Nervous System (II)

Chien, 2023

The Brain

- Principal parts of the brain
- Protective coverings of the brain
- Cerebrospinal fluid 腦脊髓液
- Brain stem & Cerebellum 腦幹及小腦
- Diencephalon間腦
- Cerebrum 大腦
- Cranial Nerves (Next week)

(c) Secondary brain vesicles		(d) Adult brain structures	(e) Adult neural canal regions
	Telencephalon	Cerebrum: Cerebral hemispheres (cortex, basal ganglia)	Lateral ventricles
	Diencephalon	Diencephalon (thalamus, hypo- epithalamus)	Third ventricle
	Mesencephalon	Brain stem: midbrain	Cerebral aqueduct
	Metencephalon	Brain stem: pons	
		Cerebellum	Fourth ventricle
	Myelencephalon	Brain stem: medulla oblongata	
		Spinal cord	Central canal

Gray matter and white matter of the CNS

Protective coverings of the brain

Bone, meninges 腦膜

Frontal section through skull showing the cranial meninges

- Meninges same as around the spinal cord
- Dura mater extensions

Dura mater extensions

falx cerebri 大腦鐮 tentorium cerebelli 小腦天幕 falx cerebelli 小腦鐮

Blood Supply to Brain

- Arterial blood supply is branches from circle of Willis on base of brain
- Vessels on surface of brain --penetrate tissue

- Uses 20% of our bodies oxygen & glucose needs
 - blood flow to an area increases with activity in that area
 - deprivation of O2 for 4 min does permanent injury

Blood-Brain Barrier (BBB) 血管腦障壁

protects cells from some toxins and pathogens

 tight junctions seal together epithelial cells, continuous basement membrane, astrocyte processes covering capillaries

Cerebrospinal fluid (CSF) 腦脊髓液

- 80-150 ml (3-5oz)
- Clear liquid containing glucose, proteins, & ions
- Functions
 - mechanical protection
 - floats brain & softens impact with bony walls
 - chemical protection
 - optimal ionic concentrations for action potentials
 - circulation
 - nutrients and waste products to and from bloodstream

Origin of CSF: Choroid plexus 脈絡叢

- 2 lateral ventricles, one within each cerebral hemisphere
- roof of 3rd ventricle
- fourth ventricle

Brain Ventricles

C Addison Wesley Longman, Inc.

(b) Anterior view of brain

Drainage of CSF from Ventricles

2 lateral apertures 1 median aperture allow CSF to exit from the interior of the brain

Flow of CSF

Lateral ventricles (choroid plexuses) → interventricular foramen

- \rightarrow 3rd Ventricle
- → cerebral aqueduct
 → Fourth ventricle
- → 1 median aperture 2 lateral apertures
- → central canal of spinal cord
 → subarachnoid space

Re-absorption of CSF: into superior sagittal sinus (arachnoid villi)

Frontal section through skull showing the cranial meninges

- Reabsorbed through arachnoid villi
 - grapelike clusters of arachnoid penetrate dural venous sinus
- 20 ml/hour reabsorption rate = same as production rate

Hydrocephalus 水腦症

- Blockage of drainage of CSF (tumor, inflammation, developmental malformation, meningitis, hemorrhage or injury)
- Continued production cause an increase in pressure --hydrocephalus

(b) Medial aspect of brain in sagittal section

Brain stem (腦幹)

Brainstem and Cranial nerves

Medulla Oblongata (延腦): 生命中樞

- Continuation of spinal cord
- Ascending sensory tracts
- Descending motor tracts
- Nuclei of 5 cranial nerves

- Cardiovascular center
- Respiratory center
- Information in & out of cerebellum
- Reflex centers for coughing, sneezing, swallowing etc.

Autonomic functions of Medulla Oblongata 延腦:

1. Cardiovascular center:

regulates the rate and force of heartbeat and blood vessels diameter 2. Medullary rhythmicity area of the Respiratory center

*Centers for Swallowing, Vomiting, Coughing, Sneezing, and Hiccuping

Pons 橋腦

Middle cerebellar peduncles中小腦腳 → cerebellum

(c) Midsagittal section of cerebellum and brain stem

- One inch long
- White fiber tracts ascend and descend
- Pneumotaxic area 呼吸調節區 & apneustic areas 長吸區 help control breathing

Pons橋腦

Nuclei for craninal nerves: 1. trigeminal nerves (V) 2. abducens nerves (VI) 3. facial nerves (VII) 4. vestibulocochlear nerves (VIII) for equilibrium

*Pneumotaxic area 呼吸調節區

apneustic area 長吸區 (+ medullary rhymthmicity area) → control the respiration

Midbrain中腦 Superior cerebellar peduncles 上小腦腳→ cerebellum Tectum:頂蓋

Superior colliculi $\underline{\vdash f}$: reflex centers for the movements of eyes, head, and neck in response to visual and other stimuli.

Inferior colliculi T_{fr} : reflex centers for the movements of the head and neck in response to auditory stimuli.

2. Optic nerves 視神經

(b) Superior view of transverse section through eyeballs and brain

- One inch in length
- Extends from pons to diencephalon
- Cerebral aqueduct connects 3rd ventricle above to 4th ventricle below

- Cerebral peduncles---clusters of motor & sensory fibers
- Substantia nigra 黑質---helps controls subconscious muscle activity
- Red nucleus 紅核-- rich blood supply & iron-containing pigment
 - cortex & cerebellum coordinate muscular movements by sending information here from the cortex and cerebellum

Parkinson's disease is a <u>neurodegenerative disease</u> characterized, in part, by the death of dopaminergic neurons in the **substantia nigra**

12.00

10.00

Substantia nigra with loss of cells and Lewy body pathology

Reticular Formation 網狀結構

- Scattered nuclei in medulla, pons & midbrain
- Reticular activating system
 - alerts cerebral cortex to sensory signals (sound of alarm, flash light, smoke or intruder) to awaken from sleep
 - maintains consciousness & helps keep you awake with stimuli from ears, eyes, skin and muscles
- Motor function is involvement with maintaining muscle tone

Awake

- Acetylcholine
- Glutamate
- Norepinephrine
- Serotonin

Cerebellum 小腦

Functions: Coordinating skilled movements; regulate posture and balance All skilled motor activities, from catching basketball to dancing

Cerebellar hemispheres and vermis 蚓部

Anterior and Posterior lobes: subconscious movements of skeletal muscles Flocculonodular lobe小葉結葉: the sense of equilibrium

Cerebellar hemispheres cortex小腦半球皮質(folia小腦葉): Skilled movements

Cerebellar Peduncles 小腦腳

Inferior cerebellar peduncles: medulla oblongata and spinal cord Middle cerebellar peduncles: pons (sensory input from pons) Superior cerebellar peduncles: midbrain (motor output to midbrain)

(c) Midsagittal section of cerebellum and brain stem
Cerebellar Peduncles 小腦腳

- Superior, middle & inferior peduncles attach to brainstem
 - inferior carries sensory information from spinal cord
 - middle carries fibers from the pons
 - superior carries motor fibers that extend to red nucleus

Cerebellar Functions: Motor learning and Cognitive functions

- 1. Lateral Hemispheres: Planning Movements
- 2. Intermediate zones: Adjusting limb movement
- 3. Vermis: Postural adjustments
- 4. Flocculus and Vermis: Eyes movements

38

Diencephalon 間腦

Epithalamus 上視丘

Thalamus 丘腦

Subthalamus 底丘腦

Hypothalamus下視丘

Diencephalon 間腦

- 1 inch long mass of gray mater in each half of brain (connected across the 3rd ventricle by intermediate mass)
- Relay station for sensory information on way to cortex
- Crude perception of some sensations

C Addison Wesley Longman, Inc.

C Addison Wesley Longman, Inc.

Thalamus<u>斤</u>腦:

*Medial geniculate nucleus內膝狀核: hearing

*Lateral geniculate nucleus外膝狀核: vision

*Ventral posterior nucleus: taste and somatic sensations such as touch, pressure, vibration, heat, cold and pain)

*Anterior nucleus: emotions and memory

*Ventral lateral nucleus and Ventral anterior nucleus: voluntary motor actions and arousal

Cognition center 認知中心: awareness and in the acquisition of knowledge

C Addison Wesley Longman, Inc.

Thalamus丘腦:

*Ventral posterior nucleus: taste and somatic sensations such as touch,

pressure, vibration, heat, cold and pain)

*Anterior nucleus: emotions and memory

*Ventral lateral nucleus and Ventral anterior nucleus: voluntary motor actions and arousal

Cognition center 認知中心: awareness and in the acquisition of knowledge

Thalamic Nuclei

Nuclei have different roles

- relays auditory and visual impulses, taste and somatic sensations
- receives impulses from cerebellum or basal ganglia
- anterior nucleus concerned with emotions, memory and acquisition of knowledge (cognition)

Subthalamus 底丘腦:

control skeletal muscle

movements and muscle tone Motor cortex

→subthalamic nuclei

 \rightarrow red nuclei and substantia nigra

Hypothalamus 下視丘

mammilary region 乳頭區: mammilary bodies and posterior hypothalamic nucleus mammilary bodies乳頭體: relay stations in reflexes to the sense of smell. **tuberal region管區**: dorsomedial, ventromedial and arcuate nuclei tuber cinereum 灰管and infundibulum漏斗 →pituitary gland Median eminence正中隆起: *Master of endocrine system hypothalamic regulating hormones→anterior pituitary

Sagittal section of brain showing hypothalamic nuclei

Hypothalamus

- Dozen or so nuclei in 4 major regions
 - Paraventricular nu. & supraoptic nu. send axons through the infundibulum into posterior lobe of the pituitary gland

- Major regulator of homeostasis
 - receives somatic and visceral input, taste, smell & hearing information; monitors osmotic pressure, temperature of blood

Tuberal region管區:

dorsomedial, ventromedial and arcuate nuclei

tuber cinereum 灰管 and infundibulum 漏斗 →pituitary gland

Median eminence正中隆起: *Master of endocrine system hypothalamic regulating hormones → anterior pituitary

Supraoptic region視束上區:

Paraventricular nucleus側室 核

 \rightarrow supraopticohypophyseal tract

Supraoptic nucleus視束上核 →

supraopticohypophyseal tract → posterior pituitary

Neuroendocrine: 1. oxytocin 催產素 2. vasopressin 抗利尿激素 (antidiuretic hormone, ADH)

Functions of hypothalamus:

- 1. controls and integrates activities of the autonomic system
- Anterior hypothalamic area (parasympathetic)
- Posterior hypothalamic area (sympathetic)
- Lateral hypothalamic area (thirst and hunger)

2. associated with feelings of rages and aggression. Dorsomedial nucleus (兇) vs. Ventromedial nucleus (善)

3. regulates the body temperature

Heat disposal region: Anterior hypothalamic area (parasympathetic)

Temperature maintenance region: Posterior hypothalamic area (sympathetic)

4. regulate food intake: feeding (hunger) center & satiety center

feeding (hunger) center 饑餓中樞: Lateral hypothalamic area

<u>satiety center (飽足中樞):</u> Ventromedial nucleus (VM) (善)

5. thirst center □渴中樞: regulate osmotic pressure of extracellular fluid

paraventricular nucleus supraoptic nucleus \rightarrow posterior pituitary (ADH)

Thalamic facsiculus

(field H_o of Forel)

Dentothalamic

Prerubral field

(field H of Forel)

Nucleus of prerubral

Pallidohypothalamic

or tegmental field

fasciculus

rubrothalamic and

thalamostriate fibres

Zona incerta: regulation of drinking behavior

TM

Illv

6. biological clock, maintains the waking state and sleep patterns Suprachiasmatic nucleus

7. Endocrine functions: tuber cinereum and infundibulum →pituitary gland Median eminence正中隆起: *Master of endocrine system hypothalamic regulating hormones→anterior pituitary

Figure 11-17. The pituitary portal system. Arteries are *red*; veins are *blue*; neurons that secrete releasing hormones are *black*.

Figure 11-16. Hypothalamo-hypophysial tract and the parts of the neurohypophysis.

Summary of the Functions of Hypothalamus

- Controls and integrates activities of the ANS which regulates smooth, cardiac muscle and glands
- Synthesizes regulatory hormones that control the anterior pituitary
- Contains cell bodies of axons that end in posterior pituitary where they secrete hormones
- Regulates rage, aggression, pain, pleasure & arousal
- Feeding, thirst & satiety centers
- Controls body temperature
- Regulates daily patterns of sleep

Epithalamus上視丘:

Pineal gland 松果體: secretes melatonin (more in the darkness, promoting sleepiness) Habenular nuclei 韁核:

olfaction (smell), especially emotional responses to smells

Epithalamus 上丘腦: The Old part of Diencephalon

A. Pineal body (epiphysis): No Neurons

- 1. Glia cells (astrocytes)
- 2. Parenchymal cells (pinealocytes)
- 3. Nerve fibers: serving primarily as the terminals of postganglionic sympathetic neurons from the superior cervical ganglion (SCG)
- 4. Calcareous accumulations (brain sands)
- 5. Function: secretes melatonin (more in the darkness, promoting sleepiness)
- 6. seasonal maintenance and regression of gonadal cycling (in birds)

Pineal gland (pineal body)

Biological clock $? \rightarrow$ hypothalamus (suprachiasmatic nucleus)

Neuroendocrine transducer:

to convert a neuronal signal (such as light and dark) to a endocrine signal (shifting concentrations of hormone secretion)

Melatonin 松果腺素(退黑激素): a derivative of serotonin; steady secretion of melatonin at night; inhibition of melatonin secretion by light

Circadian rhythm 日周期節律

Cerebrum大腦

The surface of cerebrum (gray matter) → cerebral cortex Gyrus (gyri): folds腦迴 Fissures裂: deepest grooves between folds *Longitudinal fissure (cerebral hemispheres) Sulcus (sulci)溝: shallower grooves

Five lobes

Lobes: Frontal, Parietal, Temporal, and Occipital Lobes

*Insula 腦島: lies deep within the lateral cerebral fissure, deep to the parietal, frontal and temporal lobes.

(d) Right lateral view

Cerebrum大腦

Corpus callosum 胼胝體: transverse fibers (white matter) connected hemispheres

Medial view of white matter tracts revealed by scooping out gray matter from a midsagittal section

Basal Ganglia 基底核:

(substantia nigra, red nucli, and subthalamic nuclei)

Functions: motor control for fine body movements

Corpus striatum 紋狀體:

*Caudate nucleus 尾狀核: head, body and tail→amygdaloid body Lenticular nucleus 豆狀核: *Putamen 殼狀核 *Control the large automatic movements of skeletal muscles,

such as swinging the arms while walking

Corpus striatum 紋狀體:

Globus pallidus蒼白球: regulation of muscle tone required for specific body movements Stroke →Basal ganglia: paralysis of the side of the body **opposite** to the damage

Corpus striatum 纹狀體:

Globus pallidus蒼白球: regulation of muscle tone required for specific body movements Stroke 中風 →Basal ganglia: paralysis of the side of the body opposite to the damage

C Heart and Stroke Foundation of Canada

Functional organization of the cerebral cortex

Brodmann's map of the cerebral cortex, first published in 1909

Functional Areas of the Cerebral Cortex **Sensory areas**

Primary somatosensory area (#1, #2, #3): postcentral gyrus of frontal lobe Primary visual area (#17): medical surface of occipital lobe

Sensory areas

Primary auditory area (# 41 and # 42): superior part of temporal lobe Primary gustatory area (# 43): the base of the postcentral gyrus superior to the lateral cerebral sulcus in the parietal lobe Primary olfactory area (# 28): temporal lobe

Somatosensory Map

Sensory homunculus

2. Motor areas

Primary motor area (# 4): precentral gyrus of frontal lobe Motor speech area (# 44 and # 45; Broca's area): *On the left frontal lobe

© Addison Wesley Longman, Inc.

Motor Areas of Cerebral Cortex

Motor homunculus

Voluntary motor initiation

- Primary motor area = 4 = precentral gyrus
 - controls voluntary contractions of skeletal muscles on other side
- Motor speech area = 44 = Broca's area
 - production of speech -- control of tongue & airway

Language

Language areas are located in the left cerebral hemisphere of most people

Expressive (Motor) speech area (Broca's area) Receptive (Sensory) language area (Wernike's area)

Lateralization of the cerebral cortex

Left hemisphere:

1. control of muscles on right side of body

- 2. Spoken and written language
- 3. Numerical and scientific skills
- 4. Reasoning

Right hemisphere:

- 1. control of muscles on left side of body
- 2. Musical and artistic awareness
- 3. Space and pattern perception
- 4. Insight
- 5. Imagination

6.Generating mental images to compare spatial relationships

Cerebrum: limbic system (Emotional Brain)邊緣系統

- Parahippocampal & cingulate gyri & hippocampus
- Emotional brain--intense pleasure & intense pain
- Strong emotions increase efficiency of memory

Limbic System (Emotional Brain) 邊緣系統

- 1. Limbic lobe: parahippocampal and cingulate gyri Hippocampus海馬: memory
- 2. Dentate gyrus 齿狀迥
- 3. Amygdaloid body杏仁核
- 4. Septal nuclei中隔核
- 5. Mammilary body of the hypothalamus

Limbic System (Emotional Brain)邊緣系統

6. Anterior nucleus of the thalamus

- 7. Olfactory bulbs
- 8. Fornix穹窿:

white matter tracts connect the hippocampus to the hypothalamus Stria terminalis終紋, stria medullaris隨紋, and mammillothalamic tracts. Emotions: pain, pleasure, anger, rage, fear, sorrow, sexual feelings, docility, and affection

The Brain

- Principal parts of the brain
- Protective coverings of the brain
- Cerebrospinal fluid 腦脊髓液
- Brain stem & Cerebellum 腦幹及小腦
- Diencephalon間腦
- Cerebrum 大腦
- Cranial Nerves (Next week)

Autonomic Nervous System & Special Senses (Next week)