of 
polymerization PA,. We can construct then the diffusion 
equations as in a binary system. Two theories have been 
used to construct the linearized Cahn-Hilliard differential 
equations in monodisperse polymer blends, one proposed 
by de Gennesl3 and the other by Kramer.14 We adopt the 
results of Kramer et al. who propose that there is a net 
vacancy flux during the diffusion processes with the 
constraint of local thermal equilibrium of vacancies, which 
has been shown15 to agree better with experiments.l8 
Therefore, the diffusion fluxes of polymers A and B are 

J A  = - & ) M A v P A  - &MBvPBl (1l.a) 

JB = -[-&AVPA + (1 - &)MBVPB] (1l.b) 

where M A  and M B  are Onsager coefficients for the A and 
B monomers. Since JA + JB 0, there is only one 
independent diffusion flux. Let us choose JA. Using the 
conservation law, we get 

a z['PA(r,t)l = v[(1 - q;)MAvPA- (PpqMBvPB] (12) 

Where M A  and& can be expressed in terms of the diffusion 
coefficient Do of each monomer as 

where P, is the effective number of monomers per 
entanglement length and Rgi is the radius of gyration. In 
eq 13.a we used the results of Pincus17J8for the wavevector 
dependence of the Onsager coefficients Mi in the reptation 
model. Though in the work of Pincus the mobility was 
assumed to obey de Gennes' model, it can be used in 
Kramer's model. When kR, << 1, the Onsager coefficients 
become k-independent and reduce to 

(13.b) 

By using the Gibbs-Duhem equation and substituting 
for the chemical potentials, we can rewrite eq 12 in the 
form 

a 
-['PA(r,t)l at = M[p'V2(qA(r,t)) - 2Kv4(q~(r , t ) ) l  (14) 

where 

k! = [(I - q;P2MA + 'P12MBl (15) 
f" is defined as the second derivative of the free energy, 
and K is the gradient-energy coefficient. 

Rundman and Hilliardg have shown that small angle 
X-ray scattering is a good technique to test the theory of 
spinodal decomposition. The scattering intensity is 
directly proportional to the structure function S(k,t)  which 
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is the Fourier transformation of the pair correlation 
function C(r,t) .  The structure functions are defined as 

where 

and (...) denotes the thermal average. Under conditions 
of incompressibility, there is only one independent 
structure function. 

S(k, t )  = S,(k,t) = SBB(k,t) = -Sm(k,t) 
The time dependence equation for the scattering function 
can be obtained by multiplying eq 14 by cpl\(f,t) to get the 
relationship between Cij(r,t) and the derivative of Cij(r,t) 
with respect to time and taking the Fourier transform, 

(17) 

which is known as the Cahn-Hilliard equation. In the 
Cahn-Hilliard-Cook approximation a "heat bath" term 
Q(k, t )  = 2Mk2KBT must be added to the right hand side 
of eq 17. The heat bath term is very important for 
quenches in the one-phase region or for shallow quenches, 
very near the x,. As the final x ,  xf, increases to a value 
far from x,, the effect of the heat bath is negligible. Since 
we will only concentrate on deep quenches, into a region 
of xf >> xc, we neglect the heat bath term. Therefore, the 
solution of S(k, t )  becomes 

~ ( k , t )  = e-zMkncP'+2dqtS(k,0) (18) 
where S(k,O) represents the initial structure function, 
which is related to the initial x ,  xo, in the one-phase region 
where xo << x,. In polydisperse polymer blends (see 
Appendix), 

z S ( k , t )  a = -mk2(f' + 2Kk2)S(k,t) 

and 
I -  \ 

In Figures 1-3 and Figures 4-6 we plot AS / S(k,O) 
versus k* for the polydisperse A-monodisperse B systems 
1 and 2 (see eqs8 and 9), respectively, in the two-component 
model, where A S  = S(k, t )  - S(k,O) and k* is defined as the 
ratio of k to k, where k, is given by p' + 2Kkc2 = 0. In 
Figure 7 we show AS/S(k,O) versusk* for the monodisperse 
A-B system (see eq 10) quenched to different xr values. 
As observed, k& decreases as xf increases. 

11.2. Three-Component Model. In this model, the 
polydisperse A polymer is considered to be composed of 
two polydisperse polymer samples, 1 and 2, having weight- 
average degree of polymerizations equal to 9, and P%, 
respectively. The average compositions (0; and pi are 
constructed to be the same. Polymer sample 1 is composed 
of the chains whose degrees of polymerization are less than 
Po, and polymer sample 2 is composed of the chains longer 
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Figure 3. Normalized structure function of the polydisperse 
polymer blend 1 described in eq 8 for quenches from xo = 0 to 
x~P = 20 for t = 1. The symbols -, - - -, and +a - *+ correspond 
to the two-, three-, and four-component models, respectively, 
and kb = 0.37, 0.43, and 0.45, respectively. 

Figure 1. Normalized structure function of the polydisperse 
polymer blend 1 described in eq 8 for quenches from xo = 0 to 
XfP = 5.0 for t = 1. The symbols -, - - -, and +. - -+ correspond 
to the two-, three-, and four-component models, respectively, 
and kb = 0.58, 0.55, and 0.53, respectively. 
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Figure 2. Normalized structure function of the polydisperse 
polymer blend 1 described in eq 8 for quenches from xo = 0 to 
XfP = 10 for t = 1. The symbols -, - - -, and + e  -+ correspond 
to the two-, three-, and four-component models, respectively, 
and kb = 0.47, 0.51, and 0.49, respectively. 

Figure 4. Normalized structure function of the polydisperse 
polymer blend 2 described in eq 9 for quenches from xo = 0 to 
XfP = 5.0 for t = 1. The symbols -, - - -, and +-. e +  correspond 
to the two-, three-, and four-component models, respectively, 
and kk = 0.57, 0.56, and 0.55, respectively. 

than Po, where Po is given by 

1 P=Po PI.. 
wA(p) = z o w A ( f l = i  

Therefore, PI, and PzW are given by 

(22.b) 

where WA(P) is a normalized weight distribution. 
The free energy of mixing per lattice site is PIP, 
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Figure 5. Normalized structure function of the polydisperse 
polymer blend 2 described in eq 9 for quenches from xo = 0 to 
XfP = 10 for t = 1. The symbols -, - - -, and +* e +  correspond 
to the two-, three-, and four-component models, respectively, 
and kL = 0.46, 0.49, and 0.49, respectively. 
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Figure 6. Normalized structure function of the polydisperse 
polymer blend 2 described in eq 9 for quenches from xo = 0 to 
xiP = 20 for t = 1. The ~ymbols -, - - -, and ++ e +  correspond 
to the two-, three-, and four-component models, respectively, 
and kk = 0.36, 0.40, and 0.41, respectively. 

The spinodal surface is given by 

fll f12 = 0 If,, f22l 

with 

fll = K B T [ A  + D 1 - 2x1 (24.a) 
Q l P l W  QP3 
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Figure 7. Normalized structure function of the monodisperse 
polymer blend described in eq 10 for quenches from xo = 0 to 
xrP for t = 1. The symbols -, - - -, and * a correspond to xfP 
= 6.0, 10, and 20, respectively, and kL = 0.66,0.44, and 0.34, 
respectively. 

Since 'pi = 4 = &I2 and 4Pl, + &P% = &PAw, 

cPipiw+ gg% QP3 & p ~ ~  (PBPB 

1 + D (25) 

which is consistent with the result for the two-component 
model. Therefore, the critical compositions and critical 
x in the three-component model of the polydisperse A 
and monodisperse B polymer blend can be obtained from 

0 0 QAc 

1 +-a=- 1 1 
2xs = 

0 

Q1, = 'PZ, = 2 

x p m P  = X p m p  

Therefore, system 1 analyzed in the three-component 
model will be 

System 2 will be 

P,, = 474 

Ph = 1526 

P 3 =  lo00 

cp;, = pi, = 0.275 25 

& = 0.4495 

x p  = 2.020 62 

P,, = 560 

Ph = 1440 

P3 = 1000 
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4, = 0.4641 

xJ' = 2.010 36 
With this construction, when polymer A is monodisperse, 
PI, = Pz, = PA, the monodisperse system described in eq 
10 would be 

P,, = 1000 

P2, = 1000 

X p = 2  
In the three-component model, the diffusion equations 
can be derived as follows: 

(30.a) J1 = -[(I - p;)M,Vp, - &4,Vp2 - p~M3Vp31 

J2 = -[-'P&~VCL~+ (1 - (PJM~VP~ - &M3Vp31 (30.b) 

5 3  = -[-'P#~VCL~ - ~ 3 2 7 ' 1 2 2  + (1 - Pi)M3Vc131 (30.~) 
There are two independent fluxes since JI+ J 2  + J 3  0. 
Let us say J1 and Jz. By using the Gibbs-Duhem equation 
and the conservation law of the diffusion, we get 

a z[vl(r,t)1 = M11v2(~1 - 15) + M ~ ~ v ~ ( P ~  - ~ 3 )  (31.4 

M22 = pi2Ml + (1 - pJ2M2 + pi2M3 (32.~) 

In eq 31, pi - p3 can be expressed in terms of fij and the 
gradient-energy coefficients ~ i j . ~  

In an n-component system fij and K i j  are derived as 
follows: The total free energy of the n-component system 
F is 

F = s,[ f(pi;i = 1,2,  ..., n) + 

and the chemical potential pi is given by 
a 

avi 
pi = --f(ai;i = i , 2 ,  ..., n) - 

]fbi;i = 1, 2, ..., n) (34) 
a2 

av piavpj 
A Taylor expansion of (dlapi)f(coi;i = 1, 2, ..., n) about pi 

= p; gives 

where fo = f(p:;i = 1,2, ..., n) and denotes the average 
composition of the ith component. Since cpl(r,t) + &,t) 
+ ... + p,(r,t) = 1, Cp, - pi and V2pn can be expressed in 
terms of the other n - 1 components. Therefore, the 
chemical potential becomes 

n-1 

where 

and 

where fij is given in eq 2 and 
- - -  - 
K i j  - Kin - K . + K,, (39) - 

nJ K i j  - 
In polymer blends for the three-component model, fij and 
K i j  can be obtained using the same steps as the two- 
component model (see Appendix), fij are given in eq 24, 
and 

Thus, the time dependence composition equations become 

a %v2(r,t) = (M2Jll + M2 jil)v2v1(r,t) - 2(M21K11+ 

~ 2 2 ~ 2 , ) ~ ~ ~ , ( r , t )  + (M21f12 + M2d22)v2p2(r,t) - 
2(M2,K12 + M22K22)V4cp2(r,t) (41.b) 

Since there are two independent compositions cpl(r,t) and 
a(r , t ) ,  there are three partial structure functions Sll(k,t), 
S12(k,t), and S&,t). The differential equations for the 
three partial structure functions in a ternary system were 
proposed by Hoyt.l8 First we multiply eq 41 by cpl(J,t) 

and m(r',t) to get the equations of the time derivatives of 
the pair correlation functions. The Fourier transforms of 



where matrix [SI represents 

and the components of matrix [AI are 

A13 0 

1 
= i A 3 2  

1 
= i A 1 2  

A31 = 0 

A33 = -2M21k2(f12 + 2K12k2) - m2g2(f22 + 2K22k2) (4) 
The solution of the partial structure function is 

[SI = e[Alxt . [~o~ (45.a) 
eIA1t can be calculated by 

eAlt 0 0 
e[A1e = [PI. f' :A8] (45.b) 

where hi is the principal value and [PI is the matrix of the 
principalvectors. In (45.a), [Sol is the matrix of the initial 
partial structure functions; i.e. the partial structure 
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functions in the one-phase region. 

where 

(46.a) 

(46.13 

In the three-component model, the scattering intensity 
should be proportional to the linear combination of the 
three partial structure functions, i.e. S(k , t )  = Sn(k,t) + 
2Sl2(k,t) + S22(k,t). 

In Figures 1-3 we show AS/S(k,O) versus k* for system 
1 analyzed in the three-component model (see eq 27). When 
XfP is equal to 5.0, AS/S(k,O) is smaller than that in the 
two-component model at all k*. Also the range of k* where 
AS/S(k,O) > 0 is smaller than 1.0, and kb is smaller than 
that in the two-component model. As XfP increases to 10, 
the range of k* where AS/S(k,O) > 0 is almost equal to 1.0, 
and hS/S(k,O) and kb become larger than those in the 
two-component model. We also can find k' 

between the kk in the two- and the three-component 
models is found to be a constant 0.05. 

In Figures 4-6 we show the results for system 2 (see eq 
28). Basically, the results are similar to those for system 
1: hS/S(k,O) becomes larger than that in the two- 
component model when XfP is greater than 9.0. As XfP is 
very large, the difference of k' between the two- and the 
three-component models is k%nd to be a constant 0.04. 
In general, the difference between the two-component and 
three-component models decreases as the polydispersity 
index of polymer A decreases. When polymer A is 
monodisperse, the results in the two- and three-component 
models are exactly the same (see Figure 7). 

11.3. Four-Component Model. In this model polymer 
A is divided into three polymer samples, 1-3 with equal 
average compositions and with weight-average degrees of 
polymerization Plw, Pb, and PsW, respectively. Polymer 
sample 1 contains the chains whose degrees of polymer- 
ization are less than Pr. Polymer sample 2 contains the 
chains whose degrees of polymerization are between Pr 
and Pr*. Those chains whose degrees of polymerization 
are greater than Pr* belong to polymer sample 3. We 
determine P and Pr* by the relation 

as XfP increases. As XfP is very large, t r e difference decreases 

P 1 

where WA(P) is a normalized weight distribution. There- 
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fore PIw, Pz,, and PsW are given by 
P 

Z W A ( ' )  
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P). 

(48.a) 

(48.b) 

(484  

The free energy of mixing is 

and the spinodal curves are given by 

f l l  f12 f13 

f21 f22 f 2 3  I f 3 1  f 3 2  f33 I 
with 

f i i  = K*T( 1 +--2x) 1 i = 1-3 (50.a) 
;Pi, 4'4 

494p4 

f i j  = KBT( +- - 2.) i # j ,  i, j = 1-3 (50.b) 

Expanding the determinant and using 4 = 4 = 4 = 
413  and cp"Plw + (PRZw + 4'3w =  PA^, we find 

(51) 

which is consistent with the two- and three-component 
models. Therefore, the critical conditions in the four- 
component model can be obtained simply from the two- 
component model. 

System 1 analyzed in the four-component model is 
described by 

1 2Xe = - +F 
G P A w  d B  

P,, = 354 

P2, = 849 

P3, = 1797 

P4 = 1000 (52) 

vic = vi, = epic = 0.1835 

p:, = 0.4495 

x p  = 2.020 62 

and system 2 by 
Plw = 449 

P2, = 898 

P3, = 1653 

P4 = 1000 (53) 

(Pk = 0.4641 

xCp = 2.010 36 
With this construction, the monodisperse polymer system 
becomes 

PI, = Ph, = P3w = PA = 1000 

P4 = 1000 

(54) 

xCp=2  

The partial structure functions in the four-component 
model may be derived by introducing three independent 
diffusion fluxes 

Substituting for pi - p4 in terms of f i j  and Kij (see eq 38), 
and using the conservation law, dvi(r,t)ldt = -VJi, we get 

i = 1-3 
with 

Mll = (1 - (p;)2Ml + 42M2 + 49;2M3 + (p;2M4 

M22 = &'M1 + (1 - &)2M2 + &'M3 + &'M4 

M23 = M32 = & ~ & f i  - &(I - &)M2 - &41- &)M3 + 
49;49a4 

M33 = pi2Ml + pi2M2 + (1 - &)'M3 + &2M4 (57) 
f i j  and Kij can be obtained by following the same steps as 
the two-component model (see Appendix), f i j  are given in 



Macromolecules, Vol. 27, No. 15, 1994 

eq 50 and 

K i j  = K,T[ $( i) ] i, J = 1-3; i # J (58.b) 

The equations of the time derivatives of the six partial 
structure functions are given in matrix form as 

a 
at -151 = [Al.[Sl 

where 

There are nine independent coefficients in [AI: 
3 

A,, = -2k2EMli ( f i I  + 2 ~ ~ ~ k ~ )  
r=l 

3 

A,, = -2k2CM1i(fi3 + 2 ~ ~ ~ k ~ )  
. r=l 

3 

A ,  = -2k2CM2i( f i2  + 2 ~ ~ ~ k ~ )  
c = l  

3 
A ,  = -2k2E&f3i( f i3  + 2 ~ ~ ~ k ~ )  

1=1 

The other dependent coefficients are given by 

All + A44 

All + A66 

A44 + A,  

A22= 2 

A33= 2 

*55= 2 

(59) 

(60.a) 
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A12 A,, = A,, = - 2 

A3, = 0 

A,, = A,  = A,  = 0 

A,, = 0 

Agl = A,, = A,  = 0 (60.b) 

In the four-component model, the scattering intensity 
is proportional to the linear combination of the partial 
structure functions, i.e. S(k,t)  = &l(k,t) + 2S12(k,t) + 
2S13(klt) + Szz(k,t) + 2S23(k,t) + S33(k,t) where the partial 
structure functions at a given time in the early stages can 
be calculated from 

[SI = e [ A I X t - [ ~ o ~  (61) 

where the initial partial structure functions are given by 

i = 1-3 (62.a) 

i # j ;  i, J = 1-3 (62.b) 

In Figures 1-3 we show AS/S(k,O) versus k* for system 
1 analyzed in the four-component model (see eq 52). When 
XfPis equal to 5.0, AS/S(k,O) is the smallest, and the range 
of k* where ASIS(k,O) > 0 is the narrowest of the three 
different component models. As X f P  increases to 10, 
AS/S(k,O) is larger than that in the two-component model 
in the region of k* between 0 and 0.8 but still smaller than 
that in the three-component model. We can find, when 
XfPreaches 20, AS/S(k,O) begins tobe the largest compared 
with the results of two- and three-component models. In 
general, k k  decreases as x ~ P  increases. The region over 
which kL& is found is between 0.53 and 0.27 when xfP is 
in between 5.0 and 100. Comparing the values of kk 
obtained in the three- and four-component models, the 
difference of kLnb stays about 0.02 when xtP is very large. 
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Figure 8. Normalized structure function of the polydisperse 
polymer blend 1 described in eq 8 with k-independent Onsager 
coefficienta (see eq 13.a) for quenches from xo = 0 to xtP = 5.0 
for t = 1. The symbols -, - - -, and +- * +  correspond to the 
two-, three-, and four-component models, respectively, and kh = 0.7 1, 0.66, and 0.65, respectively. 

In Figures 4-6 we show the results for system 2 analyzed 
in the four-component model (see eq 53): Compared with 
Figures 1-3, the difference between the results analyzed 
in the three- and four-component models is smaller. The 
difference between the k' in the three- and four- 
component models is a b o u e 0 1  with very large XfP. In 
Figure 7 ,  we also show the result for the monodisperse 
system analyzed in the four-component model (see eq 54), 
which is exactly the same as in the two- and three- 
component models. 

111. Discussion 

In order to determine the effect of k dependence in the 
form used for Mi in eq 13.a, we run the numerical solutions 
for all of the cases discussed in the previous section using 
Mj in eq 13.b, i.e. a wavevector-independent Onsager 
coefficient. In Figures 8 and 9 we plot L\SIS(k,O) versus 
k* for the polydisperse A-monodisperse B system (1) (see 
eq 8) in the two-, three-, and four-component models for 
xfP = 5.0 and xfP = 100. In this case we found no shift 
in k k  for the two-component model, while k h  in- 
creases as xf increases for the three- and four-component 
models. 

IV. Conclusions 
Polydispersity effects in the thermodynamics and the 

early stages of the phase separation dynamics in incom- 
patible monodisperse A-monodisperse B and polydisperse 
A-monodisperse B polymer blends have been studied. The 
polymer blend is analyzed as a two-, three-, and four- 
component model by dividing polymer A into one, two, 
and three samples, respectively. The samples are char- 
acterized by the average degree of polymerization. We 
analyze numerically two polydisperse systems. Both 
systems 1 and 2 have the Schulz-Flory distribution with 
polydispersity indices YA = 2.0 and YA = 1.5, respectively. 
We find that when polymer A is monodisperse, the results 
of thermodynamics and dynamics analyzed in the three 
different models are the same, in this case there is only 

P 
0 

K 
Figure 9. Normalized structure function of the polydisperse 
polymer blend 1 described in eq 8 with k-independent Onsager 
coefficienta (see eq 13.a) for quenches from xo = 0 to x 9  = 100 
for t = 1. The symbols -, - - -, and +..+ correspond to the 
two-, three-, and four-component models, respectively, and 
k h  = 0.71, 0.75, and 0.76, respectively. 

one independent structure function which can represent 
the scattering intensity in a scattering experiment. When 
polymer A is polydisperse, however, the dynamics are not 
described by the standard way of analyzing polydispersity 
effects: using a two-component model where the effects 
of a distribution of degrees of polymerization are only 
included through the weight-average degree of polymer- 
ization of the polymer A. 

Our results are explained by kinetic effects. When the 
driving force which causes the phase separation is small, 
that is when the quench size Ax = (xc - xd is small, the long 
chains cannot diffuse completely and seem "frozen" in the 
early stages, which will cause a smaller scattering intensity 
and k h  in the four and three-component models with 
respect to the two-component model. As Ax increases to 
larger values, the long chains are no longer frozen in the 
early stages and cause a larger scattering intensity and kL of the four- and three-component models with 
respect to the two-component model. This observation is 
independent of which model we use for the Onsager 
coefficients of the various components (see eq 13.a or eq 
13.b), as expected. 

Acknowledgment. This research was supported by 
the National Science Foundation (PYI Grant No. DMR 
90577641, the David and Lucile Packard Foundation, and 
the Ford Motor Co. We thank Prof. G. B. Olson for 
suggesting to us application of the multicomponent model 
to study polydisperse polymer blends. 

Appendix 

The gradient-energy coefficient K in the polydisperse 
polymer A-monodisperse polymer B blends can be ob- 
tained by calculating the structure function S u ( k )  in the 
one-phase region using the random phase approximation 
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method20*21 

where 

n~ is the total number of chains of polymer A, f (z )  is the 
Debye function, 

(A.2) f ( x )  = -(e” - 1 + x )  

and R: is the mean square radius of gyration. Expanding 
G(P,k) for lkRJ << 1 and assuming the mean lengths of 
segments A and B are the same as a yield 

2 
X2 

I -\ 

where 

(A.3c) 

Substituting eq A.3 into eq A.la can yield an expression 
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of S u ( k )  in the form 

(A.4) 
In the Cahn-Hilliard-Cook equation, the structure 

(A.5) 

function in the one-phase region as t - = is given by 

S,(k) = KBT[f” + 2Kk2]-’ 
Combining eqs A.4 and A.5, 
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